

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Page Needed

If you’re seeing this page, it means you’ve clicked on a link to a Sails doc that has yet to be written. Help make Sails better by contributing to the docs!

Please send a pull request to master with corrections/additions and they’ll be double-checked and merged as soon as possible.

Secondly, we are open to suggestions about the process we’re using to manage our documentation, and to work with the community in general. Please post to the Google Group with your ideas, or if you’re interested in helping directly, contact @fancydoilies, @aaaaanxiety, or @mikermcneil on Twitter.

Love,

The Sails Team

 ![Squiddy reads the docs](https://sailsjs.com/images/squidford_swimming.png)

Sails.js Documentation

The official documentation for the current stable release of Sails is on the master branch of this repository. Content for most sections on the [official Sails website](https://sailsjs.com) is compiled from here.

In other languages

The documentation for Sails has been translated to a number of different languages. The list below is a reference of the translation projects we are aware of.

Language | [IETF Language Tag](https://en.wikipedia.org/wiki/IETF_language_tag) | Version | Maintainer(s) | Repo |

—————————- | ——- | ——- | —————— | ———————————- |

Brazilian Portuguese | pt-BR | v1.0.x | [@Avlye](https://github.com/Avlye) | [sails-docs-pt-BR](https://github.com/Avlye/sails-docs-pt-BR)

Chinese | zh-cn | v0.12.x | [@linxiaowu66](https://github.com/linxiaowu66) | [sails-docs-zh-cn](https://github.com/linxiaowu66/sails-docs-zh-cn)

French | fr | v0.12.x | [@marrouchi](https://github.com/marrouchi) | [sails-docs-fr](https://github.com/marrouchi/sails-docs-fr)

Spanish | es | v0.12.x | [@eduartua](https://github.com/eduartua/) & [@alejandronanez](https://github.com/alejandronanez) | [sails-docs-es](https://github.com/eduartua/sails-docs-es)

Japanese | ja | v0.11.x | [@kory-yhg](https://github.com/kory-yhg) | [sails-docs-ja](https://github.com/balderdashy/sails-docs/tree/ja)

Brazilian Portuguese | | v0.10.x | [@marceloboeira](https://github.com/marceloboeira) | [sails-docs-pt-BR](https://github.com/balderdashy/sails-docs/tree/pt-BR)

Korean | ko | v0.10.x | [@sapsaldog](https://github.com/sapsaldog) | [sails-docs-ko](https://github.com/balderdashy/sails-docs/tree/ko)

Taiwanese Mandarin | zh-TW | v0.10.x | [@CalvertYang](https://github.com/CalvertYang) | [sails-docs-zh-TW](https://github.com/balderdashy/sails-docs/tree/zh-TW)

> Since we are now using branches to keep track of different versions of the Sails documentation, we are moving away from the original approach of using branches for different languages. Before embarking on a new translation project, we ask that you review the [updated information below](#how-can-i-help-translate-the-documentation)– the process has changed a little bit.

Contributing to the Sails docs

We welcome your help! Please send a pull request with corrections/additions and they’ll be double-checked and merged as soon as possible.

How are these docs compiled and pushed to the website?

We use a module called doc-templater to convert the .md files to the html for the website. You can learn more about how it works in [the doc-templater repo](https://github.com/uncletammy/doc-templater).

Each .md file has its own page on the website (i.e. all reference, concepts, and anatomy files), and should include a special <docmeta name=”displayName”> tag with a value property specifying the title for the page. This will impact how the doc page appears in search engine results, and it will also be used as its display name in the navigation menu on sailsjs.com. For example:

`markdown
<docmeta name="displayName" value="Building Custom Homemade Puddings">
`

When will my change appear on the Sails website?

Once your change to the documentation is merged, you can see how it will appear on sailsjs.com by visiting next.sailsjs.com. The preview site updates itself automatically as changes are merged.

How can I help translate the documentation?

A great way to help the Sails project, especially if you speak a language other than English natively, is to volunteer to translate the Sails documentation. If you are interested in collaborating with any of the translation projects listed in the table above, contact the maintainer of the translation project using the instructions in the README of that fork.

If your language is not represented in the table above, and you are interested in beginning a translation project, follow these steps:

	Bring the documentation folder (balderdashy/sails/docs) into a new repo named sails-docs-{{IETF}} where {{IETF}} is the [IETF language tag](https://en.wikipedia.org/wiki/IETF_language_tag) for your language.

	Edit the README to summarize your progress so far, provide any other information you think would be helpful for others reading your translation, and let interested contributors know how to contact you.

	Send a pull request editing the table above to add a link to your fork.

	When you are satisfied with the first complete version of your translation, open an issue and someone from our docs team will be happy to help you get preview it in the context of the Sails website, get it live on a domain (yours, or a subdomain of sailsjs.com, whichever makes the most sense), and share it with the rest of the Sails community.

How else can I help?

For more information on contributing to Sails in general, see the [Contribution Guide](sailsjs.com/contributing).

License

[MIT](https://sailsjs.com/license)

The [Sails framework](https://sailsjs.com) is free and open-source under the [MIT License](https://sailsjs.com/license).

 # .editorconfig

This file exists to help maintain consistent formatting throughout the files in your Sails app.

For more information, see editorconfig.org.

<docmeta name=”displayName” value=”.editorconfig”>

 # .eslintignore

This file exists to signify to [ESLint](https://eslint.org/) that certain files and/or directories should be ignored for the purposes of linting.

<docmeta name=”displayName” value=”.eslintignore”>

 # .eslintrc

This file defines a set of basic code conventions designed to encourage quality and consistency across your Sails app’s code base.

For more information, see eslint.org.

<docmeta name=”displayName” value=”.eslintrc”>

 # .htmlhintrc

This file defines the rules for your app’s [HTMLHint](http://htmlhint.com/), to encourage quality and consistency in your views and templates.

<docmeta name=”displayName” value=”.htmlhintrc”>

 # Gruntfile.js

Sails uses [Grunt](http://gruntjs.com) for asset management. This file contains the entry point for the default asset pipeline in Sails; that is, the code that does stuff like compiling LESS stylesheets, minifying scripts for production, and precompiling and injecting client-side templates.

Sails’ integration with Grunt is fully customizable, but for most use cases, this file (Gruntfile.js) should remain unchanged. Instead, you can install Grunt plugins or add your own custom logic as new files in the [tasks/](./tasks) folder.

> + To learn more about working with static assets in Sails, check out the [conceptual documentation on assets](https://sailsjs.com/documentation/concepts/assets).
> + For a broader introduction to Grunt tasks in general, see [Grunt’s docs on configuring tasks](http://gruntjs.com/configuring-tasks).

<docmeta name=”displayName” value=”Gruntfile.js”>

 # README.md

This is a generic README that you can edit to describe your app.

<docmeta name=”displayName” value=”README.md”>

 # docs/anatomy

This section contains the “Anatomy” documentation which is eventually available at https://sailsjs.com/documentation/anatomy.

Notes
> - This README file is not compiled to HTML for the website. It is just here to explain what you’re looking at.
> - Depending on what branch of sails you are currently viewing, the domain may vary. See the top-level documentation README file for information about working with the markdown files in this repo, and to understand the branching/versioning strategy.

<docmeta name=”notShownOnWebsite” value=”true”>

 # Anatomy of a Sails app

An interactive guide to the structure of the Sails app generated by default with sails new.

Choose from any of the files or folders in the list to learn more about its purpose.

<docmeta name=”displayName” value=”Anatomy of a Sails app”>
<docmeta name=”isOverviewPage” value=”true”>

 # app.js

This file is the conventional entry point for a _production_ Sails/Node.js app.

When developing on your local computer, and you run sails lift, the code in app.js is not executed. Instead, this file exists to provide an easy, out-of-the-box way to run your app _without_ typing sails lift. This is most likely how you’ll start your app in production (i.e. node app, or npm start).

For example, when you deploy to most PaaS vendors like [Heroku](http://heroku.com), they will automatically detect that you’re running a Sails/Node.js app and execute this file with the NODE_ENV environment variable set to production.

> Whatever stage of the development lifecycle you’re at, you can safely ignore app.js. It’s good to go out of the box for most apps. But the code in app.js also serves as an easy-to-reference example of how to use Sails programmatically. So you might want to take a look at it if you plan on writing automated tests, scheduled jobs, manual database migrations, or administration scripts.

<docmeta name=”displayName” value=”app.js”>

 # .gitignore

This file is only relevant if you are using git.

It informs git of any files that you don’t want pushed to the remote server.

Files which match the splat patterns seen in the code below will be ignored by git. This keeps random crap and and sensitive credentials from being uploaded to your repository. It allows you to configure your app for your machine without accidentally committing settings which will smash the local settings of other developers on your team.

Some reasonable defaults are included, but, of course, you should modify/extend/prune to fit your needs!

[Read more about .gitignore](https://help.github.com/articles/ignoring-files)

<docmeta name=”displayName” value=”.gitignore”>

 # package.json

This is a standard configuration file for [npm](https://npmjs.org/doc/json.html). Among other things, this file contains the name and version of all of the Node Modules that your app depends on to run. You can change this manually but be careful to adhere to their rules or things might break.

<docmeta name=”displayName” value=”package.json”>

 # .sailsrc

This file is useful for setting configuration for ALL Sails apps on a computer. You can also use it to extend the functionality of the Sails CLI tool.

You can learn more about using sailsrc files [here](https://sailsjs.com/documentation/concepts/configuration/using-sailsrc-files).

<docmeta name=”displayName” value=”.sailsrc”>

 # api/

This folder contains the vast majority of your app’s back-end logic. It is home to the ‘M’ and ‘C’ in MVC Framework.

In it you will find the following:

	Controllers: [Actions](https://sailsjs.com/documentation/concepts/actions-and-controllers) contain back-end logic that handle incoming requests (like handling a form submission or responding with personalized, server-rendered HTML).

	Helpers: [Helpers](https://sailsjs.com/documentation/concepts/helpers) are shared functions that can be called from anywhere in your app.

	Models: [Models](https://sailsjs.com/documentation/concepts/models-and-orm) are the structures that contain data for your Sails App.

	Policies: [Policies](https://sailsjs.com/documentation/concepts/policies) are middleware that restrict access to certain actions in your app.

You may also find these folders, which are not always generated by default in new Sails apps:

	Hooks: [Hooks](https://sailsjs.com/documentation/concepts/extending-sails/hooks) are modules that add functionality to Sails core. You can use hooks to run custom code when your app lifts and before handling every incoming request. Hooks can also be installed as plugins, but the hooks in this folder are always custom for your application.

	Responses: [Custom responses](https://sailsjs.com/documentation/concepts/extending-sails/custom-responses) can help maintain consistent HTTP status codes and behavior across your app. (Since not every Sails application needs to define its own custom responses, this folder is sometimes excluded.)

	Services: [Services](https://sailsjs.com/documentation/concepts/services) are shared utilities common in Sails apps written before version 1.0. They can be _just about anything_, so for new apps, it’s recommended that you use [helpers](https://sailsjs.com/documentation/concepts/helpers) instead.

<docmeta name=”displayName” value=”api”>

 # api/controllers/

This is the directory that holds your controllers. In Sails, controllers are JavaScript files that contain logic for interacting with models and rendering appropriate views to the client.

When you call sails generate api cats via the command line from inside your project’s root directory, Sails will generate the file api/controllers/CatsController.js along with a matching model.

The api/controllers directory can also contain _standalone actions_, which are JavaScript files containing a _single_ controller action, rather than a dictionary of actions.

See the [main actions and controllers documentation](https://sailsjs.com/documentation/concepts/actions-and-controllers) for more info.

<docmeta name=”displayName” value=”controllers”>

 # api/controllers/.gitkeep

Ignore this file. It only exists because git refuses to push empty directories to a remote server. .gitkeep is an unofficial convention that has emerged as a workaround for people who don’t discriminate against empty directories.

<docmeta name=”displayName” value=”.gitkeep”>

 # api/helpers/.gitkeep

Ignore this file. It only exists because git refuses to push empty directories to a remote server. .gitkeep is an unofficial convention that has emerged as a workaround for people who don’t discriminate against empty directories.

<docmeta name=”displayName” value=”.gitkeep”>

 # api/helpers/

This is the directory that holds your helpers. In Sails, helpers are shared functions that can be called from anywhere in your app.

When you call sails generate helper tickle-user via the command line from inside your project’s root directory, Sails will generate the file api/helpers/tickle-user.js, with a skeleton helper file to get you started.

See the [main helpers documentation](https://sailsjs.com/documentation/concepts/helpers) for more info.

<docmeta name=”displayName” value=”helpers”>

 # api/models/.gitkeep

Ignore this file. It only exists because git refuses to push empty directories to a remote server. .gitkeep is an unofficial convention that has emerged as a workaround for people who don’t discriminate against empty directories.

<docmeta name=”displayName” value=”.gitkeep”>

 # api/models/

This is the directory that holds your models. In Sails, models are the structures that contain data for your Sails App.

You can learn more about how to define and use models in [Concepts > Models and ORM > Models](https://sailsjs.com/documentation/concepts/models-and-orm/models), and about how to generate them [here](https://sailsjs.com/documentation/reference/command-line-interface/sails-generate#?core-generators).

<docmeta name=”displayName” value=”models”>

 # api/policies/.gitkeep

Ignore this file. It only exists because git refuses to push empty directories to a remote server. .gitkeep is an unofficial convention that has emerged as a workaround for people who don’t discriminate against empty directories.

<docmeta name=”displayName” value=”.gitkeep”>

 # api/policies/

This is the folder you will store your “policy” files in. A policy file is a JavaScript file that contains what is essentially Express middleware for authenticating access to controller actions in your app.

For example, if you want to make sure only authenticated admin users can access http://yourapp.com/admin/dashboard, this is the folder you would put that logic in.

For more information about policies and how to use them in your app, see [Concepts > Policies](https://sailsjs.com/documentation/concepts/policies).

<docmeta name=”displayName” value=”policies”>

 # assets/.eslintrc

This file is for [ESLint](https://eslint.org/) configuration overrides for the assets/ directory.

These override the code conventions defined in the top-level [.eslintrc](https://sailsjs.com/documentation/anatomy/.eslintrc), to allow for variations between front-end JavaScript code vs. backend code designed to run in a Node.js/Sails process.

<docmeta name=”displayName” value=”.eslintrc”>

 # assets/

This is your assets folder. It houses all of the static files that your app will need to host. Feel free to create your own files and folders in here. Upon lifting, a file called assets/newFolder/data.txt could be accessed at http://localhost:1337/newFolder/data.txt.

<docmeta name=”displayName” value=”assets”>

 # assets/favicon.ico

This file is the [Favicon](http://en.wikipedia.org/wiki/Favicon) for your app.

<docmeta name=”displayName” value=”favicon.ico”>

 # assets/dependencies/

As a rule of thumb, if it’s code written by you or someone on your team, it _does not belong in this folder._ Instead, assets/dependencies/ is for your client-side dependencies such as Vue.js, Bootstrap, or jQuery. This folder can include client-side JavaScript files, stylesheets, and even images. (See the “Web App” template for an example.)

JavaScript files and stylesheets in the assets/dependencies/ folder are loaded first, before your other assets. This conventional behavior is orchestrated by [tasks/pipeline.js](https://sailsjs.com/documentation/anatomy/tasks/pipeline.js), so head over there if you need to tweak this behavior (for example, if some of your client-side dependencies need to load before others.)

<docmeta name=”displayName” value=”dependencies”>

 # assets/dependencies/sails.io.js

This file adds a few custom methods to socket.io which provide the “built-in” websockets functionality for Sails.

Specifically, those methods allow you to send and receive Socket.IO messages to and from Sails by simulating a REST client interface on top of Socket.IO. It models its API after the $.ajax pattern from jQuery which you might be familiar with.

See the [Socket client reference](https://sailsjs.com/documentation/reference/web-sockets/socket-client) for more info about using the methods that this file provides.

<docmeta name=”displayName” value=”sails.io.js”>

 # assets/images/.gitkeep

Ignore this file. It only exists because git refuses to push empty directories to a remote server. .gitkeep is an unofficial convention that has emerged as a workaround for people who don’t discriminate against empty directories.

<docmeta name=”displayName” value=”.gitkeep”>

 # assets/images/

This is where you should put image files that need to be statically hosted by your app.

Upon lifting your app, an image called omgCat.jpg could be found at http://localhost:1337/images/omgCat.jpg

<docmeta name=”displayName” value=”images”>

 # assets/js/.gitkeep

Ignore this file. It only exists because git refuses to push empty directories to a remote server. .gitkeep is an unofficial convention that has emerged as a workaround for people who don’t discriminate against empty directories.

<docmeta name=”displayName” value=”.gitkeep”>

 # assets/js/

This is where you put client-side JavaScript files that you want to be statically hosted by your app. Sails puts a few in there for making communication via socket.io easier.

<docmeta name=”displayName” value=”js”>

 # assets/styles/importer.less

By default, new Sails projects are configured to compile this file from LESS to CSS. Unlike CSS files, LESS files are not compiled and included automatically unless they are imported here.

The LESS files imported in this file are compiled and included in the order they are listed. Mixins, variables, etc. should be imported first so that they can be accessed by subsequent LESS stylesheets.

(Just like the rest of the asset pipeline bundled in Sails, you can always omit, customize, or replace this behavior with SASS, SCSS, or any other Grunt tasks you like.)

<docmeta name=”displayName” value=”importer.less”>

 # assets/styles/

This is where you will put all of the .css files that you would like to be statically hosted by your app.

<docmeta name=”displayName” value=”styles”>

 # assets/templates/.gitkeep

Ignore this file. It only exists because git refuses to push empty directories to a remote server. .gitkeep is an unofficial convention that has emerged as a workaround for people who don’t discriminate against empty directories.

<docmeta name=”displayName” value=”.gitkeep”>

 # assets/templates/

Client-side HTML templates are important prerequisites for certain types of modern, rich client applications built for browsers; particularly [SPAs](https://en.wikipedia.org/wiki/Single-page_application). To work their magic, frameworks like Backbone, Angular, Ember, and Knockout require that you load templates client-side; completely separate from your traditional [server-side views](https://sailsjs.com/documentation/concepts/views). Out of the box, new Sails apps support the best of both worlds.

Whether or not you use client-side templates in your app and where you put them is, of course, completely up to you. But for the sake of convention, new apps generated with Sails include a templates/ folder for you by default.

How do I use these templates?

By default, your Gruntfile is configured to automatically load and precompile
client-side JST templates in your assets/templates folder, then
include them in your layout.ejs view automatically (between TEMPLATES and TEMPLATES END).

<!–TEMPLATES–>

<!–TEMPLATES END–>

This exposes your HTML templates as precompiled functions on window.JST for use from your client-side JavaScript.

To customize this behavior to fit your needs, just edit your Gruntfile.
For example, here are a few things you could do:

	Import templates from other directories

	Use a different template engine (handlebars, jade, dust, etc)

	Internationalize your client-side templates using a server-side stringfile before they’re served.

For more information, check out the conceptual documentation on the [default Grunt tasks](https://sailsjs.com/documentation/concepts/assets/default-tasks) that make up Sails’ asset pipeline.

<docmeta name=”displayName” value=”templates”>

 # config/blueprints.js

This file is for the configuration of blueprint routes and actions.

For an overview of blueprints, see the [main Blueprints API concepts docs](https://sailsjs.com/documentation/concepts/blueprints). For more information on configuring the blueprint API, check out the [reference documentation on blueprints](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints).

Usage

See [sails.config.blueprints](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints) for all available options.

<docmeta name=”displayName” value=”blueprints.js”>

 # config/bootstrap.js

This is a server-side JavaScript file that is executed by Sails just before your app is lifted.

This gives you an opportunity to set up your data model, run jobs, or perform some special logic.

Usage

See [sails.config.bootstrap](https://sailsjs.com/documentation/reference/configuration/sails-config-bootstrap) for more info.

<docmeta name=”displayName” value=”bootstrap.js”>

 # config/

This folder contains various files that will allow you to customize and configure your Sails app.

<docmeta name=”displayName” value=”config”>

 # config/custom

This is your custom configuration file. It is useful for one-off settings specific to your application– like your base URL for linkbacks, the no-reply “From” address to use when sending automated emails, or 3rd party API keys for Stripe, Mailgun, Twilio, etc.

> Use [sails.config.custom](https://sailsjs.com/documentation/reference/application/sails-config-custom) to access these values from your actions and helpers.

You can learn more about custom configuration [here](https://sailsjs.com/documentation/reference/configuration/sails-config-custom).

<docmeta name=”displayName” value=”custom.js”>

 # config/datastores

A set of datastore configurations which tell Sails where to fetch or save data when you execute built-in model methods like .find() and .create().

> This file is mainly useful for configuring your development database, as well as any additional one-off databases used by individual models.

Usage

See [sails.config.datastores](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores) for all available options.

<docmeta name=”displayName” value=”datastores.js”>

 # config/globals.js

Configuration for the global variables Sails exposes to its Node process.

Usage

See [sails.config.globals](https://sailsjs.com/documentation/reference/configuration/sails-config-globals) for all available options.

<docmeta name=”displayName” value=”globals.js”>

 # config/http.js

This file is for configuring the underlying HTTP server in Sails, as well as any HTTP middleware your app may need.

Usage

See [sails.config.http](https://sailsjs.com/documentation/reference/configuration/sails-config-http) for all available options.

<docmeta name=”displayName” value=”http.js”>

 # config/i18n.js

This file contains your Sails app’s internationalization settings.

Usage

See [sails.config.i18n](https://sailsjs.com/documentation/reference/configuration/sails-config-i-18-n) for all available options.

<docmeta name=”displayName” value=”i18n.js”>

 # config/local.js

This file is used to specify configuration settings for use while developing the app on your personal system.

For more information, check out [Concepts > Configuration > The local.js file](https://sailsjs.com/docs/concepts/configuration/the-local-js-file)

> Since config/local.js is usually used to store sensitive credentials, it is included in your app’s [.gitignore](https://sailsjs.com/documentation/anatomy/.gitignore), and isn’t pushed to the remote server. If you click the link to this file below, you should see a 404 page; in this case, that’s a _good_ thing!

<docmeta name=”displayName” value=”local.js”>

 # config/log.js

This file contains the logger configuration for your Sails app.

Configure the log level for your app, as well as the transport.

Underneath the covers, Sails uses Winston for logging, which allows for some pretty neat custom transports/adapters for log messages.

Usage

See [sails.config.log](https://sailsjs.com/documentation/reference/configuration/sails-config-log) for all available options.

<docmeta name=”displayName” value=”log.js”>

 # config/models.js

Unless you override them, the properties contained in this file will be included in each of your models.

Usage

See [sails.config.models](https://sailsjs.com/documentation/reference/configuration/sails-config-models) for all available options.

<docmeta name=”displayName” value=”models.js”>

 # config/policies.js

This file contains the default policies for your app.

Policies are simply Express middleware functions which run before your controllers. You can apply one or more policies to a given controller, or protect just one of it’s actions. Any policy file (e.g. api/policies/isLoggedIn.js) can be dropped into the api/policies/ folder, at which point it can be accessed by it’s filename, minus the extension, (e.g. isLoggedIn).

Usage

See [sails.config.policies](https://sailsjs.com/documentation/reference/configuration/sails-config-policies) for all available options.

<docmeta name=”displayName” value=”policies.js”>

 # config/routes.js

This file contains custom routes. Sails uses these routes to determine what to do each time it receives a request.

If Sails receives a URL that doesn’t match any of the [custom routes](https://sailsjs.com/documentation/concepts/routes/custom-routes) in this file, it will check for matching [assets](https://sailsjs.com/documentation/concepts/assets) (images, scripts, stylesheets, etc.). Finally, if those don’t match either, the [default 404 handler](https://sailsjs.com/documentation/reference/response-res/res-not-found) is triggered.

When you first generate your Sails app, there is only one route in this file. Its job is to serve the home page.

You’ll probably want to add some more.

> Sails also injects _shadow routes_, or implicit routes that handle certain kinds of requests behind the scenes. For more information about these kinds of routes, see [Concepts > Blueprints](https://sailsjs.com/documentation/concepts/blueprints).

Usage

See [sails.config.routes](https://sailsjs.com/documentation/reference/configuration/sails-config-routes) for all available options.

<docmeta name=”displayName” value=”routes.js”>

 # config/security.js

This file is the conventional home of your Sails app’s global security settings. For a complete reference of available security configuration in Sails, see:

	CORS settings reference: [sails.config.security.cors](https://sailsjs.com/documentation/reference/configuration/sails-config-security-cors)

	CSRF settings reference: [sails.config.security.csrf](https://sailsjs.com/documentation/reference/configuration/sails-config-security-csrf)

For a conceptual explanation of CORS in Sails, see [Security > CORS](https://sailsjs.com/documentation/concepts/security/cors).

For a conceptual explanation of CSRF in Sails, see [Security > CSRF](https://sailsjs.com/documentation/concepts/security/csrf).

Usage

See [sails.config.security](https://sailsjs.com/documentation/reference/configuration/sails-config-security) for all available options.

<docmeta name=”displayName” value=”security.js”>

 # config/session.js

This file contains information that tells Sails where to store your sessions.

Sails session integration leans heavily on the great work already done by Express, but also unifies socket.io with the Connect session store. It uses Connect’s cookie parser to normalize configuration differences between Express and socket.io and hooks into Sails’ middleware interpreter to allow you to access and auto-save to req.session with Socket.io the same way you would with Express.

This is where you would go to configure a different session store like Redis or Mongo. In this file you will find commented examples of what that configuration should look like.

This file also contains your ‘Session Secret’ that is generated by Sails when you create your app. Do not change or remove this unless you really know what you are doing.

Usage

See [sails.config.session](https://sailsjs.com/documentation/reference/configuration/sails-config-session) for all available options.

<docmeta name=”displayName” value=”session.js”>

 # config/sockets.js

This is a configuration file that allows you to customize the way your app talks to clients over Socket.IO.

It provides transparent access to Sails’ encapsulated pubsub/socket server for complete customizability. In it you can do things on the list below (and more!).

	Override afterDisconnect function (server side)

	Define custom authorization logic for client socket connections

	Set transport method

	Change Heartbeat Interval

	Change socket store

More Info
> Socket.IO configuration options can be found [here](https://github.com/LearnBoost/Socket.IO/wiki/Configuring-Socket.IO).

Usage

See [sails.config.sockets](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets) for all available options.

<docmeta name=”displayName” value=”sockets.js”>

 # config/views.js

This file is where Sails looks to find out which templating engine to use when rendering server side HTML templates. By default Sails uses ejs, but any view engine can be used by changing the extension and supplying a getRenderFn value (see the [view engine documentation](https://sailsjs.com/documentation/concepts/views/view-engines) for more info).

Usage

See [sails.config.views](https://sailsjs.com/documentation/reference/configuration/sails-config-views) for all available options.

<docmeta name=”displayName” value=”views.js”>

 # config/env/

This folder contains various environment-specific settings such as API keys or remote database passwords. Depending on the environment Sails is lifted in, the appropriate configuration file in this folder will load. To read more about environent-specific config in Sails, see [Concepts > Configuration](https://sailsjs.com/documentation/concepts/configuration#?environmentspecific-files-config-env).

<docmeta name=”displayName” value=”env”>

 # config/env/production.js

This file will be loaded when Sails is running in production mode. If using the CLI command sails lift –prod, these settings will be loaded.

<docmeta name=”displayName” value=”production.js”>

 # config/locales/de.json

This file is where German locale information is stored.

<docmeta name=”displayName” value=”de.json”>

 # config/locales/en.json

This file is where English locale settings are stored.

<docmeta name=”displayName” value=”en.json”>

 # config/locales/es.json

This file is where Spanish locale settings are stored.

<docmeta name=”displayName” value=”es.json”>

 # config/locales/fr.json

This file is where French locale settings are stored.

<docmeta name=”displayName” value=”fr.json”>

 # config/locales

This folder contains the information that is used by your app in supporting visiting client’s different [locales](http://en.wikipedia.org/wiki/Locale).

Usage

See [Concepts > Internationalization](https://sailsjs.com/documentation/concepts/internationalization).

<docmeta name=”displayName” value=”locales”>

 # tasks/pipeline.js

The pipeline.js file in your Sails app determines the order in which your stylesheets,
JavaScript, and client-side template files should be compiled and linked as <script>
or <link> tags.

If you are not relying on [automatic asset linking](https://sailsjs.com/documentation/concepts/assets/task-automation#?asset-pipeline), then you can safely ignore this file.

> Note that you can take advantage of Grunt-style wildcard/glob/splat expressions for matching multiple files, and use ! in front of an expression to ignore files.

<docmeta name=”displayName” value=”pipeline.js”>

 # tasks/

The tasks/ directory is a suite of Grunt tasks and their configurations, bundled for your convenience. The Grunt integration is mainly useful for bundling front-end assets (like stylesheets, scripts and markup templates), but it can also be used to run all kinds of development tasks, from browserify compilation to database migrations.

If you haven’t used [Grunt](http://gruntjs.com/) before, that’s OK! For many common use cases, you can get by without customizing or even looking at the files in this folder. If you do need to customize something, be sure to check out the [Getting Started](http://gruntjs.com/getting-started) guide, as it explains basic concepts like the [Gruntfile](http://gruntjs.com/sample-gruntfile) as well as how to install and use Grunt plugins. Once you’re familiar with that process, read on!

How does this work?

The asset pipeline bundled in Sails is a set of Grunt tasks configured with conventional defaults designed to make your project more consistent and productive.

The entire front-end asset workflow in Sails is completely customizable– while it provides some suggestions out of the box, Sails makes no pretense that it can anticipate all of the needs you’ll encounter building the browser-based/front-end portion of your application. Who’s to say you’re even building an app for a browser?

What tasks does Sails run automatically?

Sails runs some of these tasks (certain ones in the tasks/register/ folder) automatically when you run certain commands.

sails lift

Runs the default task (tasks/register/default.js).

sails lift –prod

Runs the prod task (tasks/register/prod.js).

sails www

Runs the build task (tasks/register/build.js).

sails www –prod (production)

Runs the buildProd task (tasks/register/buildProd.js).

Can I customize this for SASS, Angular, client-side Jade templates, etc?

You can modify, omit, or replace any of these Grunt tasks to fit your requirements. You can also add your own Grunt tasks- just add a someTask.js file in the grunt/config directory to configure the new task, then register it with the appropriate parent task(s) (see files in grunt/register/*.js).

Do I have to use Grunt?

Nope! The Sails core team has used Grunt on real-world projects for upwards of 4 years now, and overall it’s been a fantastic tool. But we realize it’s not for everyone. To disable Grunt integration in Sails, just delete your Gruntfile or [disable the Grunt hook](https://sailsjs.com/documentation/concepts/assets/disabling-grunt).

> You can also [generate a new Sails app –without=grunt](https://sailsjs.com/documentation/reference/command-line-interface/sails-new).

What if I’m not building a web frontend?

That’s ok! A core tenant of Sails is client-agnosticism– it’s especially designed for building APIs used by all sorts of clients; native Android/iOS/Cordova, serverside SDKs, etc.

You can completely disable Grunt by following the instructions [here](https://sailsjs.com/documentation/concepts/assets/disabling-grunt).

If you still want to use Grunt for other purposes, but don’t want any of the default web front-end stuff, just delete your project’s assets folder and remove the front-end oriented tasks from the grunt/register and grunt/config folders. You can also run sails new myCoolApi –no-frontend to omit the assets folder and front-end-oriented Grunt tasks for future projects. You can also replace your sails-generate-frontend module with alternative community generators, or create your own. This allows sails new to create the boilerplate for native iOS apps, Android apps, Cordova apps, SteroidsJS apps, etc.

> If you know you’ll _never_ need any kind of web frontend, you can also [generate a new Sails app with –no-frontend at all](https://sailsjs.com/documentation/reference/command-line-interface/sails-new).

More info

> More information on using Grunt to work with static assets: http://gruntjs.com/configuring-tasks

<docmeta name=”displayName” value=”tasks”>

 # tasks/config/babel.js

This file configures a Grunt task called “babel”.

This task is used to transpile any ES8, ES7, and ES6 syntax in your front-end JavaScript files for compatibility with older browsers.

> (By default, only .js files in the assets/js/ folder and subfolders will be transpiled. If you need other things transpiled, such as assets/dependencies/, you’ll need to modify the configuration of this task accordingly.)

For additional usage documentation, see [grunt-babel](https://npmjs.com/package/grunt-babel).

<docmeta name=”displayName” value=”babel.js”>

 # tasks/config/clean.js

This file configures a Grunt task called “clean”.

This task is used when preparing for a new pass through the asset pipeline. Its job is to remove any existing temporary files and folders in your Sails app’s web root.

> (By default, the [web root in a Sails app](https://sailsjs.com/documentation/concepts/assets) is a hidden directory called .tmp/public.)

For additional usage documentation, see [grunt-contrib-clean](https://npmjs.com/package/grunt-contrib-clean).

<docmeta name=”displayName” value=”clean.js”>

 # tasks/config/coffee.js

This file configures a Grunt task called “coffee”.

By default, this compiles CoffeeScript files located in [assets/js/](https://sailsjs.com/anatomy/assets/js/) into JavaScript, then generates new .js files in .tmp/public/js/.

But I’m not using CoffeeScript…

No problem!

If you aren’t using any kind of pre-processing for your client-side JavaScript, then just ignore this file.

If you want to use a _different_ pre-processor like [TypeScript](https://www.typescriptlang.org/) or [Babel](https://babeljs.io/), and you want Sails to process your client-side JavaScript assets automatically as you work, then you’re in luck. In most cases, this is as easy as installing the appropriate Grunt plugin as a dependency of your Sails app, and then configuring it to output compiled JavaScript to the same path as in this default task.

Here are a couple of popular examples:

	[grunt-ts](https://www.npmjs.com/package/grunt-ts)

	[grunt-babel](https://www.npmjs.com/package/grunt-babel)

Usage

For additional usage documentation, see [grunt-contrib-coffee](https://npmjs.com/package/grunt-contrib-coffee).

<docmeta name=”displayName” value=”coffee.js”>

 # tasks/config/concat.js

This file configures a Grunt task called “concat”.

It concatenates the contents of multiple JavaScript and/or CSS files into two new files, each located at concat/production.js and concat/production.css respectively in .tmp/public/concat.

This is used as an intermediate step to generate monolithic files that can then be passed in to uglify and/or cssmin for [minification](https://en.wikipedia.org/wiki/Minification_(programming)).

Usage

For additional usage documentation, see [grunt-contrib-concat](https://npmjs.com/package/grunt-contrib-concat).

<docmeta name=”displayName” value=”concat.js”>

 # tasks/config/

This folder contains the default Grunt task configuration used by the main entry points in [tasks/register/](https://sailsjs.com/anatomy/tasks/register).

For more about the files in this folder, see [Assets > Default Tasks](https://sailsjs.com/documentation/concepts/assets/default-tasks).

<docmeta name=”displayName” value=”config”>

 # tasks/config/copy.js

This file configures a Grunt task called “copy”.

Copy files and/or folders from your assets/ directory into the web root (.tmp/public) so they can be served via HTTP, and also for further pre-processing by other Grunt tasks.

Normal usage (sails lift)
Copies all directories and files (except CoffeeScript and LESS) from the assets/ folder into the web root – conventionally a hidden directory located .tmp/public.

Via the build tasklist (sails www)
Copies all directories and files from the .tmp/public directory into a www directory.

Usage

For additional usage documentation, see [grunt-contrib-copy](https://npmjs.com/package/grunt-contrib-copy).

<docmeta name=”displayName” value=”copy.js”>

 # tasks/config/cssmin.js

This file configures a Grunt task called “cssmin”.

It minifies the intermediate, concatenated CSS stylesheet which was prepared by the concat task at .tmp/public/concat/production.css. Together with the concat task, this is the final step that minifies all CSS files from assets/styles/ (and potentially your LESS importer file from assets/styles/importer.less).

Usage

For additional usage documentation, see [grunt-contrib-cssmin](https://npmjs.com/package/grunt-contrib-cssmin).

<docmeta name=”displayName” value=”cssmin.js”>

 # tasks/config/hash.js

This file configures a Grunt task called “hash”.

This task implements cache-busting for minified CSS and JavaScript files.

Specifically, its job is to append a unique hash to the end of a filename.

> For example: bar/foo.css => bar/dist/foo.f8494f81.css

Usage

For additional usage documentation, see [grunt-hash](https://github.com/jgallen23/grunt-hash/tree/0.5.0#grunt-hash).

<docmeta name=”displayName” value=”hash.js”>

 # tasks/config/jst.js

This file configures a Grunt task called “jst”.

It precompiles HTML templates using Underscore/Lodash notation into functions, creating a .jst file. This can be brought into your HTML via a <script> tag in order to expose your templates as window.JST for use in your client-side JavaScript.

In other words, this takes HTML files in assets/templates/ and turns them into tiny little JavaScript functions that return HTML strings when you pass a data dictionary into them. This approach is called “precompiling”, and it can considerably speed up template rendering on the client, and even reduce bandwidth usage and related expenses.)

> Note that, by default, Underscore/Lodash/JST notation is _opposite_ from EJS (<%= is <%-, and vice versa).
> If this bothers you, it can be easily configured in this file. (See inline comments for details.)

But I’m not using Lodash/Underscore/JST templates…

No problem!

If you aren’t using any kind of precompiled client-side templates, then just ignore this file.

If you are using a front-end framework like [Vue.js](https://vuejs.org), Ember, React, or Angular, see the starter app for examples, or come by https://sailsjs.com/support for assistance.

If you want to use a _completely different_ pre-processor like [Handlebars](http://handlebarsjs.com/) or [Dust](http://www.dustjs.com/), and you want Sails to process your client-side templates automatically as you work, then you’re in luck. In most cases, this is as easy as installing the appropriate Grunt plugin as a dependency of your Sails app, and then configuring it to output the precompiled templates (condensed into a single JavaScript file) to the same path as in this default task.

Here are a couple of popular examples:

	[grunt-contrib-handlebars](https://www.npmjs.com/package/grunt-contrib-handlebars)

	[grunt-dust](https://www.npmjs.com/package/grunt-dust)

Usage

For additional usage documentation, see [grunt-contrib-jst](https://www.npmjs.com/package/grunt-contrib-jst).

<docmeta name=”displayName” value=”jst.js”>

 # tasks/config/less.js

This file configures a Grunt task called “less”.

Its job is to compile your LESS files into a CSS stylesheet.

By default, only the assets/styles/importer.less file is compiled. This allows you to control the ordering yourself, i.e. import your dependencies, mixins, variables, resets, etc. before your other more application-specific styles. This is entirely up to you, and based on the order with which write your `@import`s in your LESS file.

But I’m not using LESS…

No problem!

If you aren’t using _any_ preprocessor for your stylesheets, then just ignore this file.

If you want to use a different pre-processor like [SASS](http://sass-lang.com/) or [Stylus](http://stylus-lang.com/), and you want Sails to process your stylesheets automatically as you work, then you’re in luck. In most cases, this is as easy as installing the appropriate Grunt plugin as a dependency of your Sails app, and then configuring it to output compiled CSS to the same path as in this default task.

Here are a couple of popular examples:

	[grunt-sass](http://npmjs.com/package/grunt-sass)

	[grunt-contrib-stylus](https://npmjs.com/package/grunt-contrib-stylus)

Usage

For additional usage documentation, see [grunt-contrib-less](https://npmjs.com/package/grunt-contrib-less).

<docmeta name=”displayName” value=”less.js”>

 # tasks/config/sails-linker.js

This file configures a Grunt task called “sails-linker”.

Automatically inject <script> tags and <link> tags into the specified
HTML and/or EJS files. The specified delimiters (startTag
and endTag) determine the insertion points.

Development (default)

By default, tags will be injected for your app’s client-side JavaScript files,
CSS stylesheets, and precompiled client-side HTML templates in the templates/
directory (see the jst task for more info on that). In addition, if a LESS
stylesheet exists at assets/styles/importer.less, it will be compiled to CSS
and a <link> tag will be inserted for it. Similarly, if any Coffeescript
files exist in assets/js/, they will be compiled into JavaScript and injected
as well.

Production (NODE_ENV=production)

In production, all stylesheets (including all .css files and assets/styles/importer.less) are
minified into a single .css file (see tasks/config/cssmin.js task) and
all client-side scripts (including .js and .coffee files) are minified
into a single .js file (see tasks/config/uglify.js task). Any precompiled,
client-side HTML templates (JST) can also be minified alongside the other
scripts when sails-linker:prodJs runs– but since this could change the
behavior of your front-end code, it is not included by default.

> If you’re using JST templates and you’d like them to be included in the
> minified bundle, remove clientSideTemplates from the tasklist array in
> tasks/register/prod.js, and then modify tasks/config/uglify.js to include
> the compiled jst.js file from .tmp/public/ in its src array.

Usage

For additional usage documentation, see [grunt-sails-linker](https://www.npmjs.com/package/grunt-sails-linker).

<docmeta name=”displayName” value=”sails-linker.js”>

 # tasks/config/sync.js

This file configures a Grunt task called “sync”.

This task synchronizes one directory with another (like rsync). In the default Sails asset pipeline, it plays a very similar role to tasks/config/copy.js, but copies only those files that have actually changed since the last time the task was run.

Specifically, its job is to synchronize files from the assets/ folder to .tmp/public, smashing anything that’s already there.

Usage

For additional usage documentation, see [grunt-sync](https://www.npmjs.com/package/grunt-sync).

<docmeta name=”displayName” value=”sync.js”>

 # tasks/config/uglify.js

This file configures a Grunt task called “uglify”.

Its job is to minify client-side JavaScript files. Internally, it uses [UglifyES](https://www.npmjs.com/package/uglifyes).

Usage

For additional usage documentation, see [grunt-contrib-uglify](https://github.com/gruntjs/grunt-contrib-uglify/tree/harmony).

ES8 and beyond

The default package is capable of minifying JavaScript written using ES6, ES7, and ES8 syntax and features, even without [transpiling](https://sailsjs.com/documentation/concepts/assets/default-tasks#?babel). However, if you’re planning on supporting older browsers that don’t support ES6, it’s recommended that you still transpile your code (by leaving the default [babel](https://sailsjs.com/documentation/anatomy/tasks/config/babel.js) and [polyfill](https://sailsjs.com/documentation/anatomy/tasks/register/polyfill.js) tasks in place).

<docmeta name=”displayName” value=”uglify.js”>

 # tasks/config/watch.js

This file configures a Grunt task called “watch”.

It runs predefined tasks whenever watched file patterns are added, changed or deleted.

Specifically, this watches for changes to:
- files in the assets folder
- the tasks/pipeline.js file

…and then re-runs the appropriate tasks.

Usage

For additional usage documentation, see [grunt-contrib-watch](https://npmjs.com/package/grunt-contrib-watch).

<docmeta name=”displayName” value=”watch.js”>

 # tasks/register/build.js

This Grunt tasklist will be executed if you run sails www or grunt build in a development environment. It generates a folder containing your compiled assets, e.g. for troubleshooting issues with other Grunt plugins, bundling assets for an Electron or PhoneGap app, or deploying your app’s flat files to a CDN.

> Note that when running sails www in a production environment (with the NODE_ENV environment variable set to ‘production’) the buildProd task will be run instead of this one.

<docmeta name=”displayName” value=”build.js”>

 # tasks/register/buildProd.js

This Grunt tasklist will be executed instead of build if you run sails www in a production environment, e.g.:

`bash
NODE_ENV=production sails www
`

This generates a folder containing your compiled (and usually minified)
assets. The most common use case for this is bundling up files to
deploy to a CDN.

> This is also useful for building standalone applications with tools like PhoneGap or Electron.

<docmeta name=”displayName” value=”buildProd.js”>

 # tasks/register/compileAssets.js

This Grunt tasklist is not designed to be used directly– rather it is a supporting module used by the default, prod, build, and buildProd tasklists.

<docmeta name=”displayName” value=”compileAssets.js”>

 # tasks/register/default.js

	This is the default Grunt tasklist that will be executed if you
	run grunt in the top level directory of your app. It is also
called automatically when you start Sails in development mode using
sails lift or node app.

Note that when lifting your app with a custom environment setting
(i.e. sails.config.environment), Sails will look for a tasklist file
with the same name and run that instead of this one.

> Note that as a special case for compatibility/historial reasons, if
> your environment is “production” (i.e. because you lifted with NODE_ENV=production),
> and Sails cannot find a tasklist named production.js, it will attempt to run
> the prod.js tasklist as well before defaulting to default.js.

<docmeta name=”displayName” value=”default.js”>

 # tasks/register/linkAssets.js

This Grunt tasklist is not designed to be used directly– rather it is a supporting module used by the default tasklist and the watch task (but only if the grunt-sails-linker package is in use).

<docmeta name=”displayName” value=”linkAssets.js”>

 # tasks/register/linkAssetsBuild.js

This Grunt tasklist is not designed to be used directly– rather it is a supporting module used by the build tasklist.

<docmeta name=”displayName” value=”linkAssetsBuild.js”>

 # tasks/register/linkAssetsBuildProd.js

This Grunt tasklist is not designed to be used directly– rather it is a supporting module used by the buildProd tasklist.

<docmeta name=”displayName” value=”linkAssetsBuildProd.js”>

 # tasks/register/polyfill.js

This file configures a Grunt task called “polyfill”.

Add a polyfill.js file to the public assets (in dev mode) or minified JavaScript file (in production) to fill in features missing in older browsers, such as Promise. This task is meant to work in conjunction with the [babel task](https://sailsjs.com/documentation/anatomy/tasks/config/babel.js).

Development (polyfill:dev)

The development version of this task copies the polyfill file to .tmp/public/polyfill/polyfill.min.js, and ensures that the file will be included (via the [linkAssets task](https://sailsjs.com/documentation/anatomy/tasks/register/linkassets.js)) as a <script> tag in any HTML files with the <!–SCRIPTS–> template tag.

> By default, the polyfill:dev and babel tasks are commented out in development Grunt tasks, to make it easier to debug your code in the browser.

Production (polyfill:prod)

In production, (i.e. when the NODE_ENV environment variable is set to production), this task adds the contents of the polyfill file to the very top of the concatenated and minified production.min.js file.

<docmeta name=”displayName” value=”polyfill.js”>

 # tasks/register/prod.js

This Grunt tasklist will be executed instead of default when your Sails app is lifted in a production environment (e.g. using NODE_ENV=production node app).

<docmeta name=”displayName” value=”prod.js”>

 # tasks/register/

This folder contains the Grunt tasks that Sails runs by default.

For more information, see [Assets > Task Automation > Task Triggers](https://sailsjs.com/documentation/concepts/assets/task-automation#?task-triggers).

> To run a custom task list, create a file in this directory and set [sails.config.environment](https://sailsjs.com/documentation/reference/configuration/sails-config#?sailsconfigenvironment) to match this file name. For example, if the Sails environment config is set to “qa”, then when you lift, instead of tasks/register/default.js or tasks/register/prod.js, Sails will _instead_ run tasks/register/qa.js. (If it does not exist, then default.js will be run instead.)

<docmeta name=”displayName” value=”register”>

 # tasks/register/syncAssets.js

This Grunt tasklist is not designed to be used directly– rather it is a supporting module used by the watch task (tasks/config/watch.js).

<docmeta name=”displayName” value=”syncAssets.js”>

 # views/.eslintrc

This file overrides your Sails app’s top-level [ESLint](https://eslint.org/) configuration, specifically for the views/ directory. It simply extends [assets/.eslintrc](https://sailsjs.com/documentation/anatomy/assets/.eslintrc), but omits the eol-last rule.

Certain CI environments, build systems, IDEs, and syntax-highlighting plugins for text editors run ESLint checks on inline <script> tags in HTML files to help catch common mistakes. Which is great– except that not all of these tools are quite smart enough to understand that each <script> tag isn’t a separate JavaScript file. And unfortunately, that can cause some weird issues when eol-last is enabled.

Luckily, all it takes to disable the eol-last rule for these inline <script> tags is to include this .eslintrc file in the views/ directory (which Sails does by default).

<docmeta name=”displayName” value=”.eslintrc”>

 # views/404.ejs

This is the default “404: Not Found” page. User agents that don’t “Accept” HTML will see a JSON version instead. You can customize the control logic for your needs in config/404.js.

Sails considers a request to be in a “404: Not Found” state when a user requests a URL which doesn’t match any of your app’s routes or blueprints. You can also trigger this response from one of your controllers or policies with: return res.notFound();

<docmeta name=”displayName” value=”404.ejs”>

 # views/500.ejs

This is the default “500: Server Error” page. User agents that don’t “Accept” HTML will see a JSON version instead.

You can customize the control logic for your needs in config/500.js Sails considers a request in a “500: Server Error” state when your app throws a catchable error (not inside of an asynchronous callback).

You can also trigger this response from one of your controllers or policies with: return res.serverError(e); (where e is an optional message, error, or array of errors to include in the response).

<docmeta name=”displayName” value=”500.ejs”>

 # views/

This is the directory that holds all of your custom views.

To create a custom view, create a new directory inside of this then create a new .ejs file. In order for it to be rendered by a client, you must either set up a route in config/routes.js or use the res.view() method inside of a custom controller action.

<docmeta name=”displayName” value=”views”>

 # views/layouts/layout.ejs

This [Embedded JavaScript file](http://ejs.co/) acts as the default layout for all server side views rendered by your app.

Before one of your custom views is sent to the client, it is injected into this file. It is this file that is actually sent to the client.

Feel free to change this as you see fit. Its also a great place to include JavaScript and CSS that you plan on using in every view. This keeps you from having to include them in all your custom .ejs files.

<docmeta name=”displayName” value=”layout.ejs”>

 # views/layouts/

This directory initially contains the default layout for your app, layout.ejs, but you can add any other layout files that you want to include in your app.

For more information on how to configure layouts, see [Concepts > Views > Layouts](https://sailsjs.com/documentation/concepts/views/layouts).

<docmeta name=”displayName” value=”layouts”>

 # views/pages/homepage.ejs

This is the actual template that is rendered by default when a user visits the base URL of your lifted app. Notice the file extension? It stands for [Embedded JavaScript](http://ejs.co/). EJS is what Sails uses by default to render server side HTML views. This can be changed in config/views.js.

If a new view you’ve created isn’t rendering, make sure you’ve hooked it up in your config/routes.js.

If you’re used to putting all your HTML in a single file, this might look funny. You might be thinking “Where are the head and body tags”? The answer is, views/layouts/layout.ejs.

<docmeta name=”displayName” value=”homepage.ejs”>

 # views/pages/

This is the directory that holds the homepage, and any other page files you add to it.

This folder is mainly here for organizational purposes, to separate the page templates from layouts, error pages, etc.

<docmeta name=”displayName” value=”pages”>

 # docs/concepts

This section contains the markdown files which are compiled to HTML and eventually made available as conceptual documentation for the Sails framework at https://sailsjs.com/documentation/concepts.

Notes
> - This README file is not compiled to HTML for the website. It is just here to explain what you’re looking at.
> - Depending on what branch of sails you are currently viewing, the domain may vary. See the top-level documentation README file for information about working with the markdown files in this repo, and to understand the branching/versioning strategy.

<docmeta name=”notShownOnWebsite” value=”true”>

 # Sails.js Documentation > Core Concepts

> The contents of this file are overridden automatically during compilation (please do not edit manually!)

<docmeta name=”displayName” value=”Core Concepts: Table of Contents”>
<docmeta name=”isTableOfContents” value=”true”>

 # Actions and controllers

Overview

Actions are responsible for responding to requests from a web browser, mobile application or any other system capable of communicating with a server. They often act as a middleman between your [models](https://sailsjs.com/documentation/concepts/models-and-orm) and [views](https://sailsjs.com/documentation/concepts/views), and orchestrate the bulk of your project’s [business logic](http://en.wikipedia.org/wiki/Business_logic): you can use actions to serve web pages, handle form submissions, manage 3rd party API requests, and everything in between.

Actions are bound to [routes](https://sailsjs.com/documentation/concepts/Routes) in your application. When a user agent requests a particular URL, the action bound to that route performs the business logic within and sends back a response. For example, the GET /hello route in your application could be bound to an action like:

```javascript
async function (req, res) {


return res.send(‘Hi there!’);





}

Any time a web browser navigates to the /hello URL on your app’s server, the page will display the message: &ldquo;Hi there!&rdquo;.

### Defining your action
Actions are defined in the api/controllers/ folder and subfolders (we&rsquo;ll talk more about _controllers_ in a bit). In order for Sails to recognize a file as an action, the filename must be _kebab-cased_ (containing only lowercase letters, numbers and dashes).  When referencing an action in Sails (in most cases, when [binding it to a route](https://sailsjs.com/documentation/concepts/routes/custom-routes#?action-target-syntax)), use its path relative to api/controllers, without any file extension.  For example, to bind a route to an action located at api/controllers/user/find.js, you would point its URL to user/find.

##### File extensions for actions

By default, Sails only knows how to interpret .js files, but you can customize your app to use things like [CoffeeScript](https://sailsjs.com/documentation/tutorials/using-coffee-script) or [TypeScript](https://sailsjs.com/documentation/tutorials/using-type-script) as well. An action can have any file extension that isn’t .md (Markdown) and .txt (text).

### Creating an action

Action files can use one of two formats: _actions2_ (recommended) or _classic_.

##### actions2

Since the release of Sails v1.0, we recommend writing your actions in the more modern “actions2” syntax, which works much the same way as Sails [helpers](https://sailsjs.com/documentation/concepts/helpers). By defining your actions in this way, they are essentially self-documenting and self-validating.

Using actions2 provides several advantages:


	You can use [sails generate action](https://sailsjs.com/documentation/reference/command-line-interface/sails-generate) to quickly create an actions2 file


	You can clearly define the names and types of the request parameters the action expects, and those parameters will be automatically validated before the action is run


	All of the possible outcomes of running the action (exits) are clearly visible, without the need to dissect the code


	The code you write is not directly dependent on req and res, making it easier to re-use or abstract into a [helper](https://sailsjs.com/documentation/concepts/helpers)




> Note that when using actions2, you can access the [request object](https://sailsjs.com/documentation/reference/request-req) as this.req.</br>Alternatively, you can pass env into the function with inputs and exits to get access to req without using this.req.

In a nutshell, your code will be standardized in a way that makes it easier to re-use and modify later.  And since you’ll declare the action’s parameters ahead of time, you’ll be much less likely to expose edge cases and security holes.

Here’s an example of the actions2 format:

```javascript
module.exports = {

friendlyName: ‘Welcome user’,

description: ‘Look up the specified user and welcome them, or redirect to a signup page if no user was found.’,

	inputs: {
	
	userId: {
	description: ‘The ID of the user to look up.’,
// By declaring a numeric example, Sails will automatically respond with res.badRequest
// if the userId parameter is not a number.
type: ‘number’,
// By making the userId parameter required, Sails will automatically respond with
// res.badRequest if it’s left out.
required: true

}

},

	exits: {
	
	success: {
	responseType: ‘view’,
viewTemplatePath: ‘pages/welcome’

},
notFound: {

description: ‘No user with the specified ID was found in the database.’,
responseType: ‘notFound’

}

},

fn: async function ({userId}) {

// Look up the user whose ID was specified in the request.
// Note that we don’t have to validate that userId is a number;
// the machine runner does this for us and returns badRequest
// if validation fails.
var user = await User.findOne({ id: userId });

// If no user was found, respond “notFound” (like calling res.notFound())
if (!user) { throw ‘notFound’; }

// Display a personalized welcome view.
return {

name: user.name

};

}

};

> Sails uses the [machine-as-action](https://github.com/treelinehq/machine-as-action) module to automatically create route-handling functions out of actions formatted like the example above. See the [machine-as-action docs](https://github.com/treelinehq/machine-as-action#customizing-the-response) for more information.

Exit signals

In an action, helper, or script, throwing anything will trigger the error exit by default. If you want to trigger any other exit, you can do so by throwing a “special exit signal”. This will either be a string (the name of the exit), or an object with the name of the exit as the key and the output data as the value.
For example, instead of the usual syntax:

`javascript
return exits.hasConflictingCourses();
`

You could use the shorthand:

`javascript
throw 'hasConflictingCourses';
`

Or, to include output data:

`javascript
throw { hasConflictingCourses: ['CS 301', 'M 402'] };
`

Aside from being an easy-to-read shorthand, exit signals are especially useful if you’re inside of a for loop, forEach, etc., but still want to exit through a particular exit.

Classic actions

If you’re working with an existing codebase or an app that was upgraded from v0.12, you may be more used to the classic action format. Classic actions are declared as functions with req and res arguments. When a client requests a route bound to this type of action, the function runs using the [incoming request object](https://sailsjs.com/documentation/reference/request-req) as the first argument (req), and the [outgoing response object](https://sailsjs.com/documentation/reference/response-res) as the second argument (res).

Here’s a sample action that looks up a user by ID, then either displays a “welcome” view or redirects to a signup page if the user can’t be found:

```javascript
module.exports = async function welcomeUser (req, res) {


// Get the userId parameter from the request.
// This could have been set on the querystring, in
// the request body, or as part of the URL used to
// make the request.
var userId = req.param(‘userId’);


// If no userId was specified, or it wasn’t a number, return an error.





	if (!_.isNumeric(userId)) {
	return res.badRequest(new Error(‘No user ID specified!’));





}

// Look up the user whose ID was specified in the request.
var user = await User.findOne({ id: userId });

// If no user was found, redirect to signup.
if (!user) {


return res.redirect(‘/signup’ );




}

// Display the welcome view, setting the view variable
// named “name” to the value of the user’s name.
return res.view(‘welcome’, {name: user.name});






}

> You can use [sails generate action](https://sailsjs.com/documentation/reference/command-line-interface/sails-generate) with –no-actions2 to quickly create a classic action.

### Controllers

For simpler projects and prototypes, often the quickest way to get started writing Sails apps is to organize your actions into _controller files_.  A controller file is a [_PascalCased_](https://en.wikipedia.org/wiki/PascalCase) file whose name must end in Controller, containing a dictionary of actions.  For example, a  “User Controller” could be created at api/controllers/UserController.js file containing:

```javascript
module.exports = {

login: function (req, res) { … },
logout: function (req, res) { … },
signup: function (req, res) { … },

};

You can use [sails generate controller](https://sailsjs.com/documentation/reference/command-line-interface/sails-generate#?sails-generate-controller-foo-action-1-action-2) to quickly create a controller file.

File extensions for controllers

Just like with action files, you can customize your app to use things like [CoffeeScript](https://sailsjs.com/documentation/tutorials/using-coffee-script) or [TypeScript](https://sailsjs.com/documentation/tutorials/using-type-script), although Sails only knows how to interpret .js files by default. A controller can have any file extension besides .md (Markdown) and .txt (text).

Standalone actions

For larger, more mature apps, _standalone actions_ may be a better approach than controller files. In this scheme, rather than having multiple actions living in a single file, each action is in its own file in an appropriate subfolder of api/controllers. For example, the following file structure would be equivalent to the UserController.js file:

```
api/



	controllers/
	
	user/
	login.js
logout.js
signup.js












```

Using standalone actions has several advantages over controller files:

	It’s easier to see a clear overview of the actions in your app, because you can reference your project’s file structure instead of scanning through individual controller files

	Each action file is smaller and easy to maintain, whereas controller files tend to grow as your app grows

	[Routing to standalone actions](https://sailsjs.com/documentation/concepts/routes/custom-routes#?action-target-syntax) in nested subfolders is more intuitive than routing to actions in controller files (foo/bar/baz.js vs. foo/BarController.baz)

	Blueprint index routes apply to top-level standalone actions, so you can create an api/controllers/index.js file and have it automatically bound to your app’s / route (as opposed to creating an arbitrary controller file to hold the root action)

Keeping it lean

In the tradition of most MVC frameworks, mature Sails apps usually have “thin” controllers—that is, your action code ends up lean because reusable code has been moved into [helpers](https://sailsjs.com/documentation/concepts/helpers) or occasionally even extracted into separate node modules. This approach can definitely make your app easier to maintain as it grows in complexity.

But at the same time, extrapolating code into reusable helpers _too_ early can cause maintenance issues that waste time and productivity. The right answer lies somewhere in the middle.

Sails recommends this general rule of thumb: wait until you’re about to use the same piece of code for the _third_ time before you extrapolate it into a separate helper. But, as with any dogma, use your judgement! If the code in question is very long or complex, then it might make sense to pull it out into a helper much sooner. Conversely, if you know what you’re building is a quick, throwaway prototype, you might just copy and paste the code to save time.

> Whether you’re developing for passion or profit, at the end of the day, the goal is to make the best possible use of your time as an engineer. Some days that means getting more code written, and other days it means looking out for the long-term maintainability of the project. If you’re not sure which of these goals is more important at your current stage of development, you might take a step back and give it some thought (better yet, have a chat with the rest of your team or [other folks building apps on Node.js/Sails](https://sailsjs.com/support)).

<docmeta name=”displayName” value=”Actions and controllers”>
<docmeta name=”nextUpLink” value=”/documentation/concepts/views”>
<docmeta name=”nextUpName” value=”Views”>

 # Generating controllers or standalone actions

You can use [sails-generate](https://sailsjs.com/documentation/reference/command-line-interface/sails-generate) from the Sails command line tool to quickly generate a controller, or even just an individual action.

Generating controllers

For example, to generate a controller:

`sh
$ sails generate controller user
`

Sails will generate api/controllers/UserController.js:

```javascript
/**



	UserController.js


	

	@description :: Server-side controller action for managing users.


	@help        :: See https://sailsjs.com/documentation/concepts/controllers




*/




module.exports = {


}

### Generating standalone actions

Run the following command to generate a standalone action:

`sh
$ sails generate action user/signup
info: Created an action!
Using "actions2"...
[?] https://sailsjs.com/docs/concepts/actions
`

Sails will create api/controllers/user/sign-up.js:

```javascript
/**

	user/sign-up.js

	

	@description :: Server-side controller action for handling incoming requests.

	@help :: See https://sailsjs.com/documentation/concepts/controllers

*/

module.exports = {

friendlyName: ‘Sign up’,

description: ‘’,

inputs: {

},

exits: {

},

fn: function (inputs, exits) {

return exits.success();

}

};

```

Or, using the [classic actions](https://sailsjs.com/documentation/concepts/actions-and-controllers#?classic-actions) interface:

`sh
$ sails generate action user/signup --no-actions2
info: Created a traditional (req,res) controller action, but as a standalone file
`

Sails will create api/controllers/user/sign-up.js:

```javascript
/**

	Module dependencies

*/

// …

	/**
	
	user/signup.js

	

	Signup user.

*/

module.exports = function signup(req, res) {

sails.log.debug(‘TODO: implement’);
return res.ok();

};

<docmeta name=”displayName” value=”Generating actions and controllers”>

 # Routing to actions

Manual routing

By default, controller actions in your Sails app will be inaccessible to users until you _bind_ them to a route in your [config/routes.js file](https://sailsjs.com/documentation/reference/configuration/sails-config-routes). When you bind a route, you specify a URL that users can access the action at, along with options like [CORS security settings](https://sailsjs.com/documentation/concepts/security/cors#?configuring-cors-for-individual-routes).

To bind a route to an action in the config/routes.js file, you can use the HTTP verb and path (i.e. the route address) as the key, and the action identity as the value (i.e. the route target).

For example, the following manual route will cause your app to trigger the make action in api/controllers/SandwichController.js whenever it receives a POST request to /make/a/sandwich:


	```js
	‘POST /make/a/sandwich’: ‘SandwichController.make’





```

If you’re using standalone actions, so that you had an api/controllers/sandwich/make.js file, a more intuitive syntax exists which uses the path to the action (relative to api/controllers):


	```js
	‘POST /make/a/sandwich’: ‘sandwich/make’





```

For a full discussion of routing, please see the [routes documentation](https://sailsjs.com/documentation/concepts/Routes).

Automatic routing

Sails can also automatically bind routes to your controller actions so that a GET request to /:actionIdentity will trigger the action. This is called _blueprint action routing_, and it can be activated by setting actions to true in the [config/blueprints.js](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints) file. For example, with blueprint action routing turned on, a signup action saved in api/controllers/UserController.js or api/controllers/user/signup.js would be bound to a /user/signup route. See the [blueprints documentation](https://sailsjs.com/documentation/reference/blueprint-api) for more information about Sails’ automatic route binding.

<docmeta name=”displayName” value=”Routing to actions”>

 # Assets

Overview

Assets refer to [static files](http://en.wikipedia.org/wiki/Static_web_page) (js, css, images, etc.) on your server that you want to make accessible to the outside world. In Sails, these files are placed in the [assets/](https://sailsjs.com/documentation/anatomy/assets) folder. When you lift your app, add files to your assets/ folder, or change existing assets, Sails’ built-in asset pipeline processes and syncs those files to a hidden folder (.tmp/public/).

> This intermediate step (moving files from assets/ into .tmp/public/) allows Sails to pre-process assets for use on the client - things like LESS, CoffeeScript, SASS, spritesheets, Jade templates, etc.

The contents of this .tmp/public folder are what Sails actually serves at runtime. This is roughly equivalent to the “public” folder in [express](https://github.com/expressjs), or the www/ folder you might be familiar with from other web servers like Apache.

Static middleware

Behind the scenes, Sails uses the [serve-static middleware](https://www.npmjs.com/package/serve-static) from Express to serve your assets. You can configure this middleware (e.g. to change cache settings) in [/config/http.js](https://sailsjs.com/documentation/reference/configuration/sails-config-http).

index.html
Like most web servers, Sails honors the index.html convention. For instance, if you create assets/foo.html in a new Sails project, it will be accessible at http://localhost:1337/foo.html. But if you create assets/foo/index.html, it will be available at both http://localhost:1337/foo/index.html and http://localhost:1337/foo.

Precedence
It is important to note that the static [middleware](http://stephensugden.com/middleware_guide/) is installed after the Sails router. So if you define a [custom route](https://sailsjs.com/documentation/concepts/Routes?q=custom-routes), but also have a file in your assets directory with a conflicting path, the custom route will intercept the request before it reaches the static middleware. For example, if you create assets/index.html, with no routes defined in your [config/routes.js](https://sailsjs.com/documentation/reference/configuration/sails-config-routes) file, it will be served as your home page. But if you define a custom route, ‘/’: ‘FooController.bar’, that route will take precedence.

<docmeta name=”displayName” value=”Assets”>
<docmeta name=”nextUpLink” value=”/documentation/concepts/shell-scripts”>
<docmeta name=”nextUpName” value=”Shell Scripts”>

 # Default tasks

Overview

The asset pipeline bundled in Sails is a set of Grunt tasks configured with conventional defaults designed to make your project more consistent and productive. The entire frontend asset workflow is completely customizable, while providing some default tasks out of the box. Sails makes it easy to [configure new tasks](https://sailsjs.com/documentation/concepts/assets/task-automation#?task-configuration) to fit your needs.

Here are a few things that the default Grunt configuration in Sails does to help you out:
- Automatic LESS compilation
- Cache busting
- Optional automatic asset injection, minification, and concatenation
- Creation of a web ready public directory
- File watching and syncing
- Transpilation of client-side JavaScript in production to allow use of >=ES6 syntax while maintaining broad browser compatibility
- Optimization of assets in production

Default Grunt tasks

Below is a list of the Grunt tasks that are included by default in new Sails projects:

clean

> This grunt task is configured to clean out the contents in the .tmp/public/ of your Sails project.

> [usage docs](https://github.com/gruntjs/grunt-contrib-clean)

hash

> Creates and adds an unique hash to the end of a filename for cache busting.

> [usage docs](https://github.com/jgallen23/grunt-hash/tree/0.5.0#grunt-hash)

concat

> Concatenates JavaScript and CSS files, and saves concatenated files in .tmp/public/concat/ directory.

> [usage docs](https://github.com/gruntjs/grunt-contrib-concat)

copy

> dev task config
>
> Copies all directories and files, except coffeescript and less files, from the sails assets folder into the .tmp/public/ directory.

> build task config
>
> Copies all directories and files from the .tmp/public directory into a www directory.

> [usage docs](https://github.com/gruntjs/grunt-contrib-copy)

cssmin

> Minifies CSS files and places them into .tmp/public/min/ directory.

> [usage docs](https://github.com/gruntjs/grunt-contrib-cssmin)

less

> Compiles LESS files into CSS. Only the assets/styles/importer.less is compiled. This allows you to control the ordering yourself (i.e. import your dependencies, mixins, variables, resets, etc. before other stylesheets).

> [usage docs](https://github.com/gruntjs/grunt-contrib-less)

sails-linker

> Automatically inject <script> tags for JavaScript files and <link> tags for CSS files. Also automatically links an output file containing precompiled templates using a <script> tag. A much more detailed description of this task can be found [here](https://github.com/balderdashy/sails-generate-frontend/blob/master/docs/overview.md#a-litte-bit-more-about-sails-linking), but the big takeaway is that script and stylesheet injection is only done in files containing <!–SCRIPTS–><!–SCRIPTS END–> and/or <!–STYLES–><!–STYLES END–> tags. These are included in the default views/layouts/layout.ejs file in a new Sails project. If you don’t want to use the linker for your project, you can simply remove those tags.

> [usage docs](https://github.com/Zolmeister/grunt-sails-linker)

sync

> A grunt task to keep directories in sync. It is very similar to grunt-contrib-copy but tries to copy only those files that have actually changed. It specifically synchronizes files from the assets/ folder to .tmp/public/, overwriting anything that’s already there.

> [usage docs](https://github.com/tomusdrw/grunt-sync)

babel

> This grunt task is configured to transpile any >=ES6 syntax in your front-end Javascript files into code compatible with older browsers.

> [usage docs](https://github.com/babel/grunt-babel)

uglify

> Minifies client-side JavaScript assets. Note that by default, this task will “mangle” all of your function and variable names (either by changing them to a much shorter name, or stripping them entirely). This is usually desirable as it makes your code significantly smaller, but in some cases can lead to unexpected results (particularly when you expect an object’s constructor to have a certain name). To turn off or modify this behavior, [use the mangle option](https://www.npmjs.com/package/uglify-es#mangle-properties-options) when setting up this task.

> [usage docs](https://github.com/gruntjs/grunt-contrib-uglify/tree/harmony)

watch

> Runs predefined tasks whenever watched file patterns are added, changed, or deleted. Watches for changes on files in the assets/ folder, and re-runs the appropriate tasks (e.g. LESS compilation). This allows you to see changes to your assets reflected in your app without having to restart the Sails server.

> [usage docs](https://github.com/gruntjs/grunt-contrib-watch)

<docmeta name=”displayName” value=”Default tasks”>

 # Disabling Grunt

To disable Grunt integration in Sails, simply delete your Gruntfile (and/or [tasks/](https://sailsjs.com/documentation/anatomy/tasks) folder). You can also disable the Grunt hook. Just set the grunt property to false in .sailsrc hooks, like this:

```json
{



	“hooks”: {
	“grunt”: false





}





}

### Can I customize this for SASS, Angular, client-side Jade templates, etc.?

Yep! Just replace the relevant grunt task in your tasks/ directory, or add a new one.  Like [SASS](https://github.com/sails101/using-sass), for example.

If you still want to use Grunt for other purposes, but don’t want any of the default web front-end stuff, just delete your project’s assets folder and remove the front-end oriented tasks from the tasks/register/ and tasks/config/ folders.  You can also run sails new myCoolApi –no-frontend to omit the assets folder and front-end-oriented Grunt tasks for future projects.  You can also replace your sails-generate-frontend module with alternative community generators, or [create your own](https://github.com/balderdashy/sails-generate-generator).  This allows sails new to create the boilerplate for native iOS apps, Android apps, Cordova apps, SteroidsJS apps, etc.

<docmeta name=”displayName” value=”Disabling Grunt”>

### NOTE:

When removing the Grunt hook above you must also specify the following in .sailsrc in order for your assets to be served, otherwise all assets will return a 404.

```json
{

	“paths”: {
	“public”: “assets”

}

}

 # Task automation

Overview

The [tasks/](https://sailsjs.com/documentation/anatomy/tasks) directory contains a suite of [Grunt tasks](http://gruntjs.com/creating-tasks) and their [configurations](http://gruntjs.com/configuring-tasks).

Tasks are mainly useful for bundling front-end assets, (like stylesheets, scripts, & client-side markup templates) but they can also be used to automate all kinds of repetitive development chores, from [browserify](https://github.com/jmreidy/grunt-browserify) compilation to [database migrations](https://www.npmjs.org/package/grunt-db-migrate).

Sails bundles some [default tasks](https://sailsjs.com/documentation/grunt/default-tasks) for convenience, but with [literally hundreds of plugins](http://gruntjs.com/plugins) to choose from, you can use tasks to automate just about anything with minimal effort. If someone hasn’t already built what you need, you can always [author](http://gruntjs.com/creating-tasks) and [publish your own Grunt plugin](http://gruntjs.com/creating-plugins) to [npm](http://npmjs.org)!

> If you haven’t used [Grunt](http://gruntjs.com/) before, be sure to check out the [Getting Started](http://gruntjs.com/getting-started) guide, as it explains how to create a [Gruntfile](http://gruntjs.com/sample-gruntfile) as well as install and use Grunt plugins.

Asset pipeline

The asset pipeline is the place where you will organize the assets that will be injected into your views, and it can be found in the tasks/pipeline.js file. Configuring these assets is simple and uses Grunt [task file configuration](http://gruntjs.com/configuring-tasks#files) and [wildcard/glob/splat patterns](http://gruntjs.com/configuring-tasks#globbing-patterns). These are broken down into three sections:

CSS Files to Inject
This is an array of CSS files to be injected into your HTML as <link> tags. These tags will be injected between the <!–STYLES–><!–STYLES END–> comments in any view in which they appear.

JavaScript Files to Inject
This is an array of JavaScript files that gets injected into your HTML as <script> tags. These tags will be injected between the <!–SCRIPTS–><!–SCRIPTS END–> comments in any view in which they appear. The files get injected in the order in which they appear in the array, meaning you should place the path of dependencies before the file that depends on them.

Template Files to Inject
This is an array of HTML files that will compiled to a JST function and placed in a jst.js file. This file then gets injected as a <script> tag in between the <!–TEMPLATES–><!–TEMPLATES END–> comments in your HTML.

> The same Grunt wildcard/glob/splat patterns and task file configuration are used in some of the task configuration JS files themselves if you would like to change those too.

Task configuration

Configured tasks are the set of rules your Gruntfile will follow when run. They are completely customizable and are located in the [tasks/config/](https://sailsjs.com/documentation/anatomy/my-app/tasks/config) directory. You can modify, omit, or replace any of these Grunt tasks to fit your requirements. You can also add your own Grunt tasks—just add a someTask.js file in this directory to configure the new task, then register it with the appropriate parent task(s) (see files in tasks/register/*.js). Remember, Sails comes with a set of useful default tasks that are designed to get you up and running with no configuration required.

Configuring a custom task.

Configuring a custom task into your project is very simple and uses Grunt’s [config](http://gruntjs.com/api/grunt.config) and [task](http://gruntjs.com/api/grunt.task) APIs to allow you to make your task modular. Let’s go through a quick example of creating a new task that replaces an existing task. Suppose we want to use the [Handlebars](http://handlebarsjs.com/) templating engine instead of the underscore templating engine that comes configured by default:

	The first step is to install the Handlebars Grunt plugin using the following command in your terminal:

`bash
npm install grunt-contrib-handlebars --save-dev
`

	Next, create a configuration file at tasks/config/handlebars.js. This is where we’ll put our Handlebars configuration.


```javascript
// tasks/config/handlebars.js
// ——————————–
// handlebar task configuration.

module.exports = function(grunt) {


// We use the grunt.config api’s set method to configure an
// object to the defined string. In this case the task
// ‘handlebars’ will be configured based on the object below.
grunt.config.set(‘handlebars’, {



	dev: {
	// We will define which template files to inject
// in tasks/pipeline.js
files: {


‘.tmp/public/templates.js’: require(‘../pipeline’).templateFilesToInject




}





}




});

// load npm module for handlebars.
grunt.loadNpmTasks(‘grunt-contrib-handlebars’);





};


	Replace the path to source files in asset pipeline. The only change here will be that Handlebars looks for files with the extension .hbs while underscore templates can be in simple HTML files.




```javascript
// tasks/pipeline.js
// ——————————–
// asset pipeline

	var cssFilesToInject = [
	‘styles/**/*.css’

];

	var jsFilesToInject = [
	‘js/socket.io.js’,
‘js/sails.io.js’,
‘js/connection.example.js’,
‘js/**/*.js’

];

// We change this glob pattern to include all files in
// the templates/ direcotry that end in the extension .hbs
var templateFilesToInject = [

‘templates/**/*.hbs’

];

	module.exports = {
	
	cssFilesToInject: cssFilesToInject.map(function(path) {
	return ‘.tmp/public/’ + path;

}),
jsFilesToInject: jsFilesToInject.map(function(path) {

return ‘.tmp/public/’ + path;

}),
templateFilesToInject: templateFilesToInject.map(function(path) {

return ‘assets/’ + path;

})

};

	Include the Handlebars task into the compileAssets and syncAssets registered tasks. This is where the JST task was being used; we will now replace it with the newly configured Handlebars task.


```javascript
// tasks/register/compileAssets.js
// ——————————–
// compile assets registered grunt task


	module.exports = function (grunt) {
	
	grunt.registerTask(‘compileAssets’, [
	‘clean:dev’,
‘handlebars:dev’,       // changed jst task to handlebars task
‘less:dev’,
‘copy:dev’,
‘coffee:dev’





]);





};

// tasks/register/syncAssets.js
// ——————————–
// synce assets registered grunt task


	module.exports = function (grunt) {
	
	grunt.registerTask(‘syncAssets’, [
	‘handlebars:dev’,      // changed jst task to handlebars task
‘less:dev’,
‘sync:dev’,
‘coffee:dev’





]);







};


	Remove JST task config file. We are no longer using it so we can get rid of tasks/config/jst.js. Simply delete it from your project.




> Ideally you should delete it from your project and your project’s Node dependencies. This can be done by running this command in your terminal:
`bash
npm uninstall grunt-contrib-jst --save-dev
`

### Task triggers

In [development mode](https://next.sailsjs.com/documentation/reference/configuration/sails-config#?sailsconfigenvironment), Sails runs the default task ([tasks/register/default.js](https://sailsjs.com/documentation/anatomy/tasks/register/default.js)).  This compiles LESS, CoffeeScript, and client-side JST templates, then links to them automatically from your app’s dynamic views and static HTML pages.

In production, Sails runs the prod task ([tasks/register/prod.js](https://sailsjs.com/documentation/anatomy/tasks/register/prod.js)) which shares the same duties as default, but also minifies your app’s scripts and stylesheets.  This reduces your application’s load time and bandwidth usage.

These task triggers are [“basic” Grunt tasks](http://gruntjs.com/creating-tasks#basic-tasks) located in the [tasks/register/](https://sailsjs.com/documentation/anatomy/tasks/register) folder.  Below, you’ll find the complete reference of all task triggers in Sails, and the command which kicks them off:

##### sails lift

Runs the default task (tasks/register/default.js).

##### sails lift –prod

Runs the prod task (tasks/register/prod.js).

##### sails www

Runs the build task (tasks/register/build.js) that compiles all the assets to www subfolder instead of .tmp/public using relative paths in references. This allows serving static content with Apache or Nginx instead of relying on [‘www middleware’](https://sailsjs.com/documentation/concepts/Middleware).

##### sails www –prod (production)

Runs the buildProd task (tasks/register/buildProd.js) that does the same as build task but also optimizes assets.

You may run other tasks by specifying setting NODE_ENV and creating a task list in tasks/register/ with the same name.  For example, if NODE_ENV is QA, sails will run tasks/register/QA.js if it exists.

<docmeta name=”displayName” value=”Task automation”>




            

          

      

      

    

  

    
      
          
            
  # Blueprint actions

Blueprint actions (not to be confused with implicit [blueprint “action” _routes_](https://sailsjs.com/documentation/concepts/blueprints/blueprint-routes#?action-routes)) are generic actions designed to work with your models.  Think of them as the default behavior for your application.  For instance, if you have a User.js model then find, create, update, destroy, populate, add and remove actions exist implicitly, without you having to write them.

By default, the blueprint [RESTful routes](https://sailsjs.com/documentation/concepts/blueprints/blueprint-routes#?restful-routes) and [shortcut routes](https://sailsjs.com/documentation/concepts/blueprints/blueprint-routes#?shortcut-routes) are bound to their corresponding blueprint actions.  However, any blueprint action can be overridden for a particular controller by creating a custom action in that controller file (e.g. ParrotController.find).

The current version of Sails ships with the following blueprint actions:


	[find](https://sailsjs.com/documentation/reference/blueprint-api/find-where)


	[findOne](https://sailsjs.com/documentation/reference/blueprint-api/find-one)


	[create](https://sailsjs.com/documentation/reference/blueprint-api/create)


	[update](https://sailsjs.com/documentation/reference/blueprint-api/update)


	[destroy](https://sailsjs.com/documentation/reference/blueprint-api/destroy)


	[populate](https://sailsjs.com/documentation/reference/blueprint-api/populate)


	[add](https://sailsjs.com/documentation/reference/blueprint-api/add-to)


	[remove](https://sailsjs.com/documentation/reference/blueprint-api/remove-from)


	[replace](https://sailsjs.com/documentation/reference/blueprint-api/replace)




### Socket notifications

Most blueprint actions have realtime features that take effect if your app has WebSockets enabled.  For example, if the find blueprint action receives a request from a socket client, it will [subscribe](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribe) that socket to future notifications.  Then, any time records are changed using blueprint actions like update, Sails will [publish](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/publish) certain notifications.

The best way to understand the behavior of a particular blueprint action is to read its [reference page](https://sailsjs.com/documentation/reference/blueprint-api) (or see the list above).  But if you’re looking for more of a birds-eye view of how realtime features work in Sails’s blueprint API, see [Concepts > Realtime](https://sailsjs.com/documentation/concepts/realtime).  (If you’re OK with some details being out of date, you might even want to check out the [original “Intro to Sails.js” video from 2013](https://www.youtube.com/watch?v=GK-tFvpIR7c).)

> For a more advanced breakdown of all notifications published by blueprint actions in Sails, see:
> + [Chart A (scenarios vs. notification types)](https://docs.google.com/spreadsheets/d/10FV9plyHR4gE9xIomIZlF-YS1S54oHEdvH8ZmTC1Fnc/edit#gid=0)
> + [Chart B (actions vs. recipients)](https://docs.google.com/spreadsheets/d/1B6i8aOoLNLtxJ4aeiA8GQ2lUQSvLOrP89RSLr7IAImw/edit#gid=0)

### Overriding blueprint actions

You may also override any of the blueprint actions for a controller by defining a [custom action](https://sailsjs.com/documentation/concepts/actions-and-controllers) with the same name.

```javascript
// api/controllers/user/UserController.js
module.exports = {

	/**
	
	A custom action that overrides the built-in “findOne” blueprint action.

	As a dummy example of customization, imagine we were working on something in our app

	that demanded we tweak the format of the response data, and that we only populate two

	associations: “company” and “friends”.

*/

findOne: function (req, res) {

sails.log.debug(‘Running custom findOne action. (Will look up user #’+req.param('id')…’);

User.findOne({ id: req.param(‘id’) }).omit([‘password’])
.populate(‘company’, { select: [‘profileImageUrl’] })
.populate(‘top8’, { omit: [‘password’] })
.exec(function(err, userRecord) {

	if (err) {
	
	switch (err.name) {
	case ‘UsageError’: return res.badRequest(err);
default: return res.serverError(err);

}

}

if (!userRecord) { return res.notFound(); }

	if (req.isSocket) {
	User.subscribe(req, [user.id]);

}

	return res.ok({
	model: ‘user’,
luckyCoolNumber: Math.ceil(10*Math.random()),
record: userRecord

});

});

}

}

> Alternatively, we could have created this as a standalone action at api/controllers/user/findone.js or used [actions2](https://sailsjs.com/documentation/concepts/actions-and-controllers#?actions-2).

<docmeta name=”displayName” value=”Blueprint actions”>

 # Blueprint routes

When you run sails lift with blueprints enabled, the framework inspects your models and configuration in order to [bind certain routes](https://sailsjs.com/documentation/concepts/Routes) automatically. These implicit blueprint routes (sometimes called “shadow routes”, or even just “shadows”) allow your app to respond to certain requests without you having to bind those routes manually in your config/routes.js file. When enabled, the blueprint routes point to their corresponding blueprint actions (see “Action routes” below), any of which can be overridden with custom code.

There are four types of blueprint routes in Sails:

RESTful blueprint routes
REST blueprints are the automatically generated routes Sails uses to expose a conventional REST API for a model, including find, create, update, and destroy actions. The path for RESTful routes is always /:modelIdentity or /:modelIdentity/:id. These routes use the HTTP “verb” to determine the action to take.

For example, with [rest](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints#?routerelated-settings) enabled, having a Boat model in your app generates the following routes:

	GET /boat -> find boats matching criteria provided on the query string, using the [find blueprint](https://sailsjs.com/documentation/reference/blueprint-api/find-where).

	GET /boat/:id -> find a single boat with the given unique ID (i.e. primary key) value, using the [findOne blueprint](https://sailsjs.com/documentation/reference/blueprint-api/find-one).

	POST /boat -> create a new boat with the attributes provided in the request body, using the [create blueprint](https://sailsjs.com/documentation/reference/blueprint-api/create).

	PATCH /boat/:id -> update the boat with the given unique ID with the attributes provided in the request body, using the [update blueprint](https://sailsjs.com/documentation/reference/blueprint-api/update).

	DELETE /boat/:id -> destroy the boat with the given unique ID, using the [destroy blueprint](https://sailsjs.com/documentation/reference/blueprint-api/destroy).

If the Boat model has a “to-many” relationship with a Driver model through an attribute called drivers, then the following additional routes would be available:

	GET /boat/:id/drivers -> Finds the drivers’ records associated to the boat record with the ID given as :id using the [populate blueprint](https://sailsjs.com/documentation/reference/blueprint-api/populate-where).

	PUT /boat/:id/drivers/:fk -> add the driver with the unique ID equal to the :fk value to the drivers collection of the boat with the ID given as :id, using the [add blueprint](https://sailsjs.com/documentation/reference/blueprint-api/add-to).

	DELETE /boat/:id/drivers/:fk -> remove the driver with the unique ID equal to the :fk value to the drivers collection of the boat with the ID given as :id, using the [remove blueprint](https://sailsjs.com/documentation/reference/blueprint-api/remove-from)

	PUT /boat/:id/drivers -> replace the entire drivers collection with the drivers whose unique IDs are contained in an array provided as the body of the request, using the [replace blueprint](https://sailsjs.com/documentation/reference/blueprint-api/replace).

Depending on the style of app you generated, rest blueprint routes may be enabled by default, and could be suitable for use in a production scenario, as long as they are protected by [policies](https://sailsjs.com/documentation/concepts/Policies) to avoid unauthorized access. If you choose the “Web app” template, rest blueprint routes will not be enabled by default.

> Be forewarned: Most web apps, microservices, and even REST APIs eventually need custom features that aren’t really as simple as “create”, “update”, or “destroy”. If/when the time comes, don’t be afraid to write your own custom actions. Custom actions and routes can, and in many cases _should_, still be organized as a RESTful API, and they can be mixed and matched with blueprints when necessary. Best of all, thanks to the introduction of [async/await in Node.js](https://gist.github.com/mikermcneil/c1028d000cc0cc8bce995a2a82b29245), writing custom actions no longer requires the use of callbacks.

<!–
If we keep this, we should find a way to word it better:
In fact, unless you’re already familiar with how to customize blueprints in Sails, it’s usually a good idea to lean towards using custom actions any time you find yourself unsure whether to continue with REST blueprints or switch to a custom action for a particular feature, it’s usually a good idea to lean towards custom actions.
–>

Notes

> + If CSRF protection is enabled, you’ll need to provide or disable a [CSRF token](https://sailsjs.com/documentation/concepts/security/csrf) for POST/PUT/DELETE actions, otherwise you will get a 403 Forbidden response.
> + If your app contains a controller whose name matches that of your model, then you can override the default actions pointed to by the RESTful routes by providing your own controller actions. For example, if you have an api/controllers/BoatController.js controller file containing a custom find action, then the GET /boat route will point at that action.
> + Also, as usual, the same logic applies whether you’re using controllers or standalone actions. (As far as Sails is concerned, once an app has been loaded into memory and normalized in sails lift, all of its actions look the same no matter where they came from.)
> + If your app contains a route in config/routes.js that matches one of the above RESTful routes, it will be used instead of the default route.

Shortcut blueprint routes
Shortcut routes are a simple (development-mode only) hack that provides access to your models from your browser’s URL bar.

The shortcut routes are as follows:

Route | Blueprint Action | Example URL |

—– | ———————– | ——- |

GET /:modelIdentity/find | [find](https://sailsjs.com/documentation/reference/blueprint-api/find-where) | http://localhost:1337/user/find?name=bob

GET /:modelIdentity/find/:id | [findOne](https://sailsjs.com/documentation/reference/blueprint-api/find-one) | http://localhost:1337/user/find/123

GET /:modelIdentity/create | [create](https://sailsjs.com/documentation/reference/blueprint-api/create) | http://localhost:1337/user/create?name=bob&age=18

GET /:modelIdentity/update/:id | [update](https://sailsjs.com/documentation/reference/blueprint-api/update) | http://localhost:1337/user/update/123?name=joe

GET /:modelIdentity/destroy/:id | [destroy](https://sailsjs.com/documentation/reference/blueprint-api/destroy) | http://localhost:1337/user/destroy/123

GET /:modelIdentity/:id/:association/add/:fk | [add](https://sailsjs.com/documentation/reference/blueprint-api/add-to) | http://localhost:1337/user/123/pets/add/3

GET /:modelIdentity/:id/:association/remove/:fk | [remove](https://sailsjs.com/documentation/reference/blueprint-api/remove-from) | http://localhost:1337/user/123/pets/remove/3

GET /:modelIdentity/:id/:association/replace?association=[1,2…] | [replace](https://sailsjs.com/documentation/reference/blueprint-api/replace) | http://localhost:1337/user/123/pets/replace?pets=[3,4]

Shortcut routes should always be disabled when Sails lifts in a production environment. But they can be very handy during development, especially if you prefer not to use [the terminal](https://sailsjs.com/documentation/reference/command-line-interface/sails-console).

Notes

> + Like RESTful routes, shortcut routes can be overridden by providing an action in a matching controller, or by providing a route in config/routes.js.
> + the same _action_ is executed for similar RESTful/shortcut routes. For example, the POST /user and GET /user/create routes that Sails creates when it loads api/models/User.js will respond by running the same code (even if you [override the blueprint action](https://sailsjs.com/documentation/reference/blueprint-api#?overriding-blueprints))
> + When using a NoSQL database (like MongoDB) with your model’s [schema configuration](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?schema) set to false, shortcut routes will interpret any parameter value for an unknown attribute as a _string_. Be careful doing http://localhost:1337/game/create?players=2 if you don’t have a players attribute with a number type!

Action shadow routes

When action shadow routes (or “action shadows”) are enabled, Sails will automatically create routes for your custom controller actions. This is sometimes useful (especially early on in the development process) for speeding up backend development by eliminating the need to manually bind routes. When enabled, GET, POST, PUT, and DELETE routes will be generated for every one of a controller’s actions.

For example, if you have a FooController.js file with a bar method, then a /foo/bar route will automatically be created for you as long as sails.config.blueprints.actions is enabled. Unlike RESTful and shortcut shadows, implicit, per-action shadow routes do not require that a controller has a corresponding model file.

If an index action exists, additional naked routes will be created for it. Finally, all actions blueprints support an optional path parameter, id, for convenience.

Since Sails v1.0, action shadows are disabled by default. They can be OK for production– however, if you’d like to continue to use controller/action autorouting in a production deployment, you must take great care not to inadvertently expose unsafe/unintentional controller logic to GET requests. You can easily turn off a particular method or path in your [/config/routes.js](https://sailsjs.com/documentation/anatomy/my-app/config/routes-js) file using the [response target syntax](https://sailsjs.com/documentation/concepts/routes/custom-routes#?response-target-syntax), for example:

`javascript
'POST /user': {response: 'notFound'}
`

Notes
> + Action routes respond to _all_ HTTP verbs (GET, PUT, POST, etc.). You can use req.method inside an action to determine which method was used.

“Index” actions

When action shadows (sails.config.blueprints.actions) are enabled, an additional, root shadow route is automatically exposed for any actions that happen to be named index. For example, if you have a FooController.js file with an index action in it, a /foo shadow route will automatically be bound for that action. Similarly, if you have a [standalone action](https://sailsjs.com/documentation/concepts/actions-and-controllers#?standalone-actions) at api/controllers/foo/index.js, a /foo route will be exposed automatically on its behalf.

<!–
TODO: check on this (it’s unclear what point it was trying to get across):

> Note: Action shadows come with a special exception for top-level standalone actions. For example, if you have a standalone action at api/controllers/index.js, it will be bound to a / shadow route automatically.

–>

Read more about [configuring blueprints in Sails](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints), including how to enable / disable different categories of blueprint routes.

<docmeta name=”displayName” value=”Blueprint routes”>

 # Blueprints

Overview

Like any good web framework, Sails aims to reduce both the amount of code you write and the time it takes to get a functional app up and running. _Blueprints_ are Sails’s way of quickly generating API [routes](https://sailsjs.com/documentation/concepts/routes) and [actions](https://sailsjs.com/documentation/concepts/controllers#?actions) based on your application design.

Together, [blueprint routes](https://sailsjs.com/documentation/concepts/blueprints/blueprint-routes) and [blueprint actions](https://sailsjs.com/documentation/concepts/blueprints/blueprint-actions) constitute the blueprint API, the built-in logic that powers the [RESTful JSON API](http://en.wikipedia.org/wiki/Representational_state_transfer) you get every time you create a model and controller.

For example, if you create a User.js model file in your project, then with blueprints enabled you will be able to immediately visit /user/create?name=joe to create a user, and visit /user to see an array of your app’s users. All without writing a single line of code!

Blueprints are a powerful tool for prototyping, but in many cases can be used in production as well, since they can be overridden, protected, extended or disabled entirely.

Up next

	[Read more](https://sailsjs.com/documentation/concepts/blueprints/blueprint-actions) about built-in blueprint actions

	[Read more](https://sailsjs.com/documentation/concepts/blueprints/blueprint-routes) about implicit “shadow” routes and how to configure or override them

<docmeta name=”displayName” value=”Blueprints”>

 # Configuration

Overview

While Sails dutifully adheres to the philosophy of [convention-over-configuration](http://en.wikipedia.org/wiki/Convention_over_configuration), it is important to understand how to customize those handy defaults from time to time. For almost every convention in Sails, there is an accompanying set of configuration options that allow you to adjust or override things to fit your needs.

> Here looking for a particular setting? Head over to [Reference > Configuration](https://sailsjs.com/documentation/reference/configuration) to see a complete guide to all configuration options available in Sails.

Sails apps can be [configured programmatically](https://github.com/mikermcneil/sails-generate-new-but-like-express/blob/master/templates/app.js#L15), by specifying [environment variables](http://en.wikipedia.org/wiki/Environment_variable) or command-line arguments, by changing the local or global [.sailsrc files](https://sailsjs.com/documentation/anatomy/.sailsrc), or (most commonly) using the boilerplate configuration files conventionally located in the [config/](https://sailsjs.com/documentation/anatomy/config) folder of new projects. The authoritative, merged-together configuration used in your app is available at runtime on the sails global as sails.config.

Standard configuration files (config/*)

A number of configuration files are generated in new Sails apps by default. These boilerplate files include a number of inline comments, which are designed to provide a quick, on-the-fly reference without having to jump back and forth between the docs and your text editor.

In most cases, the top-level keys on the sails.config object (e.g. sails.config.views) correspond to a particular configuration file (e.g. config/views.js) in your app; however configuration settings may be arranged however you like across the files in your config/ directory. The important part is the name (i.e. key) of the setting—not the file it came from.

For instance, let’s say you add a new file, config/foo.js:

``js
// config/foo.js
// The object below will be merged into `sails.config.blueprints:
module.exports.blueprints = {

shortcuts: false

};

For an exhaustive reference of individual configuration options, and the file they live in by default, check out the reference pages in this section, or take a look at [”config/”](https://sailsjs.com/documentation/anatomy/config) in [The Anatomy of a Sails App](https://sailsjs.com/documentation/anatomy) for a higher-level overview.

Environment-specific files (config/env/*)

Settings specified in the standard configuration files will generally be available in all environments (i.e. development, production, test, etc.). If you’d like to have some settings take effect only in certain environments, you can use the special environment-specific files and folders:

	Any files saved under the /config/env/<environment-name> folder will be loaded only when Sails is lifted in the <environment-name> environment. For example, files saved under config/env/production will only be loaded when Sails is lifted in production mode.

	Any files saved as config/env/<environment-name>.js will be loaded only when Sails is lifted in the <environment-name> environment, and will be merged on top of any settings loaded from the environment-specific subfolder. For example, settings in config/env/production.js will take precedence over those in the files in the config/env/production folder.

By default, your app runs in the “development” environment. The recommended approach for changing your app’s environment is by using the NODE_ENV environment variable:
`
NODE_ENV=production node app.js
`

> The production environment is special: depending on your configuration, it enables compression, caching, minification, etc.
>
> Also note that if you are using config/local.js, the configuration exported in that file takes precedence over environment-specific configuration files.

The config/local.js file

You may use the config/local.js file to configure a Sails app for your local environment (your laptop, for example). The settings in this file take precedence over all other config files except [.sailsrc](https://sailsjs.com/documentation/concepts/configuration/using-sailsrc-files). Since they’re intended only for local use, they should not be put under version control (and are included in the default .gitignore file for that reason). Use local.js to store local database settings, change the port used when lifting an app on your computer, etc.

See [Concepts > Configuration > The local.js file](https://sailsjs.com/documentation/concepts/configuration/the-local-js-file) for more information.

Accessing sails.config in your app

The config object is available on the Sails app instance (sails). By default, this is exposed on the [global scope](https://sailsjs.com/documentation/concepts/globals) during lift, and therefore available from anywhere in your app.

Example
```javascript
// This example checks that, if we are in production mode, csrf is enabled.
// It throws an error and crashes the app otherwise.
if (sails.config.environment === ‘production’ && !sails.config.security.csrf) {


throw new Error(‘STOP IMMEDIATELY ! CSRF should always be enabled in a production deployment!’);






}

### Setting sails.config values directly using environment variables

In addition to using configuration _files_, you can set individual configuration values on the command line when you lift Sails by prefixing the config key names with sails_, and separating nested key names with double underscores (__).  Any environment variable formatted this way will be parsed as JSON (if possible). For example, you could do the following to set the [allowed CORS origins](https://sailsjs.com/documentation/concepts/security/cors) (sails.config.security.cors.allowOrigins) to [“http://somedomain.com”,”https://anotherdomain.com:1337”] on the command line:

`javascript
sails_security__cors__allowOrigins='["http://somedomain.com","https://anotherdomain.com:1337"]' sails console
`

> Note the use of double quotes to indicate strings within the JSON-encoded value, and the single quotes surrounding the whole value so that it is passed correctly to Sails from the console.

This value will be in effect _only_ for the lifetime of this particular Sails instance, and will override any values in the configuration files.

Also note that configuration specified using environment variables does _not_ automatically apply to Sails instances that are started [programmatically](https://sailsjs.com/documentation/concepts/programmatic-usage).

> There are a couple of special exceptions to the above rule: NODE_ENV and PORT.
> + NODE_ENV is a convention for any Node.js app.  When set to ‘production’, it sets [sails.config.environment](https://sailsjs.com/documentation/reference/configuration/sails-config#?sailsconfigenvironment).
> + Similarly, PORT is just another way to set [sails.config.port](https://sailsjs.com/documentation/reference/configuration/sails-config#?sailsconfigport).  This is strictly for convenience and backwards compatibility.
>
> Here’s a relatively common example where you might use both of these environment variables at the same time:
>
> `bash
> PORT=443 NODE_ENV=production sails lift
> `
>
> When present in the current process environment, NODE_ENV and PORT will apply to any Sails app that is started via the command line or programmatically, unless explicitly overridden.

Environment variables are one of the most powerful ways to configure your Sails app.  Since you can customize just about any setting (as long as it’s JSON-serializable), this approach solves a number of problems, and is our core team’s recommended strategy for production deployments.  Here are a few:


	Using environment variables means you don’t have to worry about checking in your production database credentials, API tokens, etc.


	This makes changing Postgresql hosts, Mailgun accounts, S3 credentials, and other maintenance straightforward, fast, and easy; plus you don’t need to change any code or worry about merging in downstream commits from other people on your team


	Depending on your hosting situation, you may be able to manage your production configuration through a UI (most PaaS providers like [Heroku](http://heroku.com) or [Modulus](https://modulus.io) support this, as does [Azure Cloud](https://azure.microsoft.com/en-us/).)




### Setting sails.config values using command line arguments

For situations where setting an environment variable on the command line may not be practical (such as some Windows systems), you can use regular command line arguments to set configuration options.  To do so, specify the name of the option prefixed by two dashes (–), with nested key names separated by dots.  Command line arguments are parsed using [minimist](https://github.com/substack/minimist/tree/0.0.10), which does _not_ parse JSON values like arrays or dictionaries, but will handle strings, numbers and booleans (using a special syntax).  Some examples:

```javascript
// Set the port to 1338
sails lift –port=1338

// Set a custom “email” value to “foo@bar.com”:
sails lift –custom.email=’foo@bar.com’

// Turn on CSRF support
sails lift –security.csrf

// Turn off CSRF support
sails lift –no-security.csrf

// This won’t work; it’ll just try to set the value to the string “[1,2,3]”
sails lift –custom.array=’[1,2,3]’
```

### Custom configuration

You can also leverage Sails’s configuration loader to manage your own custom settings.  See [sails.config.custom](https://sailsjs.com/documentation/reference/configuration/sails-config-custom) for more information.

### Configuring the command line interface

When it comes to configuration, most of the time you’ll be focused on managing the runtime settings for a particular app: the port, database setup, and so forth.  However it can also be useful to customize the Sails CLI itself; to simplify your workflow, reduce repetitive tasks, perform custom build automation, etc.  Thankfully, Sails v0.10 added a powerful new tool to do just that.

The [.sailsrc file](https://sailsjs.com/documentation/anatomy/.sailsrc) is unique from other configuration sources in Sails in that it may also be used to configure the Sails CLI&mdash;either system-wide, for a group of directories, or only when you are cd’ed into a particular folder.  The main reason to do this is to customize the [generators](https://sailsjs.com/documentation/concepts/extending-sails/Generators) that are used when sails generate and sails new are run, but it can also be useful to install your own custom generators or apply hard-coded config overrides.

And since Sails will look for the “nearest” .sailsrc in the ancestor directories of the current working directory, you can safely use this file to configure sensitive settings you can’t check in to your cloud-hosted code repository (_like your **database password**_.)  Just include a .sailsrc file in your “$HOME” directory.  See [the docs on .sailsrc](https://sailsjs.com/documentation/anatomy/.sailsrc) files for more information.

### Order of precedence for configuration

Depending on whether you’re starting a Sails app from the command line using sails lift or node app.js, or programmatically using [sails.lift()](https://sailsjs.com/documentation/reference/application/advanced-usage/sails-lift) or [sails.load()](https://sailsjs.com/documentation/reference/application/advanced-usage/sails-load), Sails will draw its configuration from a number of sources, in a certain order.

##### Order of precedence when starting via sails lift or node app.js (in order from highest to lowest priority):


	command line options parsed by [minimist](https://github.com/substack/minimist/tree/0.0.10); e.g. sails lift –custom.mailgun.apiToken=’foo’ becomes sails.config.custom.mailgun.apiToken


	[environment variables](https://en.wikipedia.org/wiki/Environment_variable) prefixed with sails_, and using double underlines to indicate dots; e.g.: sails_port=1492 sails lift ([A few more examples](https://gist.github.com/mikermcneil/92769de1e6c10f0159f97d575e18c6cf))


	a [.sailsrc file](https://sailsjs.com/documentation/concepts/configuration/using-sailsrc-files) in your app’s directory, or the first found looking in ../, ../../ etc.


	a global .sailsrc file in your home folder (e.g. ~/.sailsrc).


	any existing config/local.js file in your app


	any existing config/env/* files in your app that match the name of your current NODE_ENV environment (defaulting to development)


	any other files in your app’s config/ directory (if one exists)




##### Order of precedence when starting programmatically (in order from highest to lowest priority):


	an optional dictionary ({}) of configuration overrides passed in as the first argument to .lift() or .load()


	any existing config/local.js file in your app


	any existing config/env/* files in your app that match the name of your current NODE_ENV environment (defaulting to development)


	any other files in your app’s config/ directory (if one exists)




### Notes
> The built-in meaning of the settings in sails.config are, in some cases, only interpreted by Sails during the “lift” process.  In other words, changing some options at runtime will have no effect.  To change the port your app is running on, for instance, you can’t just change `sails.config.port`&mdash;you’ll need to change or override the setting in a configuration file or as a command line argument, etc., then restart the server.

<docmeta name=”displayName” value=”Configuration”>
<docmeta name=”nextUpLink” value=”/documentation/concepts/policies”>
<docmeta name=”nextUpName” value=”Policies”>




            

          

      

      

    

  

    
      
          
            
  # The config/local.js file

The config/local.js file is useful for configuring a Sails app for your local environment (your laptop, for example). This would be a good place to store settings like database or email passwords that apply only to you, and shouldn’t be shared with others in your organization.

These settings take precedence over all other files in config/, including those in the env/ subfolder.

Note:
> By default, config/local.js is included in your .gitignore, so if you’re using git as a version control solution for your Sails app, keep in mind that this file won’t be committed to your repository!
>
> Good news is, that means you can specify configuration for your local machine in this file without inadvertently committing personal information (like database passwords) to the repo.  Plus, this prevents other members of your team from commiting their local configuration changes on top of yours.
>
> In a production environment, you’ll probably want to leave this file out entirely and configure all of your production overrides using env/production.js, or environment variables, or a combination of both.

<docmeta name=”displayName” value=”The local.js file”>



            

          

      

      

    

  

    
      
          
            
  # Using .sailsrc files

In addition to the other methods of configuring your app, you can also specify configuration for one or more apps in .sailsrc file(s).  These files are useful for configuring the Sails command-line, and especially for generators.  They also allow you to apply _global_ configuration settings for generators in ANY of the Sails apps you run on your computer, if desired.

When the Sails CLI runs a command, it first looks for  .sailsrc files (in either JSON or [.ini](http://en.wikipedia.org/wiki/INI_file) format) in the current directory and in your home folder (i.e. ~/.sailsrc) (every newly generated Sails app comes with a boilerplate .sailsrc file).  Then it merges them in to its existing configuration.

> Actually, Sails looks for .sailsrc files in a few other places (following [rc conventions](https://github.com/dominictarr/rc#standards)).  You can put a .sailsrc file at any of those paths, if you want it to apply globally to all Sails apps.  That said, stick to convention when you can- the best place to put a global .sailsrc file is in your home directory (i.e. ~/.sailsrc).

<docmeta name=”displayName” value=”Using .sailsrc files”>



            

          

      

      

    

  

    
      
          
            
  # Deployment

### Before you deploy

Before you launch any web application, you should ask yourself a few questions:


	What is your expected traffic?


	Are you contractually required to meet any uptime guarantees, e.g. a Service Level Agreement (SLA)?


	What sorts of user agents will be “hitting” your infrastructure? These might be:
+ desktop web browsers
+ mobile web browsers (What form factors?  Tablet? Handset? Both?)
+ embedded browsers from smart TVs or gaming consoles
+ Android/iOS/Windows Phone apps
+ PhoneGap/Electron apps
+ Developers (cURL, Postman, AJAX requests, WebSocket front-end apps)
+ other devices (TVs, watches, toasters…)


	What kinds of things will they be requesting (e.g. HTML, JSON, XML)?


	Will you be taking advantage of realtime features with Socket.io (e.g. chat, realtime analytics, in-app notifications/messages)?


	How are you tracking crashes and errors? Are you using sails.log() in combination with a hosted service like [Papertrail](https://papertrailapp.com/)?  <!–Or are you using a custom logger from NPM like [Winston](https://github.com/winstonjs/winston)?  Or even easier, sticking with built-in logging from sails.log() in combination with a hosted service like [Papertrail](https://papertrailapp.com/)?–>


	Have you tried lifting locally with the NODE_ENV environment variable set to “production”? (A quick way to test this out is to run NODE_ENV=production node app (or, as a shortcut: sails lift –prod).)




### Configuring your app for production

You can provide configuration which only applies in production in a [few different ways](https://sailsjs.com/documentation/reference/configuration).  Most apps find themselves using a mix of environment variables and config/env/production.js.  Regardless of how you go about it, this section and the [Scaling section](https://sailsjs.com/documentation/concepts/deployment/scaling) of the documentation cover the configuration settings you should review before going to production.

### Deploying on a single server

Node.js is pretty darn fast.  For many apps, one server is enough to handle the expected traffic&mdash;initailly, at least.

> This section focuses on _single-server Sails deployment_.  This kind of deployment is inherently limited in scale.  See [Scaling](https://sailsjs.com/documentation/concepts/deployment/scaling) for information about deploying your Sails/Node app behind a load balancer.

Many teams decide to deploy their production app behind a load balancer or proxy (in a PaaS like Heroku or Now, maybe, or behind an nginx server).  This is often the right approach since it helps future-proof your app in case your scalability needs change and you need to add more servers.  If you are using a load balancer or proxy, there are a few things in the list below that you can ignore:


	Don’t worry about configuring Sails to use an SSL certificate.  SSL will almost always be resolved at your load balancer/proxy server or by your PaaS provider.


	You _probably_ don’t need to worry about setting your app to run on port 80 (if not behind a proxy like nginx). Most PaaS providers automatically figure out the port for you.  If you are using a proxy server, please refer to its documentation (whether or not you need to configure the port for your Sails app depends on how you set things up and can vary widely based on your needs).




> If your app uses sockets and you’re using nginx, be sure to configure it to relay websocket messages to your server. You can find guidance on proxying WebSockets in [nginx’s docs on the subject](http://nginx.org/en/docs/http/websocket.html).

##### Set the NODE_ENV environment variable to ‘production’

Setting your app’s environment config to ‘production’ tells Sails to get its game face on&mdash;i.e. that your app is running in a production environment.  This is, hands down, the most important step. If you only have the time to change _one setting_ before deploying your Sails app, _this should be that setting_!


	When your app is running in a production environment:
	
	middleware and other dependencies baked into Sails switch to using more efficient code.


	all of your [models’ migration settings](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings) are forced to migrate: ‘safe’.  This is a failsafe to protect against inadvertently damaging your production data during deployment.


	your asset pipeline runs in production mode (if relevant).  Out of the box, that means your Sails app will compile all stylesheets, client-side scripts, and precompiled JST templates into minified .css and .js files to decrease page load times and reduce bandwidth consumption.


	error messages and stack traces from res.serverError() will still be logged, but will not be sent in the response (this is to prevent a would-be attacker from accessing any sensitive information, such as encrypted passwords or the path where your Sails app is located on the server’s file system).








>**Note:**
>If you set [sails.config.environment](https://sailsjs.com/documentation/reference/configuration/sails-config#?sailsconfigenvironment) to ‘production’ some other way, that’s totally cool.  Just note that Sails will either set the NODE_ENV environment variable to ‘production’ for you automatically, or it will log a warning&mdash;so keep an eye on the console! The reason this environment variable is so important is that it is a universal convention in Node.js, regardless of the framework you are using.  Built-in middleware and dependencies in Sails _expect_ NODE_ENV to be set in production, otherwise they use their less efficient code paths that were designed for development use only.

##### Set a sails.config.sockets.onlyAllowOrigins value

If you have sockets enabled for your app (that is, you have the sails-hook-sockets module installed), then for security reasons you’ll need to set sails.config.sockets.onlyAllowOrigins to the array of origins that should be allowed to connect to your app via websockets.  You&rsquo;ll likely set this in your app&rsquo;s config/env/production.js file.  See the [socket configuration documentation](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets) for more info on onlyAllowOrigins.

##### Configure your app to run on port 80

Whether it’s by using the sails_port environment variable, setting the –port command-line option, or changing your production config file(s), add the following to the top level of your Sails config:

`javascript
port: 80
`

> As mentioned above, ignore this step if your app will be running behind a load balancer or proxy.

##### Set up production database(s) for your models

If all of your app’s models use the default datastore, then setting up your production database is as simple as configuring sails.config.datastores.default in the [config/env/production.js](https://sailsjs.com/documentation/concepts/configuration#?environmentspecific-files-config-env) file with the correct settings.

If your app is using more than one database, your process will be similar.  For every datastore used by the app, add an item to the sails.config.datastores dictionary in [config/env/production.js](https://sailsjs.com/documentation/concepts/configuration#?environmentspecific-files-config-env).

Keep in mind that if you are using version control (git, for example), then any sensitive credentials (such as database passwords) will be checked in to the repo if you include them in your app’s configuration files.  A common solution to this problem is to provide certain sensitive configuration settings as environment variables.  See [Configuration](https://sailsjs.com/documentation/concepts/configuration) for more information.


	If you are using a relational database such as MySQL, there is an additional step.  Remember how Sails sets all your models to migrate:safe when run in production?  That means no auto-migrations are run when lifting the app… which means that by default your tables won’t exist.  A common approach in dealing with this during the first-time setup of a relational database for your Sails app is as follows:
	
	Create the database on the production database server (e.g. frenchfryparty).


	Configure your app locally to use this production database, but _don’t set the environment to ‘production’, and leave your models’ configuration set to `migrate: 'alter'`_.  Now run sails lift once– and when the local server finishes lifting, kill it.
+ Be careful!  You should only do this when there is _no data_ in the production database.








If this makes you nervous or if you can’t connect to the production database remotely, you can skip the steps above.  Instead, simply dump your local schema and import it into the production database.

##### Enable CSRF protection

Protecting against CSRF is an important security measure for Sails apps.  If you haven’t already been developing with CSRF protection enabled (see [sails.config.security.csrf](https://sailsjs.com/documentation/reference/configuration/sails-config-security#?sailsconfigsecuritycsrf)), be sure to [enable CSRF protection](https://sailsjs.com/documentation/concepts/security/csrf#?enabling-csrf-protection) before going to production.

##### Enable SSL

If your API or website does anything that requires authentication, you should use SSL in production.  To configure your Sails app to use an SSL certificate, use [sails.config.ssl](https://sailsjs.com/documentation/reference/configuration/sails-config).

> As mentioned above, ignore this step if your app will be running behind a load balancer or proxy.

##### Lift your app

The last step of deployment is actually starting the server. For example:

`bash
NODE_ENV=production node app.js
`

Or if you’re more comfortable with command-line options you can use –prod:

`bash
node app.js --prod
# (Sails will set `NODE_ENV` automatically)
`

As you can see, instead of sails lift you should start your Sails app with node app.js in production.  This way, instead of relying on having access to the sails command-line tool, your app just runs the app.js file bundled in your Sails app (which does the same thing).

##### …And keep it lifted

Unless you’re deploying to a PaaS like Heroku, you will want to use a tool like [pm2](http://pm2.keymetrics.io/) or [forever](https://github.com/foreverjs/forever) to make sure your app server will start back up if it crashes.  Regardless of the daemon you choose, you’ll want to make sure that it starts the server as described above.

### Next steps
+ [Security](https://sailsjs.com/documentation/concepts/security)
+ [Hosting options](https://sailsjs.com/documentation/concepts/deployment/hosting)
+ [Scaling your Sails/Node.js app](https://sailsjs.com/documentation/concepts/deployment/scaling)
+ [Complete API reference](https://sailsjs.com/documentation/reference)

<docmeta name=”displayName” value=”Deployment”>



            

          

      

      

    

  

    
      
          
            
  # FAQ

### Can I use environment variables?

Yes! Like any Node app, your environment variables are available as process.env.

Sails also comes with built-in support for creating your own custom configuration settings that will be exposed directly on sails.config.  And whether custom or built-in, any of the configuration properties in sails.config can be overridden using environment variables.  See the conceptual documentation on [Configuration](https://sailsjs.com/documentation/concepts/configuration) for details.

### Where do I put my production database credentials?  Other settings?

The easiest way to add configuration to your Sails app is by modifying the files in config/ or adding new ones. Sails supports environment-specific configuration loading out of the box, so you can use config/env/production.js.  Again, see the conceptual documentation on [Configuration](https://sailsjs.com/documentation/concepts/configuration) for details.

But sometimes you don’t want to put certain configuration information into your repository.  The best place to put this kind of configuration is in environment variables.

That said, for development (e.g. on your laptop) using environment variables can sometimes be cumbersome.  So for your other deployment/machine-specific settings, namely any kind of credentials you want to keep private, you can also use your config/local.js file.  This file is included in your .gitignore file by default, which helps prevent you from inadvertently commiting your credentials to your code repository.

config/local.js
``javascript
// Local configuration
//
// Included in the .gitignore by default,
// this is where you include configuration overrides for your local system
// or for a production deployment.
//
// For example, to use port 80 on the local machine, override the `port config
module.exports = {


port: 80,
environment: ‘production’,
adapters: {



	mysql: {
	user: ‘root’,
password: ‘12345’





}




}





}

### How do I get my Sails app on the server?

If you are using a Paas like Heroku or Modulus, it’s easy: just follow their instructions!

Otherwise, get the IP address of your server and ssh onto it.  Then npm install -g sails and npm install -g forever to install Sails and forever globally from NPM for the first time on the server. Finally git clone your project (or scp it onto the server if it’s not in a git repo) into a new folder on the server, cd into it, and then run forever start app.js.

### What should I expect as far as performance?

Baseline performance in Sails is comparable to what you’d expect from a standard Node.js/Express application.  In other words, it’s fast!  We’ve done some optimizations ourselves in Sails core, but our primary focus is not messing up what we get for free from our dependencies.  For a quick and dirty benchmark, see [http://serdardogruyol.com/sails-vs-rails-a-quick-and-dirty-benchmark](http://serdardogruyol.com/sails-vs-rails-a-quick-and-dirty-benchmark).

The most common performance bottleneck in production Sails applications is the database.  Over the lifetime of an application with a growing user base, it becomes increasingly important to set up good indexes on your tables/collections and use queries which return paginated results.  Eventually, as your production database grows to contain tens of millions of records, you will start to locate and optimize slow queries by hand (either by calling [.query()](https://sailsjs.com/documentation/reference/waterline-orm/models/query) or [.native()](https://sailsjs.com/documentation/reference/waterline-orm/models/native), or by using the underlying database driver from NPM).

### What’s this warning about the connect session memory store?

If you are using sessions in your Sails app, you should not use the built-in memory store in production.  The memory session store is a development-only tool that does not scale to multiple servers; even if you only have one server it is not particularly performant (see [#3099](https://github.com/balderdashy/sails/issues/3099) and [#2779](https://github.com/balderdashy/sails/issues/2779)).

For instructions on configuring a production session store, see [sails.config.session](https://sailsjs.com/documentation/reference/configuration/sails-config-session).  If you want to disable session support altogether, turn off the session hook in your app’s .sailsrc file:
```javascript
“hooks”: {

“session”: false

}

<docmeta name=”displayName” value=”FAQ”>

 # Hosting

Here is a non-comprehensive list of Node/Sails hosting providers and a few available community tutorials. Keep in mind that, most of the time, the process for deploying your Sails app is exactly the same as it would be for any other Node.js app. Just be sure to take a look at the [other pages](https://sailsjs.com/documentation/concepts/deployment) in this section of the docs (as well as your app’s [config/env/production.js file](https://sailsjs.com/documentation/anatomy/config/env/production-js)) and make any necessary adjustments before you actually deploy to production.

Heroku

Heroku offers easy, free deployment for any Sails project generated using the Web App template:

	Create a GitHub repo and push your code up to the master branch.

	Create a Heroku pipeline and a staging app within that pipeline (e.g. my-cool-site-staging).

	Using the point-and-click interface, set up that staging app to auto-deploy from the deploy branch of your GitHub repo.

	Under “Add-ons”, set up Papertrail for logging, Redis2Go as your production session store (and for delivering socket messages, if relevant), Heroku Scheduler for scheduled jobs (if relevant), and a database host of your choosing (e.g. MySQL, PostgreSQL, MongoDB).

	Run through config/production.js and config/staging.js in your project and set it up. Any information you feel is too sensitive to hard-code into those files (like database credentials) can be stored in Heroku’s config vars (see bundled config files for examples).

	In the terminal, make sure you’ve got everything pulled/pushed and are fully in sync with the remote master branch on GitHub.

	Deploy by typing sails run deploy.

You can see a demonstration of this in action [here](https://courses.platzi.com/courses/sails-js/).

More resources for using Heroku with Node.js/Sails.js:

	[Platzi: Full Stack JavaScript: Pt 5 (2018)](https://courses.platzi.com/courses/sails-js/)

	[Hello Sails.js: Hosting your Sails.js application on Heroku (2016-2017)](https://hellosails.com/hosting-your-sails-js-application-heroku/)

	[Platzi: Develop Apps with Sails.js: Pt 2 (2015)](https://courses.platzi.com/classes/develop-apps-sails-js/) _(see part 2)_

	[Sails.js on Heroku (2015)](http://vort3x.me/sailsjs-heroku/)

	[SailsCasts: Deploying a Sails App to Heroku (2013)](http://irlnathan.github.io/sailscasts/blog/2013/11/05/building-a-sails-application-ep26-deploying-a-sails-app-to-heroku/)

<!–
More 2013:
+ [StackOverflow: Sails.js + Heroku (2013)](http://stackoverflow.com/a/20184907/486547)
+ https://groups.google.com/forum/#!topic/sailsjs/vgqJFr7maSY
+ https://github.com/chadn/heroku-sails
+ http://dennisrongo.com/deploying-sails-js-to-heroku
–>

Microsoft Azure

	[Deploy a Sails.js web app to Azure App Service (2017)](https://docs.microsoft.com/en-us/azure/app-service-web/app-service-web-nodejs-sails)

<!–
+ [Deploying Sails.js to Azure Web Apps (2015)](https://blogs.msdn.microsoft.com/partnercatalystteam/2015/07/16/y-combinator-collaboration-deploying-sailsjs-to-azure-web-apps/)
PAGE NOT FOUND
–>

Google Cloud Platform

Using Google Cloud Platform means that your apps run on the same infrastructure that powers all of Google’s products, so you can be confident that they’ll scale seamlessly—no matter how many users you have.

	[Run Sails.js on Google Cloud Platform (2016)](https://cloud.google.com/nodejs/resources/frameworks/sails)

<!–
+ [Deploying Sails.js to Google Cloud (2016)](http://www.mot.la/2016-06-04-deploying-sails-js-to-google-cloud.html)
PAGE NOT FOUND
–>
+ [A couple of Googlers demonstrate and deploy their app built on Sails.js and GO in a talk called runtime:yours at Google Cloud Platform Live (2014)](https://www.facebook.com/sailsjs/posts/721341477911963)

DigitalOcean

	[Troubleshooting: Can’t install Sails.js on DigitalOcean (2017)](https://www.digitalocean.com/community/questions/can-t-install-sails-js)

	[How to use PM2 to set up a Node.js production environment on an Ubuntu VPS (2014)](https://www.digitalocean.com/community/articles/how-to-use-pm2-to-setup-a-node-js-production-environment-on-an-ubuntu-vps)

	[How to create a Node.js app using Sails.js on an Ubuntu VBS (2013)](https://www.digitalocean.com/community/articles/how-to-create-an-node-js-app-using-sails-js-on-an-ubuntu-vps)

<!–
More 2013:
+ https://www.digitalocean.com/community/articles/how-to-host-multiple-node-js-applications-on-a-single-vps-with-nginx-forever-and-crontab
–>

Amazon Web Services (AWS)

	[Creating a Sails.js application on AWS (2017)](http://bussing-dharaharsh.blogspot.com/2013/08/creating-sailsjs-application-on-aws-ami.html) _(see also [this question on ServerFault](http://serverfault.com/questions/531560/creating-an-sails-js-application-on-aws-ami-instance))_

	[Your own mini-Heroku on AWS (2014)](http://blog.grio.com/2014/01/your-own-mini-heroku-on-aws.html)

PM2 (KeyMetrics)

	[Deploying with PM2](http://devo.ps/blog/goodbye-node-forever-hello-pm2/)

> Note: PM2 isn’t really a hosting platform, but it’s worth mentioning in this section just so you’re aware of it.

OpenShift (Red Hat)

	[Deploying a Sails / Node.js application to OpenShift (2017)](https://gist.github.com/mikermcneil/b6136aa219f6d15b01a05b14cc681fcb)

	[Listening to a different IP address on OpenShift (2017-2018)](https://coderwall.com/p/dhhfcw/sailsjs-listening-on-a-different-ip-address) _(courtesy [@otupman](https://github.com/otupman))_

	[Get Sails/Node.js running on OpenShift (2017)](https://gist.github.com/mdunisch/4a56bdf972c2f708ccc6) _(Warning: quite out of date, but still useful for context. Courtesy [@mdunisch](https://github.com/mdunisch).)_

<!–
Xervo (formerly Modulus)

	[Customer Spotlight: Sails.js](https://blog.xervo.io/sails-js)

–>

Nanobox

	[Getting Started: A Simple Sails.js App (2017)](https://content.nanobox.io/a-simple-sails-js-example-app/) on Nanobox

	[Quickstart: nanobox-sails](https://github.com/nanobox-quickstarts/nanobox-sails)

	[Official Sails.js Guides](https://guides.nanobox.io/nodejs/sails/)

	[Official Nanobox Docs](https://docs.nanobox.io)

	[Nanobox Slack](https://slack.nanoapp.io)

exoscale / CloudControl

	[Deploying a Sails.js application to exoscale / CloudControl](https://github.com/exoscale/apps-documentation/blob/88d9f157093f0690f139337ff934c027482d4727/Guides/NodeJS/Sailsjs.md) _([rendered version of tutorial](https://webcache.googleusercontent.com/search?q=cache:gq8UZXarNq8J:https://community.exoscale.ch/documentation/apps/nodejs-app-sailsjs/+&cd=1&hl=en&ct=clnk&gl=us))_

RoseHosting

	[Install Sails.js with Apache as a reverse proxy on CentOS 7 (2016)](https://www.rosehosting.com/blog/install-sails-js-with-apache-as-a-reverse-proxy-on-centos-7/)

	[Install Sails.js on Ubuntu (2014)](https://www.rosehosting.com/blog/install-the-sails-js-framework-on-an-ubuntu-vps/)

More options

	Like [Heroku](https://stackshare.io/heroku), there are many [other Platform as a Service (PaaS) solutions that support Node.js/Sails.js](https://stackshare.io/heroku/alternatives).

	Like [Microsoft Azure](https://stackshare.io/microsoft-azure) and [EC2](https://stackshare.io/amazon-ec2), there are many [other Node.js/Sails.js-compatible “bare-metal”/IaaS cloud servers](https://stackshare.io/amazon-ec2/alternatives).

	Like [Cloudflare](https://stackshare.io/cloudflare), there are [other great CDNs for optimized hosting of your static assets](https://stackshare.io/cloudflare/alternatives).

<docmeta name=”displayName” value=”Hosting”>

 # Scaling

If you have the immediate expectation of lots of traffic to your application (or better yet, you already have the traffic),
you’ll want to set up a scalable architecture that will allow you to add servers as more and more requests hit your app.

Performance

In production, Sails performs like any Connect, Express or Socket.io app ([example](http://serdardogruyol.com/?p=111)). If you have your own benchmark you’d like to share, please write a blog post or article and tweet [@sailsjs](http://twitter.com/sailsjs). But benchmarks aside, keep in mind that most performance and scalability metrics are application-specific. The actual performance of your app will have a lot more to do with the way you implement your business logic and model calls than it will about the underlying framework you are using.

Example architecture


	```
	



/  Sails.js server       /  Database (e.g. Mongo, Postgres, etc)



	Load Balancer  <–>    Sails.js server    <–>    Socket.io message queue (Redis)
	
	 Sails.js server  /       Session store (Redis, Mongo, etc.)
	







```

Preparing your app for a clustered deployment

Node.js (and consequently Sails.js) apps scale horizontally. It’s a powerful, efficient approach, but it involves a tiny bit of planning. At scale, you’ll want to be able to copy your app onto multiple Sails.js servers and throw them behind a load balancer.

One of the big challenges of scaling an application is that these sorts of clustered deployments cannot share memory, since they are on physically different machines. On top of that, there is no guarantee that a user will “stick” with the same server between requests (whether HTTP or sockets), since the load balancer will route each request to the Sails server with the most available resources. The most important thing to remember about scaling a server-side application is that it should be stateless. That means you should be able to deploy the same code to _n_ different servers, expecting any given incoming request handled by any given server, and everything should still work. Luckily, Sails apps come ready for this kind of deployment almost right out of the box. But before deploying your app to multiple servers, there are a few things you need to do:

	ensure none of the other dependencies you might be using in your app rely on shared memory

	make sure the database(s) for your models (e.g. MySQL, Postgres, Mongo) are scalable (e.g. sharding/cluster)

	If your app uses sessions:
+ Configure your app to use a shared session store such as Redis (simply uncomment the adapter option in config/session.js) and install the “@sailshq/connect-redis” session adapter as a dependency of your app (e.g. npm install @sailshq/connect-redis –save).
+ For more information about configuring your session store for production, see the [sails.config.session](https://sailsjs.com/documentation/reference/configuration/sails-config-session#?production-config) docs.

	If your app uses sockets:
+ Configure your app to use Redis as a shared message queue for delivering socket.io messages. Socket.io (and consequently Sails.js) apps support Redis for sockets by default, so to enable a remote redis pubsub server, uncomment the relevant lines in config/env/production.js.
+ Install the “@sailshq/socket.io-redis” adapter as a dependency of your app (e.g. npm install @sailshq/socket.io-redis)

	If your cluster is on a single server (for instance, using [pm2 cluster mode](http://pm2.keymetrics.io/docs/usage/cluster-mode/)):
+ To avoid file conflict issues due to Grunt tasks, always start your apps in production environment and/or consider [turning Grunt off completely](https://sailsjs.com/documentation/concepts/assets/disabling-grunt). See [here](https://github.com/balderdashy/sails/issues/3577#issuecomment-184786535) for more details on Grunt issues in single-server clusters.
+ Be careful with [config/bootstrap.js](https://sailsjs.com/documentation/reference/configuration/sails-config-bootstrap) code that persists data in a database, to avoid conflicts when the bootstrap runs multiple times (once per node in the cluster).

Deploying a Node/Sails app to a PaaS

Deploying your app to a PaaS like Heroku or Modulus is simple! Take a look at [Hosting](https://sailsjs.com/documentation/concepts/deployment/Hosting) for platform-specific information.

Deploying your own cluster

	Deploy multiple instances (servers running a copy of your app) behind a [load balancer](https://en.wikipedia.org/wiki/Load_balancing_(computing) (e.g. nginx).

	Configure your load balancer to terminate SSL requests.

	Remember that you won’t need to use the SSL configuration in Sails, since the traffic will already be decrypted by the time it reaches Sails.

	Lift your app on each instance using a daemon like forever or pm2 (see https://sailsjs.com/documentation/concepts/deployment for more about daemonology).

Optimization

Optimizing an endpoint in your Node/Sails app is exactly like optimizing an endpoint in any other server-side application; e.g. identifying and manually optimizing slow queries, reducing the number of queries, etc. For Node apps, if you find you have a heavily trafficked endpoint that is eating up CPU, look for synchronous (blocking) model methods, services, or machines that might be getting called over and over again in a loop or recursive dive.

But remember:

> Premature optimization is the root of all evil.
> —[Donald Knuth](http://c2.com/cgi/wiki?PrematureOptimization)

No matter what tool you’re using, it is important to spend your time and energy writing high quality, well documented, readable code. That way, if/when you are forced to optimize a code path in your application, you’ll find it much easier to do.

Notes
> + You don’t have to use Redis for your sessions; you can actually use any Connect or Express-compatible session store. See [sails.config.session](sailsjs.com/documentation/reference/configuration/sails-config-session) for more information.
> + Some hosted Redis providers (such as Redis To Go) set a timeout for idle connections. In most cases you’ll want to turn this off to avoid unexpected behavior in your app. Details on how to turn off the timeout vary depending on provider, so you may have to contact their support team.

<docmeta name=”displayName” value=”Scaling”>

 # E-commerce

Like any web application framework, Sails can be used for e-commerce apps. Depending on your project’s specific needs, you can use Sails as the base for your own custom solution, or integrate with an existing e-commerce platform.

When building a custom e-commerce solution on Sails, there are a number of possibilities for how to structure your data. A good place to start is with four [models](https://sailsjs.com/documentation/concepts/models-and-orm): User (already included in the “Web app” template for new Sails apps), CartItem, Product, and Order. By including [associations](https://sailsjs.com/documentation/concepts/models-and-orm/associations), you can track things like shopping carts and a user’s individual order history.

> If the prospect of rolling custom e-commerce features from scratch is rather daunting, you may consider building your Sails app on top of an existing Sails-based platform (e.g. [Ymple](https://www.ymple.com/en/)).

<docmeta name=”displayName” value=”E-commerce”>

 # File uploads

Uploading files in Sails is similar to uploading files for a vanilla Node.js or Express application. However, the process may be unfamiliar if you’re coming from a different server-side platform like PHP, .NET, Python, Ruby, or Java. But fear not: the core team has gone to great lengths to make file uploads easier without sacrificing scalability or security.

Sails comes with a powerful “body parser”, [Skipper](https://github.com/balderdashy/skipper), which makes it easy to implement streaming file uploads—not only to the server’s filesystem (i.e. hard disk), but also to Amazon S3, MongoDB’s gridfs, or any other supported file adapter.

Sails does not automatically virus scan file uploads, or do any other attempt to detect whether uploaded files might be infected, broken, or unusual. If you allow users to upload and share files with each other, it is your responsibility to protect your users from each other. Always assume any request coming into your server could be malicious or misrepresent itself.

Uploading a file

Files are uploaded to HTTP web servers as _file parameters_. In the same way that you might send a form POST to a URL with text parameters like “name”, “email”, and “password”, you send files as file parameters like “avatar” or “newSong”.

Take this simple example:

```javascript
req.file(‘avatar’).upload(function (err, uploadedFiles) {


// …





});

Files should be uploaded inside of an [action](https://sailsjs.com/documentation/concepts/actions-and-controllers).  Below is a more in-depth example that demonstrates how you could allow users to upload an avatar image and link it to an account.  This example assumes that you’ve already taken care of access control in a policy, and that you’re storing the id of the logged-in user in req.session.userId.

```javascript
// api/controllers/UserController.js
//
// …

	/**
	
	Upload avatar for currently logged-in user

	

	(POST /user/avatar)

*/

uploadAvatar: function (req, res) {

	req.file(‘avatar’).upload({
	// don’t allow the total upload size to exceed ~10MB
maxBytes: 10000000

	},function whenDone(err, uploadedFiles) {
	
	if (err) {
	return res.serverError(err);

}

// If no files were uploaded, respond with an error.
if (uploadedFiles.length === 0){

return res.badRequest(‘No file was uploaded’);

}

// Get the base URL for our deployed application from our custom config
// (e.g. this might be “http://foobar.example.com:1339” or “https://example.com”)
var baseUrl = sails.config.custom.baseUrl;

// Save the “fd” and the url where the avatar for a user can be accessed
User.update(req.session.userId, {

// Generate a unique URL where the avatar can be downloaded.
avatarUrl: require(‘util’).format(‘%s/user/avatar/%s’, baseUrl, req.session.userId),

// Grab the first file and use it’s fd (file descriptor)
avatarFd: uploadedFiles[0].fd

})
.exec(function (err){

if (err) return res.serverError(err);
return res.ok();

});

});

},

	/**
	
	Download avatar of the user with the specified id

	

	(GET /user/avatar/:id)

*/

avatar: function (req, res){

	User.findOne(req.param(‘id’)).exec(function (err, user){
	if (err) return res.serverError(err);
if (!user) return res.notFound();

// User has no avatar image uploaded.
// (should have never have hit this endpoint and used the default image)
if (!user.avatarFd) {

return res.notFound();

}

var SkipperDisk = require(‘skipper-disk’);
var fileAdapter = SkipperDisk(/* optional opts */);

// set the filename to the same file as the user uploaded
res.set(“Content-disposition”, “attachment; filename=’” + file.name + “’”);

// Stream the file down
fileAdapter.read(user.avatarFd)
.on(‘error’, function (err){

return res.serverError(err);

})
.pipe(res);

});

}

//
// …
```

#### Where do the files go?
When using the default receiver, file uploads go to the myApp/.tmp/uploads/ directory.  This can be overridden using the dirname option.  Note that you’ll need to specify this option both when you call the .upload() function and when you invoke the skipper-disk adapter (so that you are uploading to and downloading from the same place).

> Any Node.js app (or other server-side app) that receives untrusted file uploads and stores them on disk should never upload those files into paths within a Java server web root or any directory that a legacy web server might automatically dive into recursively to execute arbitrary code files that it finds.  For best results, upload files to S3 or a safe directory on disk.  Always assume any request coming into your server could be malicious or misrepresent itself.

#### Uploading to a custom folder
In the example above we upload the file to .tmp/uploads, but how can we configure it with a custom folder, say assets/images? We can achieve this by adding options to the upload function as shown below.

```javascript
req.file(‘avatar’).upload({

dirname: require(‘path’).resolve(sails.config.appPath, ‘assets/images’)

	},function (err, uploadedFiles) {
	if (err) return res.serverError(err);

	return res.json({
	message: uploadedFiles.length + ‘ file(s) uploaded successfully!’

});

});

Sending text parameters in the same form as a file upload

If you need to send text parameters along with your file upload, the simplest way is by including them in the URL.

If you must send text parameters in the body of your request, the easiest way to handle this is by using the built in Cloud SDK that comes with the “Web app” template. (This also makes JSON parameters sent alongside file uploads “just work” when they wouldn’t without extra work.)

> As of Parasails v0.9.x, [the bundled Cloud SDK](https://github.com/mikermcneil/parasails/compare/v0.8.4…v0.9.0-4 [https://github.com/mikermcneil/parasails/compare/v0.8.4...v0.9.0-4]) properly handles additional parameters for you, so if you’ve generated your Sails app with the “Web app” template, you might want to make sure you’re using the latest version of [dist/parasails.js and dist/cloud.js](https://github.com/mikermcneil/parasails/releases) in your project.

Regardless of what you’re using on the client side, you’ll need to do things a little differently than usual in your Sails action on the back end. Because we’re dealing with a multipart upload, any text parameters in your request body _must be sent before any files_. This allows Sails to run your action code while files are still uploading, rather than having to wait for them to finish (avoiding a [famous DDoS vulnerability in Express-based Node.js apps](https://andrewkelley.me/post/do-not-use-bodyparser-with-express-js.html)). See the [Skipper docs](https://github.com/balderdashy/skipper#text-parameters) for advanced information on how this works behind the scenes.

Example

Generate an api
First we need to generate a new api for serving/storing files. Do this using the sails command line tool.

```sh
$ sails generate api file

debug: Generated a new controller file at api/controllers/FileController.js!
debug: Generated a new model File at api/models/File.js!

info: REST API generated @ http://localhost:1337/file
info: and will be available the next time you run sails lift.
```

Write Controller Actions

Lets make an index action to initiate the file upload and an upload action to receive the file.

```javascript

// myApp/api/controllers/FileController.js

module.exports = {


index: function (req,res){


res.writeHead(200, {‘content-type’: ‘text/html’});
res.end(
‘<form action=”http://localhost:1337/file/upload” enctype=”multipart/form-data” method=”post”>’+
‘<input type=”text” name=”title”><br>’+
‘<input type=”file” name=”avatar” multiple=”multiple”><br>’+
‘<input type=”submit” value=”Upload”>’+
‘</form>’
)




},
upload: function  (req, res) {



	req.file(‘avatar’).upload(function (err, files) {
	
	if (err)
	return res.serverError(err);



	return res.json({
	message: files.length + ‘ file(s) uploaded successfully!’,
files: files





});





});




}






};

### Notes
> While loading untrusted JavaScript as an <img src=”…”> [is not an XSS vulnerability in modern browsers](https://stackoverflow.com/a/46041031), the MIME type in the request headers of file uploads should never be relied upon.  Always assume any request coming into your server could be malicious or misrepresent itself.

## Read more


	[Skipper docs](https://github.com/balderdashy/skipper)


	[Uploading to Amazon S3](https://sailsjs.com/documentation/concepts/file-uploads/uploading-to-s-3)


	[Uploading to Mongo GridFS](https://sailsjs.com/documentation/concepts/file-uploads/uploading-to-grid-fs)




<docmeta name=”displayName” value=”File uploads”>




            

          

      

      

    

  

    
      
          
            
  # Uploading to Amazon S3

> Please note that your Amazon S3 bucket must be created in the ‘US East (N. Virginia)’ region.
> If you fail to do so, the uploads will not work and you’ll see an ‘InvalidRequest’ error from AWS.

With Sails, you can stream file uploads to Amazon S3 with very little additional configuration.

First install the [S3 Skipper adapter](https://github.com/balderdashy/skipper-s3):
`sh
npm install skipper-s3 --save
`

Then use it in one of your controllers:


	```javascript
	
	uploadFile: function (req, res) {
	
	req.file(‘avatar’).upload({
	adapter: require(‘skipper-s3’),
key: ‘S3 Key’,
secret: ‘S3 Secret’,
bucket: ‘Bucket Name’

	}, function (err, filesUploaded) {
	if (err) return res.serverError(err);
return res.ok({

files: filesUploaded,
textParams: req.allParams()

});

});

}


```

<docmeta name=”displayName” value=”Uploading to S3”>



            

          

      

      

    

  

    
      
          
            
  # Uploading to Mongo GridFS

Uploading files to MongoDB is possible thanks to Mongo’s GridFS filesystem.  With Sails, you can accomplish this with very little additional configuration using the Skipper adapter for [MongoDB’s GridFS](https://github.com/willhuang85/skipper-gridfs).

Install it with:

`sh
$ npm install skipper-gridfs --save
`

Then use it in one of your controllers:


	```javascript
	
	uploadFile: function (req, res) {
	
	req.file(‘avatar’).upload({
	adapter: require(‘skipper-gridfs’),
uri: ‘mongodb://[username:password@]host1[:port1][/[database[.bucket]]’

	}, function (err, filesUploaded) {
	if (err) return res.serverError(err);
return res.ok();

});

}


```

<docmeta name=”displayName” value=”Uploading to GridFS”>



            

          

      

      

    

  

    
      
          
            
  # Disabling globals

Sails determines which globals to expose by looking at [sails.config.globals](https://sailsjs.com/documentation/reference/configuration/sails-config-globals), which is conventionallly configured in [config/globals.js](https://sailsjs.com/documentation/anatomy/config/globals.js).

To disable all global variables, just set the setting to false:

`js
// config/globals.js
module.exports.globals = false;
`

To disable _some_ global variables, specify an object instead, e.g.:

```js
// config/globals.js
module.exports.globals = {

_: false,
async: false,
models: false,
services: false

};

Notes

> + Bear in mind that none of the globals, including sails, are accessible until _after_ sails has loaded. In other words, you won’t be able to use sails.models.user or User outside of a function (since sails will not have finished loading yet.)

<!– not true anymore:
Most of this section of the docs focuses on the methods and properties of sails, the singleton object representing your app.
–>

<docmeta name=”displayName” value=”Disabling globals”>

 # Globals
Overview

For convenience, Sails exposes a handful of global variables. By default, your app’s [models](https://sailsjs.com/documentation/concepts/models-and-orm), [services](https://sailsjs.com/documentation/concepts/services), and the global sails object are all available on the global scope, meaning you can refer to them by name anywhere in your backend code (as long as Sails [has been loaded](https://github.com/balderdashy/sails/tree/master/lib/app)).

Nothing in Sails core relies on these global variables—each and every global exposed in Sails may be disabled in sails.config.globals (conventionally configured in config/globals.js.)

The App Object (sails)
In most cases, you will want to keep the sails object globally accessible, as it makes your app code much cleaner. However, if you _do_ need to disable _all_ globals, including sails, you can get access to sails on the request object (req).

Models and Services
Your app’s [models](https://sailsjs.com/documentation/concepts/models-and-orm) and [services](https://sailsjs.com/documentation/concepts/services) are exposed as global variables using their globalId. For instance, the model defined in the file api/models/Foo.js will be globally accessible as Foo, and the service defined in api/services/Baz.js will be available as Baz.

Async (async) and Lodash (_)
Sails also exposes an instance of [lodash](http://lodash.com) as _, and an instance of [async](https://github.com/caolan/async) as async. These commonly-used utilities are provided by default so that you don’t have to npm install them in every new project. Like any of the other globals in sails, they can be disabled.

<docmeta name=”displayName” value=”Globals”>

 # An example helper

A common use of helpers is to encapsulate some repeated database queries. For example, suppose our app had a User model which included a field lastActiveAt which tracked the time of their last login. A common task in such an app might be to retrieve the list of users most recently online. Rather than hard-coding this query into multiple locations, we could write a helper instead:

```javascript
// api/helpers/get-recent-users.js
module.exports = {


friendlyName: ‘Get recent users’,

description: ‘Retrieve a list of users who were online most recently.’,

extendedDescription: ‘Use activeSince to only retrieve users who logged in since a certain date/time.’,

inputs: {



	numUsers: {
	friendlyName: ‘Number of users’,
description: ‘The maximum number of users to retrieve.’,
type: ‘number’,
defaultsTo: 5





},


	activeSince: {
	description: ‘Cut-off time to look for logins after, expressed as a JS timestamp.’,
extendedDescription: ‘Remember: A _JS timestamp_ is the number of milliseconds since [that fateful night in 1970](https://en.wikipedia.org/wiki/Unix_time).’,
type: ‘number’,
defaultsTo: 0





}




},

exits: {



	success: {
	outputFriendlyName: ‘Recent users’,
outputDescription: ‘An array of users who recently logged in.’,





},


	noUsersFound: {
	description: ‘Could not find any users who logged in during the specified time frame.’





}




},

fn: async function (inputs, exits) {


// Run the query
var users = await User.find({


active: true,
lastLogin: { ‘>’: inputs.activeSince }




})
.sort(‘lastLogin DESC’)
.limit(inputs.numUsers);

// If no users were found, trigger the noUsersFound exit.
if (users.length === 0) {


throw ‘noUsersFound’;




}

// Otherwise return the records through the success exit.
return exits.success(users);




}





};

### Usage

To call this helper from app code using the default options (in an action, for example), we would use:

`javascript
var users = await sails.helpers.getRecentUsers();
`

To alter the criteria for the returned users, we could pass in some values:

`javascript
var users = await sails.helpers.getRecentUsers(50);
`

Or, to get the 10 most recent users who have logged in since St. Patrick’s Day, 2017:

`javascript
await sails.helpers.getRecentUsers(10, (new Date('2017-03-17')).getTime());
`

> Note: These values passed into a helper at runtime are sometimes called argins, or options, and they correspond with the key order of the helper’s declared input definitions (e.g. numUsers and activeSince).

Again, chaining .with() in order to use named parameters:

```javascript
await sails.helpers.getRecentUsers.with({

numUsers: 10,
activeSince: (new Date(‘2017-03-17’)).getTime()

});

Exceptions

Finally, to handle the noUsersFound exit explicitly rather than simply treating it like any other error, we can use [.intercept()](https://sailsjs.com/documentation/reference/waterline-orm/queries/intercept) or [.tolerate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/tolerate):

```javascript
var users = await sails.helpers.getRecentUsers(10)
.tolerate(‘noUsersFound’, ()=>{


// … handle the case where no users were found. For example:
sails.log.verbose(


‘Worth noting: Just handled a request for active users during a time frame ‘+
‘where no users were found.  Anyway, I didn't think this was possible, because ‘+
‘our app is so cool and popular.  But there you have it.’




);






});

```javascript
var users = await sails.helpers.getRecentUsers(10)
.intercept(‘noUsersFound’, ()=>{

return new Error(‘Inconceivably, no active users were found for that timeframe.’);

});

The main advantage of using helpers is the ability to update functionality in many parts of an app by changing code in a single place. For example, by changing the default value of numUsers from 5 to 15, we update the size of the default list returned in _any_ place that uses the helper. Also, by using well-defined inputs like numUsers and activeSince, we guarantee we’ll get helpful errors if we accidentally use an invalid (i.e. non-numeric) value.

Notes

A few more notes about the example getRecentUsers() helper above:

> * Many of the fields such as description and friendlyName are not strictly required but are immensely helpful in keeping the code maintainable, especially when sharing the helper across multiple apps.
> * The noUsersFound exit may or may not be helpful, depending on your app. If you always want to perform a specific action when no users are returned (for example, redirecting to a different page), this exit would be a good idea. On the other hand, if you simply want to tweak some text in a view based on whether or not users were returned, it might be better to just have the success exit and check the length of the returned array in your action or view code.

<docmeta name=”displayName” value=”Example helper”>

 # Helpers

As of v1.0, all Sails apps come with built-in support for helpers, simple utilities that let you share Node.js code in more than one place. This helps you avoid repeating yourself, and makes development more efficient by reducing bugs and minimizing rewrites. Like actions2, this also makes it much easier to create documentation for your app.

Overview

In Sails, helpers are the recommended approach for pulling repeated code into a separate file, then reusing that code in various [actions](https://sailsjs.com/documentation/concepts/actions-and-controllers), [custom responses](https://sailsjs.com/documentation/concepts/extending-sails/custom-responses), [command-line scripts](https://www.npmjs.com/package/machine-as-script), [unit tests](https://sailsjs.com/documentation/concepts/testing), or even other helpers. You don’t _have_ to use helpers—in fact you might not even need them right away. But as your code base grows, helpers will become more and more important for your app’s maintainability (plus, they’re really convenient).

For example, in the course of creating the actions that your Node.js/Sails app uses to respond to client requests, you will sometimes find yourself repeating code in several places. That can be pretty bug-prone, of course, not to mention annoying. Fortunately, there’s a neat solution: replace the duplicate code with a call to a custom helper:

`javascript
const greeting = await sails.helpers.formatWelcomeMessage('Bubba');
sails.log(greeting);
// => "Hello, Bubba!"
`

> Helpers can be called from almost anywhere in your code, as long as that place has access to the [sails app instance](https://sailsjs.com/documentation/reference/application).

How helpers are defined

Here’s an example of a simple, well-defined helper:

```javascript
// api/helpers/format-welcome-message.js
module.exports = {


friendlyName: ‘Format welcome message’,

description: ‘Return a personalized greeting based on the provided name.’,

inputs: {



	name: {
	type: ‘string’,
example: ‘Ami’,
description: ‘The name of the person to greet.’,
required: true





}




},


	fn: async function (inputs, exits) {
	const result = Hello, ${inputs.name}!;
return exits.success(result);





}





};

Though simple, this file displays several characteristics of a good helper: it starts with a friendly name and description that make it immediately clear what the utility does, it describes its inputs so that it&rsquo;s easy to see how the utility is used, and it accomplishes a discrete task in the simplest way possible.

> Look familiar?  Helpers follow the same specification as [shell scripts](https://sailsjs.com/documentation/concepts/shell-scripts) and [actions2](https://sailsjs.com/documentation/concepts/actions-and-controllers#?actions-2).

##### The fn function

The core of the helper is the fn function, which contains the actual code that the helper will run.  The function takes two arguments: inputs (a dictionary of input values, or “argins”) and exits (a dictionary of callback functions).  The job of fn is to utilize and process the argins, and then trigger one of the provided exits to return control back to whatever code called the helper.  Note that, as opposed to a typical JavaScript function that uses return to provide output to the caller, helpers provide that result value by passing it in to exits.success().

##### Inputs

A helper&rsquo;s declared _inputs_ are analogous to the parameters of a typical JavaScript function: they define the values that the code has to work with.  However, unlike standard JavaScript function parameters, inputs are validated automatically.  If a helper is called using argins of the wrong type for their corresponding inputs or missing a value for a required input, it will trigger an error.  Thus, helpers are _self-validating_.

Input for a helper are defined in the inputs dictionary.  Each input definition is composed of, at minimum, a type property.  Helper inputs support types like:


	string - a string value


	number - a number value (both integers and floats are valid)


	boolean - the value true or false


	ref - a JavaScript variable reference (can be _any_ value, including dictionaries, arrays, functions, streams, etc.)




These are the same data types (and related semantics) that you might already be accustomed to from [defining model attributes](https://sailsjs.com/documentation/concepts/models-and-orm/attributes).
So, as you might expect, you can provide a default value for an input by setting its defaultsTo property.  Or you can make it required by setting required: true.  You can even use allowNull and almost any of the higher-level validation rules like isEmail.

The arguments you pass in when calling a helper correspond with the order of keys in that helper’s declared inputs.  Alternatively, if you’d rather pass in argins by name, use .with():

`javascript
const greeting = await sails.helpers.formatWelcomeMessage.with({ name: 'Bubba' });
`

##### Exits

Exits describe all the different possible outcomes a helper can have, good or bad.  Every helper automatically supports the error and success exits.
When calling a helper, if its fn triggers success, then it will return normally.  But if its fn triggers some exit _other than_ success, then it will throw an Error (unless [.tolerate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/tolerate) was used).

When necessary, you can also expose other custom exits (known as “exceptions”), allowing the userland code that calls your helper to handle specific, exceptional cases.
This helps guarantee your code&rsquo;s transparency and maintainability by making it painless and easy to declare and negotiate errors.

> Exceptions (custom exits) for a helper are defined in the exits dictionary.  It is a good practice to provide all custom exceptions with an explicit description property.

Imagine a helper called &ldquo;inviteNewUser&rdquo; which exposes a custom emailAddressInUse exit.  The helper’s fn might trigger this custom exit if the provided email already exists, allowing your userland code to handle this specific scenario– without muddying up your result values or resorting to extra try/catch blocks.

For example, if this helper was called from within an action that has its own “badRequest” exit:

`javascript
const newUserId = sails.helpers.inviteNewUser('bubba@hawtmail.com')
.intercept('emailAddressInUse', 'badRequest');
`

> The fancy-looking shorthand above is just a quicker way to write:
>
> `javascript
> .intercept('emailAddressInUse', (err)=>{
>   return 'badRequest';
> });
> `
>
> As for [.intercept()](https://sailsjs.com/documentation/reference/waterline-orm/queries/intercept),  it’s just another shortcut so you’re not forced to write custom try/catch blocks to negotiate these errors by hand all the time.

Internally, your helper’s fn is responsible for triggering one of its exits, either by throwing a [special exit signal](https://sailsjs.com/documentation/concepts/actions-and-controllers#?exit-signals) or by invoking an exit callback (e.g. exits.success(‘foo’)).  If your helper sends back a result through the success exit (e.g. ‘foo’), then that will be the return value of the helper.

> Note: For non-success exits, Sails will use the exit’s predefined description to create an appropriate JavaScript Error instance automatically, if needed.

##### Synchronous helpers

By default, all helpers are considered _asynchronous_.  While this is a safe default assumption, it’s not always true. When you know for certain that your helper is _synchronous_, you can optimize performance by telling Sails using the sync: true property. This allows userland code to [call the helper without await](https://sailsjs.com/documentation/concepts/helpers#?synchronous-usage). But if you set sync to true, don’t forget to change fn: async function to fn: function!

> Note: Calling an asynchronous helper without await _will not work_.

##### Accessing req in a helper

If you&rsquo;re designing a helper that parses request headers specifically for use from within actions, then you’ll want to take advantage of pre-existing methods and/or properties of the [request object](https://sailsjs.com/documentation/reference/request-req).  The simplest way to allow the code in your action to pass along req to your helper is to define a type: ‘ref’ input:

```javascript
inputs: {

	req: {
	type: ‘ref’,
description: ‘The current incoming request (req).’,
required: true

}

}

Then, to use your helper in your actions, you might write code like this:

`javascript
const headers = await sails.helpers.parseMyHeaders(req);
`

Generating a helper

Sails provides a built-in generator that you can use to create a new helper automatically:

`bash
sails generate helper foo-bar
`

This will create a file api/helpers/foo-bar.js that can be accessed in your code as sails.helpers.fooBar. The file that is initially created will be a generic helper with no inputs and just the default exits (success and error), which immediately triggers its success exit when executed.

Calling a helper

Whenever a Sails app loads, it finds all of the files in api/helpers/, compiles them into functions, and stores them in the sails.helpers dictionary using the camel-cased version of the filename. Any helper can then be invoked from your code, simply by calling it with await, and providing some argin values:

`javascript
const result = await sails.helpers.formatWelcomeMessage('Dolly');
sails.log('Ok it worked! The result is:', result);
`

> This is roughly the same usage you might already be familiar with from [model methods](sailsjs.com/documentation/concepts/models-and-orm/models) like .create().

Synchronous usage

If a helper declares the sync property, you can also call it without await:

`javascript
const greeting = sails.helpers.formatWelcomeMessage('Timothy');
`

But before you remove await, make sure the helper is actually synchronous. Without await an asynchronous helper will never execute!

Organizing helpers
If your application uses many helpers, you might find it helpful to group related helpers into subdirectories. For example, imagine you had a number of user helpers and several item helpers, organized in the following directory structure

```
api/



	helpers/
	
	user/
	find-by-username.js
toggle-admin-role.js
validate-username.js



	item/
	set-price.js
apply-coupon.js












```
When calling these helpers, each subfolder name (e.g. user and item) becomes an additional property layer in the sails.helpers object, so you can call find-by-username.js using sails.helpers.user.findByUsername() and you can call set-price.js with sails.helpers.item.setPrice().

> For more information, you can read a [conversation between Ryan Emberling and Mike McNeil](https://www.linkedin.com/feed/update/urn:li:activity:6998946887701565440?commentUrn=urn%3Ali%3Acomment%3A%28activity%3A6998946887701565440%2C7000154787505668096%29) which goes into more detail about this use case, including some general tips and tricks for working with custom helpers and organics.

Handling exceptions

For more granular error handling (and even for those exceptional cases that aren’t _quite_ errors) you may be used to setting some kind of error code, then sniffing out the error. This approach works fine, but it can be time-consuming and hard to track.

Fortunately, there are a few different ways to conveniently handle errors in Sails helpers. See the pages on [.tolerate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/tolerate), [.intercept()](https://sailsjs.com/documentation/reference/waterline-orm/queries/intercept), and [special exit signals](https://sailsjs.com/documentation/concepts/actions-and-controllers#?exit-signals) for more information.

<!–
For future reference, see https://github.com/balderdashy/sails-docs/commit/61f0039d26021c8abf4873aa675c409372dc2f8f
for the original content of these docs.
–>

As much or as little as you need

While the usage in this example is excessive, it’s easy to imagine a scenario in which it would be helpful to rely on custom exits like notUnique. Still, you don’t want to have to handle _every_ custom exit _every_ time. Ideally, you’d only have to handle a custom exit in your userland code when necessary: whether to implement a feature of some kind or even to improve user experience or provide a better internal error message.

Luckily, Sails helpers support “automatic exit forwarding”. That means userland code can choose to integrate with _as few or as many custom exits as you like_, on a case by case basis. In other words, when calling a helper it’s OK to completely ignore its custom notUnique exit if you don’t need it. That way, your code remains as concise and intuitive as possible. And if things change, you can always revise your code to handle the custom exit later.

Next steps

	[Explore a practical example](https://sailsjs.com/documentation/concepts/helpers/example-helper) of a helper in a Node.js/Sails app.

	sails-hook-organics (which is bundled in the “Web App” template) comes with several free, open-source, and MIT-licensed helpers for many common use cases. [Have a look!](https://npmjs.com/package/sails-hook-organics)

	[Click here](https://sailsjs.com/support) if you’re unsure about helpers, or if you want to see more tutorials and examples.

<docmeta name=”displayName” value=”Helpers”>
<docmeta name=”nextUpLink” value=”/documentation/concepts/deployment”>
<docmeta name=”nextUpName” value=”Deployment”>

 # Internationalization

Overview

If your app will touch people or systems from all over the world, internationalization and localization (also known as “i18n”) may be an important part of your international strategy. This is particularly important for applications whose main user base is split across different languages: for example a tutorial site providing both Spanish and English content, or an online store with customers all over Quebec and British Columbia.

Fortunately, Sails provides built-in support for detecting user language preferences and translating static words/sentences. As of Sails v1, this is implemented using the lightweight [i18n-node-2 package](https://www.npmjs.com/package/i18n-2). This package provides several additional options beyond what is covered here, which you can read about in its README file. But for many Node.js/Sails.js apps with basic internationalization requirements, the simple usage below is all you’ll need.

Usage

In Sails, it’s easy to translate words and phrases using the locale specified in the request header:

From a view:
`ejs
<h1> <%= __('Hello') %> </h1>
<h1> <%= __('Hello %s, how are you today?', 'Mike') %> </h1>
<p> <%= i18n('That\'s right-- you can use either i18n() or __()') %> </p>
`

Overriding language headers

Sometimes, it is useful to override browser/device language headers – for example, if you want to allow a user to set their own language preference. Whether such a preference is session-based or associated with their account in the database, this is pretty straightforward to accomplish using [req.setLocale()](https://sailsjs.com/documentation/reference/request-req/req-set-locale).

Internationalizing a shell script

Finally, if you are building a [command-line script](https://sailsjs.com/documentation/concepts/shell-scripts) using Sails, or pursuing some other advanced use case, you can also translate abritrary strings to the [configured default locale](https://sailsjs.com/documentation/reference/configuration/sails-config-i-18-n) from almost anywhere in your application using sails.__:

```javascript
sails.__(‘Welcome’);
// => ‘Bienvenido’

sails.__(‘Welcome, %s’, ‘Mary’);
// => ‘Bienvenido, Mary’
```

<!–

FUTURE: See https://trello.com/c/7GusjTTX

–>

Locales

See [Concepts > Internationalization > Locales](https://sailsjs.com/documentation/concepts/internationalization/locales) for more information about creating your locale files (aka “stringfiles”).

Additional options

Settings for localization/internationalization may be configured in [config/i18n.js](https://sailsjs.com/documentation/reference/configuration/sails-config-i-18-n). The most common reason you’ll need to modify these settings is to edit the list of your app’s supported locales.

For more information on configuring your Node.js/Sails.js app’s internationalization settings, see [sails.config.i18n](https://sailsjs.com/documentation/reference/configuration/sails-config-i-18-n).

Disabling or customizing Sails’ default internationalization support

Of course you can always require() any Node modules you like, anywhere in your project, and use any internationalization strategy you want.

But worth noting is that since Sails implements [node-i18n-2](https://github.com/jeresig/i18n-node-2) integration in the [i18n hook](https://sailsjs.com/documentation/concepts/Internationalization), you can completely disable or override it using the [loadHooks](https://github.com/balderdashy/sails/blob/master/docs/PAGE_NEEDED.md) and/or [hooks](https://github.com/balderdashy/sails/blob/master/docs/PAGE_NEEDED.md) configuration options.

Translating dynamic content

See [Concepts > Internationalization > Translating dynamic content](https://sailsjs.com/documentation/concepts/internationalization/translating-dynamic-content).

What about i18n on the client?

The above technique works great out of the box for server-side views. But what about rich client apps that serve static HTML templates from a CDN or static host? <!– (e.g. performance-sensitive SPAs, Chrome extensions, or webview apps built with tools like Ionic, PhoneGap, etc.) –>

Well, the easiest option is just to keep internationalizing from your server-rendered views. But if you’d rather not do that, there are [lots of different options available](https://web.archive.org/web/20160505184006/https://stackoverflow.com/questions/9640630/javascript-i18n-internationalization-frameworks-libraries-for-client-side-use) for client-side internationalization. Like other client-side technologies, you should have no problem integrating any of them with Sails.

> If you’d prefer not to use an external internationalization library, you can actually reuse Sails’ i18n support to help you get your translated templates to the browser. If you want to use Sails to internationalize your _client-side templates_, put your front-end templates in a subdirectory of your app’s /views folder.
> + In development mode, you should retranslate and precompile your templates each time the relevant stringfile or template changes using grunt-contrib-watch, which is already installed by default in new Sails projects.
> + In production mode, you’ll want to translate and precompile all templates on lift(). In loadtime-critical scenarios (e.g. mobile web apps) you can even upload your translated, precompiled, minified templates to a CDN like Cloudfront for further performance gains.

<docmeta name=”displayName” value=”Internationalization”>

 # Locales

Overview

The i18n hook reads JSON-formatted translation files from your project’s “locales” directory (config/locales by default). Each file corresponds with a [locale](http://en.wikipedia.org/wiki/Locale) (usually a language) that your Sails backend will support.

These files contain locale-specific strings (as JSON key-value pairs) that you can use in your views, controllers, etc. The name of the file should match the language that you are supporting. This allows for automatic language detection based on request headers.

Here is an example locale file (config/locales/es.json):
```json
{


“Hello!”: “Hola!”,
“Hello %s, how are you today?”: “¿Hola %s, como estas?”





}

Locales can be accessed in controller actions and policies through req.i18n(), or in views through the __(key) or i18n(key) functions.

`ejs
<h1> <%= __('Welcome to PencilPals!') %> </h1>
<h2> <%= i18n('Hello %s, how are you today?', 'Pencil Maven') %> </h2>
<p> <%= i18n('That\'s right-- you can use either i18n() or __()') %> </p>
`

Note that the keys in your stringfiles (e.g. “Hello %s, how are you today?”) are case sensitive and require exact matches.  There are a few different schools of thought on the best approach here; it really depends on who is editing the stringfiles and how often.  Especially if you’ll be editing the translations by hand, simpler, all-lowercase key names may be preferable for maintainability.

For example, here’s another way you could approach config/locales/es.json:

```json
{

“hello”: “hola”,
“howAreYouToday”: “cómo estás”

}

And here’s config/locales/en.json:

```json
{


“hello”: “hello”,
“howAreYouToday”: “how are you today”






}

To represent nested strings, use . in keys.  For example, here are some of the strings for an app’s “Edit profile” page:

``` json
{

“editProfile.heading”: “Edit your profile”,
“editProfile.username.label”: “Username”,
“editProfile.username.description”: “Choose a new unique username.”,
“editProfile.username.placeholder”: “callmethep4rtysquid”

}

Detecting and/or overriding the desired locale for a request

To determine the current locale used by the request, use [req.getLocale()](https://github.com/jeresig/i18n-node-2/tree/9c77e01a772bfa0b86fab8716619860098d90d6f#getlocale).

To override the auto-detected language/localization preference for a request, use [req.setLocale()](https://sailsjs.com/documentation/reference/request-req/req-set-locale), calling it with the unique code for the new locale, e.g.:

`js
// Force the language to German for the remainder of the request:
req.setLocale('de');
// (this will use the strings located in `config/locales/de.json` for translation)
`

By default, node-i18n will detect the desired language of a request by examining its language headers. Language headers are set in your users’ browser settings, and while they’re correct most of the time, you may need the flexibility to override this detected locale and provide your own. For a deeper dive into one way you might go about implementing this, check out [this gist](https://gist.github.com/mikermcneil/0af155ed546f3ddf164b4885fb67830c).

<docmeta name=”displayName” value=”Locales”>

 ### Translating dynamic content

If your backend is storing interlingual data (e.g. product data is entered in multiple languages via a CMS), you shouldn’t rely on simple JSON locale files unless you’re somehow planning on editing your locale translations dynamically. One option is to edit the locale translations programatically, either with a custom implementation or through a translation service. Sails/node-i18n JSON stringfiles are compatible with the format used by [webtranslateit.com](https://webtranslateit.com/en).

On the other hand, you might opt to store these types of dynamic translated strings in a database. If so, just make sure to build your data model accordingly so you can store and retrieve the relevant dynamic data by locale id (e.g. “en”, “es”, “de”, etc.). That way, you can leverage the [req.getLocale()](https://github.com/jeresig/i18n-node-2/tree/9c77e01a772bfa0b86fab8716619860098d90d6f#getlocale) method to help you figure out which translated content to use in any given response, and keep consistent with the conventions used elsewhere in your app.
<docmeta name=”displayName” value=”Translating dynamic content”>

 # Custom log messages

It is often useful to emit custom log messages or events from your application code; whether you are tracking the status of outbound emails sent in the background, or just looking for a configurable alternative to calling [console.log()](https://nodejs.org/api/console.html#console_console_log_data) in your application code.

For convenience, Sails exposes its internal logging interface as sails.log. Its usage is purposely very similar to Node’s console.log(), but with a handful of extra features; namely support for multiple log levels with colorized, prefixed console output.

See [sails.log()](https://sailsjs.com/documentation/reference/application/sails-log) for more information and examples, or [sails.config.log](https://sailsjs.com/documentation/reference/configuration/sails-config-log) for configuration options.

Available methods

Each of the log methods below accepts an infinite number of arguments of any data type, seperated by commas. Like console.log, data passed as arguments to the Sails logger are automatically prettified for readability using Node’s [util.inspect()](http://nodejs.org/api/util.html#util_util_inspect_object_options). Consequently, standard Node.js conventions apply; _any_ dictionaries, errors, dates, arrays, or other data types are pretty-printed using the built-in logic in [util.inspect()](https://nodejs.org/api/util.html#util_util_inspect_object_options) (e.g. you see { pet: { name: ‘Hamlet’ } } instead of [object Object].) Also, if you log an object that has a custom inspect() method, the logger will run that method automatically and write the string it returns to the console.

sails.log.error()

Writes log output to stderr at the “error” log level.
Useful for tracking major errors.

`js
sails.log.error('Sending 500 ("Server Error") response.');
// -> error: Sending 500 ("Server Error") response.
`

sails.log.warn()

Writes log output to stderr at the “warn” log level.
Useful for tracking information about operations that failed silently.

`js
sails.log.warn('File upload quota exceeded for user #%d. Request aborted.', user.id);
// -> warn: File upload quota exceeded for user #94271. Request aborted.
`

sails.log()

aka sails.log.debug()

The default log function, which writes console output to stderr at the “debug” log level.
Useful for passing around important technical information amongst your team; or as a general alternative to console.log().

`js
sails.log('This endpoint (`POST /accounts`) will be deprecated in the next few days. Please use `POST /signup` instead. ');
// -> debug: This endpoint (`POST /accounts`) will be deprecated in the next few days. Please use `POST /signup` instead.
`

sails.log.info()

Writes log output to stdout at the “info” log level.
Useful for capturing information about your app’s business logic.

`js
sails.log.info('A new user (', newUser.emailAddress, ') just signed up!');
// -> info: A new user (irl@foobar.com) just signed up!
`

sails.log.verbose()

Writes log output to stdout at the “verbose” log level.
Useful for capturing detailed information about your app that you only need on rare occasions.

`js
sails.log.verbose('A user (IP adddress: `%s`) initiated an account transfer...', req.ip);
// -> verbose: A user (IP adddress: `10.48.1.191`) initiated an account transfer...
`

sails.log.silly()

Writes log output to stdout at the “silly” log level.
Useful for capturing technical details about your app that are only useful for diagnostics and/or troubleshooting.

`js
sails.log.silly(
'Successfully fetched Account record for requesting authenticated user (`%d`).',
'Took %dms.', req.param('id'), msElapsed);
// -> silly: Successfully fetched Account record for authenticated user (`49722`). Took 41ms.
`

<docmeta name=”displayName” value=”Custom log messages”>

 # Logging

Sails comes with a simple, built-in logger called [captains-log](https://github.com/balderdashy/captains-log). Its usage is functionally very similar to Node’s [console.log](https://nodejs.org/api/console.html#console_console_log_data), but with a handful of extra features, namely support for multiple log levels with colorized, prefixed console output. The logger serves two purposes:
+ it emits warnings, errors, and other console output from inside the Sails framework
+ it can be used to emit [custom events/messages](https://sailsjs.com/documentation/concepts/logging/custom-log-messages) from within your application code

Configuration
Sails’ log configuration is determined by [sails.config.log](https://sailsjs.com/documentation/reference/configuration/sails-config-log), which is conventionally set by a generated configuration file ([config/log.js](https://sailsjs.com/documentation/anatomy/my-app/config/log-js)) in new Sails projects out of the box.

Usage

`javascript
sails.log.info('I am an info-level message.');
sails.log('I am a debug-level message');
sails.log.warn('I am a warn-level message');
`

Log levels

Using the built-in logger, Sails will write output (to stdout/stderr) for log function calls that are _at_ or _above_ the priority of the currently-configured log level. This log level is normalized and also applied to generated output from Grunt, Socket.io, Waterline, Express, and other dependencies. The hierarchy of log levels and their relative priorities is summarized by the chart below:

Priority | Level | Log fns that produce visible output |

|----------|———–|:--------------------------------------|
| 0 | silent | _N/A_
| 1 | error | .error() |
| 2 | warn | .warn(), .error() |
| 3 | debug | .debug(), .warn(), .error() |
| 4 | info | .info(), .debug(), .warn(), .error() |
| 5 | verbose | .verbose(), .info(), .debug(), .warn(), .error() |
| 6 | silly | .silly(), .verbose(), .info(), .debug(), .warn(), .error() |

	#### Notes
	
	The [default log level](https://sailsjs.com/documentation/reference/configuration/sails-config-log) is info. When your app’s log level is set to “info”, Sails logs limited information about the server/app’s status.

	When running automated tests for your app, it is often helpful to set the log level to error.

	When the log level is set to verbose, Sails logs Grunt output, as well as much more detailed information on the routes, models, hooks, etc. that were loaded.

	When the log level is set to silly, Sails outputs everything from verbose as well as internal information on which routes are being bound and other detailed framework lifecycle information, diagnostics, and implementation details.

<docmeta name=”displayName” value=”Logging”>

 # Conventional defaults

Sails comes bundled with a suite of conventional HTTP middleware, ready to use. Naturally, you may choose to disable, override, append to, or rearrange it, but the pre-installed stack is perfectly acceptable for most apps in development or production. Below is a list of the standard HTTP middleware functions that come bundled in Sails, in the order they execute every time the server receives an incoming HTTP request:

HTTP Middleware Key | Purpose
:———————— |:————
cookieParser * | Parses the cookie header into a clean object for use in subsequent middleware and your application code.
session * | Creates or loads a unique session object (req.session) for the requesting user agent based on their cookies and your [session configuration](https://sailsjs.com/documentation/reference/configuration/sails-config-session).
bodyParser | Parses parameters and binary upstreams (for streaming file uploads) from the HTTP request body using [Skipper](https://github.com/balderdashy/skipper).
compress | Compresses response data using gzip/deflate. See [compression](https://github.com/expressjs/compression) for details.
poweredBy | Attaches an X-Powered-By header to outgoing responses.
router * | This is where the bulk of your app logic gets applied to any given request. In addition to running “before” handlers in hooks (e.g. csrf token enforcement) and some internal Sails logic, this routes requests using your app’s explicit routes (in [sails.config.routes](https://sailsjs.com/documentation/reference/configuration/sails-config-routes)) and/or route blueprints.
www * | Serves static files—usually images, stylesheets, scripts—in your app’s “public” folder (configured in [sails.config.paths](https://github.com/balderdashy/sails/blob/master/docs/PAGE_NEEDED.md), conventionally [.tmp/public/](https://github.com/balderdashy/sails/blob/master/docs/PAGE_NEEDED.md)) using Connect’s [static middleware](http://www.senchalabs.org/connect/static.html).
favicon | Serves the [browser favicon](http://en.wikipedia.org/wiki/Favicon) for your app if one is provided as /assets/favicon.ico.

Legend:

	* : The middleware with an asterisk (*) should _almost never_ need to be modified or removed. Please only do so if you really understand what you’re doing.

<docmeta name=”displayName” value=”Conventional defaults”>

 # Middleware

Technically, much of the code you’ll write in a Sails app is _middleware_, in that runs in between the incoming request and the outgoing response—that is, in the “middle” of the request/response stack. In an MVC framework, the term “middleware” typically refers more specifically to code that runs _before_ or _after_ your route-handling code (i.e. your [controller actions](https://sailsjs.com/documentation/concepts/Controllers?q=actions)), making it possible to apply the same piece of code to multiple routes or actions. Sails has robust support for the middleware design pattern. Depending on your needs, you may choose to implement:

	HTTP middleware—to apply code before _every_ HTTP request (see below for more details)

	[Policies](https://sailsjs.com/documentation/concepts/policies)—to apply code before one or more controller actions

	[Hooks with the routes feature implemented](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/routes)—to apply code before one or more route handlers

	[Custom responses](https://sailsjs.com/documentation/concepts/custom-responses)—to apply code after one or more controller actions

HTTP middleware

Sails is fully compatible with Express / Connect middleware, which are functions that accept req, res and next as arguments. Every app utilizes a configurable _middleware stack_ for handling HTTP requests. Each time the app receives an HTTP request, its configured HTTP middleware stack runs in order.

> Note that this HTTP middleware stack is only used for “true” HTTP requests; it is ignored for virtual requests (e.g. requests from a live Socket.io connection).

Built-in HTTP middleware

By default, Sails uses a few different middleware functions to handle low-level HTTP-related tasks. These are things like interpreting cookies, parsing HTTP request bodies, serving assets, and even attaching your app’s routes. You can read more about the default middleware stack [here](https://sailsjs.com/documentation/concepts/middleware/conventional-defaults).

Configuring the HTTP middleware stack

Since the middleware stack comes with reasonable defaults, many Sails apps won’t need to modify this configuration at all. But for situations where you need more flexibility, Sails makes it simple to add, reorder, override, and disable the functions in your app’s HTTP middleware stack.

Adding middleware
To configure a new custom HTTP middleware function, add a middleware function as a new key in middleware (e.g. “foobar”), then add the name of its key (“foobar”) in the middleware.order array, wherever you’d like it to run in the middleware chain.

With the exception of “order”, which is reserved for configuring the order of the middleware stack, any value assigned to a key of sails.config.middleware should be a function which takes three arguments: req, res and next. This function works almost exactly like a [policy](https://sailsjs.com/documentation/concepts/policies), the only visible difference is when it’s executed.

Initializing middleware
If you need to run some one-time set up code for a custom middleware function, you’ll need to do so _before_ passing it in. The recommended way of doing this is with a self-calling (i.e. [“immediately-invoked”](https://en.wikipedia.org/wiki/Immediately-invoked_function_expression)) wrapper function. In the example below, note that rather than setting the value to a “req, res, next” function directly, a self-calling function is used to “wrap” some initial setup code. That self-calling wrapper function then returns the final middleware (req,res,next) function, so it gets set on the key just the same was as if it had been passed in directly.

Example: using custom middleware
The following example shows how you might set up three different custom HTTP middleware functions:

```js
// config/http.js
module.exports.http = {


middleware: {



	order: [
	‘cookieParser’,
‘session’,
‘passportInit’,            // <==== If you’re using “passport”, you’ll want to have its two
‘passportSession’,         // <==== middleware functions run after “session”.
‘bodyParser’,
‘compress’,
‘foobar’,                  // <==== We can put other, custom HTTP middleware like this wherever we want.
‘poweredBy’,
‘router’,
‘www’,
‘favicon’,





],

// An example of a custom HTTP middleware function:
foobar: (function (){


console.log(‘Initializing foobar (HTTP middleware)…’);
return function (req,res,next) {


console.log(‘Received HTTP request: ‘+req.method+’ ‘+req.path);
return next();




};




})(),

// An example of a couple of 3rd-party HTTP middleware functions:
// (notice that this time we’re using an existing middleware library from npm)
passportInit    : (function (){


var passport = require(‘passport’);
var reqResNextFn = passport.initialize();
return reqResNextFn;




})(),


	passportSession(function (){
	var passport = require(‘passport’);
var reqResNextFn = passport.session();
return reqResNextFn;





})()




},





}

##### Overriding or disabling built-in HTTP middleware

You can also use the strategy described above to _override_ built-in middleware like the body parser (see [Customizing the body parser](https://sailsjs.com/documentation/reference/configuration/sails-config-http#?customizing-the-body-parser)).

> While this is not recommended, you can even _disable_ a built-in HTTP middleware function entirely&mdash;just remove it from the middleware.order array.  This allows for complete flexibility, but it should be used with care.  If you choose to disable a piece of built-in middleware, make sure you fully understand the consequences. Disabling built-in HTTP middleware may dramatically change the way your app works.

### Express middleware in Sails

One of the really nice things about Sails apps is that they can take advantage of the wealth of existing Express/Connect middleware,  but a common question arises when people _actually_ try to do this:

> _”Where do I app.use() this thing?”_.

In most cases, the answer is to install the Express middleware as a custom HTTP middleware in [sails.config.http.middleware](https://sailsjs.com/documentation/reference/configuration/sails-config-http).  This will trigger it for all HTTP requests to your Sails app, and allow you to configure the order in which it runs in relation to other HTTP middleware.

> You should never override or remove the router HTTP middleware.  It is built-in to Sails; without it, your app’s explicit routes and blueprint routes will not work.

##### Express middleware as policies

To make Express middleware apply to only a particular action, you can also include Express middleware as a policy&mdash;just be sure that you actually want it to run for both HTTP _and_ virtual socket requests.

To do this, edit [config/policies.js](https://sailsjs.com/documentation/reference/configuration/sails-config-policies) to either require and setup the middleware in an actual wrapper policy (usually a good idea) or to require it directly in your policies.js file.  The following example uses the latter strategy for brevity:

```js
var auth = require(‘http-auth’);
var basic = auth.basic({

realm: ‘admin area’

	}, function (username, password, onwards) {
	return onwards(username === ‘Tina’ && password === ‘Bullock’);

});

//…
module.exports.policies = {

‘*’: [true],

// Prevent end users from doing CRUD operations on products reserved for admins
// (uses HTTP basic auth)
‘product/*’: [auth.connect(basic)],

// Everyone can view product pages
‘product/show’: [true]

}

<!–

FUTURE:

Advanced Express Middleware In Sails

You can actually do this in a few different ways, depending on your needs.

Generally, the following best-practices apply:

If you want a middleware function

	If you want a piece of middleware to run only when your app’s explicit or blueprint routes are matched, you should include it as a policy.

	this will run passport for all incoming http requests, including images, css, etc.

If you want a middleware function to run for all you should include it at the top of your config/routes.js as a wildcard route. for your controller (both HTTP and virtual) requests
–>

<docmeta name=”displayName” value=”Middleware”>

 # Attributes
Overview

Model attributes are basic pieces of information about a model. For example, a model called Person might have attributes named firstName, lastName, phoneNumber, age, birthDate and emailAddress.

<!—
FUTURE: address sql vs. no sql and stuff like:
“””
In most cases, this data is _homogenous_, meaning each record has the same attributes,
“””
–>

Defining attributes

A model’s attributes [setting](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings) allows you to provide a set of attributes, each defined as a dictionary (a plain JavaScript object):

```javascript
// api/models/User.js
{



	attributes: {
	emailAddress: { type: ‘string’, required: true, },
karma: { type: ‘number’, },
isSubscribedToNewsletter: { type: ‘boolean’, defaultsTo: true, },





},





}

Within each attribute, there are one or more keys&mdash;or options&mdash;which are used to provide additional direction to Sails and Waterline.  These attribute keys tell the model how to go about ensuring type safety, enforcing high-level validation rules, and (if you have automigrations enabled) how it should go about setting up tables or collections in your database.

##### Default attributes

You can also define default attributes that will appear in _all_ of your models, by defining attributes as a [default model setting](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings) (e.g. in config/models.js).  For example, new Sails apps come with three default attributes out of the box: id, createdAt, and updatedAt.

These attributes will be available in all models unless they are overridden or disabled.  To override a default attribute, define an attribute with the same name in the model definition.  To _disable_ a default attribute, define it as false.  For instance, to disable the default updatedAt attribute for a particular model:

```javascript
// api/models/ProductCategory.js
module.exports = {

	attributes: {
	updatedAt: false,
label: { type: ‘string’, required: true },

}

}

Type safety

Type

Except for [associations](https://sailsjs.com/documentation/concepts/models-and-orm/associations), every attribute must declare a type.

This is the type of data that will be stored for this attribute and used for logical type safety checks of queries and results. Here is a list of the data types supported by Sails and Waterline:

	string

	number

	boolean

	json

	ref

Required

If an attribute is required: true, then a value must always be specified for it when calling .create(). This prevents the attribute value from being created as or updated to null or empty string (“”).

Default values

In addition to the five data types, there are a couple of other basic guarantees that you can define for an attribute; one of these is the ability to assign it a default value.

The default value (defaultsTo) of an attribute only applies on .create(), and only when the key is omitted entirely.

```javascript
attributes: {



	phoneNumber: {
	type: ‘string’,
defaultsTo: ‘111-222-3333’





}






}

##### Allow Null

The string, number, and boolean data types do _not_ accept null as a value when creating or updating records.  In order to allow a null value to be set, you can toggle the allowNull flag on the attribute. Note that the allowNull flag is only valid on the data types listed above. It is _not_ valid on attributes with types json or ref, any associations, or any primary key attributes.

```javascript
attributes: {

	phoneNumber: {
	type: ‘string’,
allowNull: true

}

}

Validations

In addition to basic type safety checks, Sails offers several different high-level validation rules. For example, the isIn rule verifies that any new value stored for this attribute must _exactly match_ one of a few different hard-coded constants:

```javascript
unsubscribeReason: {


type: ‘string’,
isIn: [‘boring’, ‘too many emails’, ‘recipes too difficult’, ‘other’],
required: true






}

For a complete list of high-level validation rules, see [Validations](https://sailsjs.com/documentation/concepts/models-and-orm/validations).

<!–

FUTURE: need ot move primary key out to the top-level (it’s a model setting now)

commented-out content at: https://gist.github.com/rachaelshaw/f10d70c73780d5087d4c936cdefd5648#1
–>

### columnName

Inside an attribute definition, you can specify a columnName to force Sails/Waterline to store data for that attribute in a specific column in the configured datastore (i.e. database).  Be aware that this is not necessarily SQL-specific&mdash;it will also work for MongoDB fields, etc.

While the columnName property is primarily designed for working with existing/legacy databases, it can also be useful in situations where your database is being shared by other applications, or those in which you don’t have access permissions to change the schema.

To store/fetch your model’s numberOfWheels attribute into/from the number_of_round_rotating_things column:
```javascript


// An attribute in one of your models:
// …
numberOfWheels: {

type: ‘number’,
columnName: ‘number_of_round_rotating_things’

}
// …


```

Now for a more comprehensive example.

Let’s say you have a User model in your Sails app that looks like this:

```javascript
// api/models/User.js
module.exports = {

datastore: ‘shinyNewMySQLDatabase’,
attributes: {

	name: {
	type: ‘string’

},
password: {

type: ‘string’

},
email: {

type: ‘string’,
unique: true

}

}

};

Everything works great, but instead of using an existing MySQL database sitting on a server somewhere that happens to house your app’s intended users…

```javascript
// config/datastores.js
module.exports = {


// …

// Existing users are in here!
rustyOldMySQLDatabase: {


adapter: ‘sails-mysql’,
url: ‘mysql://ofh:Gh19R!?@db.eleven.sameness.foo/jonas’




},
// …






};

… let’s say there’s a table called our_users in the old MySQL database that looks like this:


the_primary_key | email_address | full_name | seriously_hashed_password|



|------|—|----|—|
| 7 | mike@sameness.foo | Mike McNeil | ranchdressing |
| 14 | nick@sameness.foo | Nick Crumrine | thousandisland |

In order to use this from Sails, you’d change your User model to look like this:

```javascript
// api/models/User.js
module.exports = {

datastore: ‘rustyOldMySQLDatabase’,
tableName: ‘our_users’,
attributes: {

	id: {
	type: ‘number’,
unique: true,
columnName: ‘the_primary_key’

},
name: {

type: ‘string’,
columnName: ‘full_name’

},
password: {

type: ‘string’,
columnName: ‘seriously_hashed_password’

},
email: {

type: ‘string’,
unique: true,
columnName: ‘email_address’

}

}

};

> You might have noticed that we also used the [tableName](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?tablename) property in this example. This allows us to control the name of the table that will be used to house our data.

Encryption at rest

encrypt

Setting encrypt allows you to decide whether this attribute should be automatically encrypted. If set to true, when a record is retrieved, it will still contain the encrypted value for this attribute unless [.decrypt()](https://sailsjs.com/documentation/reference/waterline-orm/queries/decrypt) is used.

```javascript
attributes: {



	ssn: {
	type: ‘string’,
encrypt: true





}






}

> If you’re using encrypt: true for an attribute, you won’t be able to look up records by the unencrypted value.

### Automigrations

These settings are used to indicate how Sails should create the physical-level (e.g. PostgreSQL, MySQL or MongoDB) database field for an attribute when an app is lifted.

> When a model&rsquo;s migrate property is set to safe, these settings will be ignored and the database columns will remain unchanged.

##### columnType

Indicates the type of physical-level column data type to use for an attribute when Sails creates the database table. This allows you to specify types that are tied directly to how your underlying database will create them. For example, you may have an attribute that sets its type property to number and to store that in the database you want to use the column type float. Your attribute definition would look like:

```javascript
attributes: {

	placeInLine: {
	type: ‘number’,
columnType: ‘float’

}

}

> * Column types are entirely database-dependent. Be sure that the columnType you select corresponds to a data type that is valid for your database! If you don’t specify a columnType, the adapter will choose one for you based on the attribute’s type.
> * The columnType value is used verbatim in the statement that creates the database column, so you can use it to specify additional options, e.g. varchar(255) CHARACTER SET utf8mb4.
> * If you intend to store binary data in a Sails model, you’ll want to set the type of the attribute to ref, and then use the appropriate columnType for your chosen database (e.g. mediumblob for MySQL or bytea for PostgreSQL). Keep in mind that whatever you attempt to store will have to fit in memory before being transferred to the database, as there is currently no mechanism in Sails for streaming binary data to a datastore adapter. As an alternative to storing blobs in a database, you might consider streaming them to disk or to a remote filesystem like S3, using the [.upload() method](https://sailsjs.com/documentation/concepts/file-uploads).
> * Keep in mind that custom column options like CHARACTER SET utf8mb4 in MySQL can affect a column’s storage size. This is especially relevant when used in conjunction with the unique property, where you may have to specify a smaller column size to avoid errors. See the [unique property](https://sailsjs.com/documentation/concepts/models-and-orm/attributes#?unique) docs below for more info.

autoIncrement

Sets up the attribute as an auto-increment key. When a new record is added to the model, if a value for this attribute is not specified, it will be generated by incrementing the most recent record’s value by one. Note: attributes that specify autoIncrement should always be of type: ‘number’. Also bear in mind that the level of support varies across different datastores. For instance, MySQL will not allow more than one auto-incrementing column per table.

```javascript
attributes: {



	placeInLine: {
	type: ‘number’,
autoIncrement: true





}






}

##### unique

Ensures no two records will be allowed with the same value for the target attribute. This is an adapter-level constraint, so in most cases this will result in a unique index on the attribute being created in the underlying datastore.

```javascript
attributes: {

	username: {
	type: ‘string’,
unique: true

}

}

Depending on your database, when using unique: true, you may also need set required: true.

> When using unique: true on an attribute with the utf8mb4 character set in a MySQL database, you will need to set the column size manually via the [columnType property](https://sailsjs.com/documentation/concepts/models-and-orm/attributes#?columntype) to avoid a possible ‘index too long’ error. For example: columnType: varchar(100) CHARACTER SET utf8mb4.

<!–

commented-out content at: https://gist.github.com/rachaelshaw/f10d70c73780d5087d4c936cdefd5648#2

commented-out content at: https://gist.github.com/rachaelshaw/f10d70c73780d5087d4c936cdefd5648#3

FUTURE: move enum to validations page

commented-out content at: https://gist.github.com/rachaelshaw/f10d70c73780d5087d4c936cdefd5648#4

commented-out content at: https://gist.github.com/rachaelshaw/f10d70c73780d5087d4c936cdefd5648#5

–>

<docmeta name=”displayName” value=”Attributes”>

 # Lifecycle callbacks

Overview

Lifecycle callbacks are functions that are called before or after certain model methods. For example, you might use lifecycle callbacks to automatically compute the value of a fullName attribute before creating or updating a User record.

Sails exposes a handful of lifecycle callbacks by default:

Lifecycle callbacks on .create()

The afterCreate lifecycle callback will only be run on queries that have the fetch meta flag set to true. For more information on using the meta flags, see [Waterline Queries](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).

	beforeCreate: fn(recordToCreate, proceed)

	afterCreate: fn(newlyCreatedRecord, proceed)

> beforeCreate is also run on bulk inserts of data when you call .createEach(). However, afterCreate is not.

Lifecycle callbacks on .update()

The afterUpdate lifecycle callback will only be run on .update() queries that have the fetch meta flag set to true. For more information on using the meta flags, see [Waterline Queries](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).

	beforeUpdate: fn(valuesToSet, proceed)

	afterUpdate: fn(updatedRecord, proceed)

Lifecycle callbacks on .destroy()

The afterDestroy lifecycle callback will only be run on .destroy() queries that have the fetch meta flag set to true. For more information on using the meta flags, see [Waterline Queries](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).

	beforeDestroy: fn(criteria, proceed)

	afterDestroy: fn(destroyedRecord, proceed)

Example

If you want to hash a password before saving in the database, you might use the beforeCreate lifecycle callback.

```javascript
// User.js
module.exports = {


attributes: {



	username: {
	type: ‘string’,
required: true





},


	password: {
	type: ‘string’,
minLength: 6,
required: true





}




},


	beforeCreate: function (valuesToSet, proceed) {
	// Hash password
sails.helpers.passwords.hashPassword(valuesToSet.password).exec((err, hashedPassword)=>{


if (err) { return proceed(err); }
valuesToSet.password = hashedPassword;
return proceed();




});//_∏_





}





};

<docmeta name=”displayName” value=”Lifecycle callbacks”>




            

          

      

      

    

  

    
      
          
            
  # Models

A model represents a set of structured data, called records.  Models usually correspond to a table/collection in a database, attributes correspond to columns/fields, and records correspond to rows/documents.

### Defining models

By convention, models are defined by creating a file in a Sails app’s api/models/ folder:

```javascript
// api/models/Product.js
module.exports = {

	attributes: {
	nameOnMenu: { type: ‘string’, required: true },
price: { type: ‘string’, required: true },
percentRealMeat: { type: ‘number’, defaultsTo: 20, columnType: ‘FLOAT’ },
numCalories: { type: ‘number’ },

},

};

For a complete walkthrough of available options when setting up a model definition, see [Model Settings](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings), [Attributes](https://sailsjs.com/documentation/concepts/models-and-orm/attributes), and [Associations](https://sailsjs.com/documentation/concepts/models-and-orm/associations).

<!–
commented-out content at: https://gist.github.com/rachaelshaw/1d7a989f6685f11134de3a5c47b2ebb8#1

commented-out content at: https://gist.github.com/rachaelshaw/1d7a989f6685f11134de3a5c47b2ebb8#2
–>

Using models

Once a Sails app is running, its models may be accessed from within controller actions, helpers, tests, and just about anywhere else you normally write backend code. This allows your code’s call model methods to communicate with your database (or even with multiple databases).

There are many built-in methods available on models, the most important of which are the model methods like [.find()](https://sailsjs.com/documentation/reference/waterline/models/find) and [.create()](https://sailsjs.com/documentation/reference/waterline/models/create). You can find detailed usage documentation for methods like these in [Reference > Waterline (ORM) > Models](https://sailsjs.com/documentation/reference/waterline-orm/models).

Query methods

Every model in Sails has a set of methods exposed on it to allow you to interact with the database in a normalized fashion. This is the primary way of interacting with your app’s data.

Since they usually have to send a query to the database and wait for a response, most model methods are asynchronous. That is, they don’t come back with an answer right away. Like other asynchronous logic in JavaScript (setTimeout() for example), that means we need some other way of determining when they’ve finished executing, whether they were successful, and, if not, what kind of error (or other exceptional circumstance) occurred.

In Node.js, Sails, and JavaScript in general, the recommended way to handle this is by using [async/await](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await).

For more information about working with queries, see [Reference > Waterline (ORM) > Queries](https://sailsjs.com/documentation/reference/waterline-orm/queries).

Resourceful pubsub methods

Sails also provides a few other “resourceful pubsub” (or RPS) methods specifically designed for performing simple realtime operations using dynamic rooms. For more information about those methods, see [Reference > WebSockets > Resourceful PubSub](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub).

Custom model methods

In addition to the built-in functionality provided by Sails, you can also define your own custom model methods. Custom model methods are most useful for extrapolating controller code that relates to a particular model. They allow code to be pulled out of controllers and inserted into reusuable functions that can be called from anywhere (independent of req or res).

> This feature takes advantage of the fact that models ignore unrecognized settings, so you do need to be careful about inadvertently overriding built-in methods (don’t define methods named “create”, for example).
>
> If you’re at all unsure, write a [helper](https://sailsjs.com/documentation/concepts/helpers) instead.

Custom model methods can be synchronous or asynchronous functions, but more often than not, they’re _asynchronous_. By convention, asynchronous model methods should be async functions, which accept a dictionary of options as their argument.

For example:

```js
// in api/models/Monkey.js…

// Find monkeys with the same name as the specified person
findWithSameNameAsPerson: async function (opts) {




var person = await Person.findOne({ id: opts.id });


	if (!person) {
	throw require(‘flaverr’)({








message: Cannot find monkeys with the same name as the person w/ id=${opts.id} because that person does not exist.,
code: ‘E_UNKNOWN_PERSON’





	});
	}

return await Monkey.find({ name: person.name });










}

> Notice we didn’t try/catch any of the code within that function. That’s because we intend to leave that responsibility to whoever calls our function.

Then you can do:

`js
var monkeys = await Monkey.findWithSameNameAsPerson({id:37});
`

> For more tips, read about the incident involving [Timothy the Monkey]().

##### What about instance methods?

As of Sails v1.0, instance methods have been removed from Sails and Waterline.  While instance methods like .save() and .destroy() were sometimes convenient in app code, in Node.js at least, many users found that they led to unintended consequences and design pitfalls.

For example, consider an app that manages wedding records.  It might seem like a good idea to write an instance method on the Person model to update the spouse attribute on both individuals in the database.  This would allow you to write controller code like:

```js
personA.marry(personB, function (err) {

if (err) { return res.serverError(err); }
return res.ok();

})

Which looks great…until it comes time to implement a slightly different action with roughly the same logic, but where the only available data is the id of “personA” (not the entire record). In that case, you’re stuck rewriting your instance method as a static method anyway!

A better strategy is to write a custom (static) model method from the get-go. This makes your function more reusable/versatile, since it will be accessible whether or not you have an actual record instance on hand. You might refactor the code from the previous example to look like:

```js
Person.marry(personA.id, personB.id, function (err) {


if (err) { return res.serverError(err); }
return res.ok();






})

### Case sensitivity

Queries in Sails v1.0 are no longer forced to be case insensitive regardless of how the database processes the query. This leads to much-improved query performance and better index utilization. Most databases are case sensitive by default, but in the rare cases where they aren’t and you would like to change that behavior you must modify the database to do so.

For example, MySQL will use a database collation that is case insensitive by default. This is different from sails-disk, so you may experience different results from development to production. In order to fix this, you can set the tables in your MySQL database to a case sensitive collation such as utf8_bin.

<!–
commented-out content at: https://gist.github.com/rachaelshaw/1d7a989f6685f11134de3a5c47b2ebb8#3

commented-out content at: https://gist.github.com/rachaelshaw/1d7a989f6685f11134de3a5c47b2ebb8#4

commented-out content at: https://gist.github.com/rachaelshaw/1d7a989f6685f11134de3a5c47b2ebb8#5

commented-out content at: https://gist.github.com/rachaelshaw/1d7a989f6685f11134de3a5c47b2ebb8#6
–>

<docmeta name=”displayName” value=”Models”>
<docmeta name=”nextUpLink” value=”/documentation/concepts/configuration”>
<docmeta name=”nextUpName” value=”Configuration”>




            

          

      

      

    

  

    
      
          
            
  # Waterline: SQL/noSQL Data Mapper (ORM/ODM)

Sails comes installed with a powerful [ORM/ODM](http://stackoverflow.com/questions/12261866/what-is-the-difference-between-an-orm-and-an-odm) called [Waterline](https://github.com/balderdashy/waterline), a datastore-agnostic tool that dramatically simplifies interaction with one or more databases. It provides an abstraction layer on top of the underlying database, allowing you to easily query and manipulate your data _without_ writing vendor-specific integration code.

### Database Agnosticism

In schemaful databases like [Postgres](http://www.postgresql.org/), [Oracle](https://www.oracle.com/database), and [MySQL](http://www.mysql.com), models are represented by tables.  In [MongoDB](http://www.mongodb.org), they’re represented by Mongo “collections”.  In [Redis](http://redis.io), they’re represented using key/value pairs.  Each database has its own distinct query dialect, and in some cases even requires installing and compiling a specific native module to connect to the server.  This involves a fair amount of overhead, and garners an unsettling level of [vendor lock-in](https://en.wikipedia.org/wiki/Vendor_lock-in) to a specific database; for example, if your app uses a bunch of SQL queries, it will be very hard to switch to Mongo later, or Redis, and vice versa.

Waterline query syntax floats above all that, focusing on business logic like creating new records, fetching/searching existing records, updating records, or destroying records.  No matter what database you’re contacting, the usage is _exactly the same_.  Furthermore, Waterline allows you to [.populate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/populate) associations between models, _even if_ the data for each model lives in a different database.  That means you can switch your app’s models from Mongo, to PostgreSQL, to MySQL and back again&mdash; with minimal code changes.  For the times when you need low-level, database-specific functionality, Waterline provides a query interface that allows you to talk directly to your models’ underlying database driver (see [.query()](https://sailsjs.com/documentation/reference/waterline-orm/models/query) and [.native()](https://sailsjs.com/documentation/reference/waterline-orm/models/native)).

### Scenario

Let’s imagine you’re building an e-commerce website, with an accompanying mobile app.  Users browse products by category or search for products by keyword, then they buy them.  That’s it!  Some parts of your app are quite ordinary: you have an API-driven flow for logging in, signing up, order/payment processing, resetting passwords, etc. However, you know there are a few mundane features lurking in your roadmap that will likely become more involved.  Sure enough:

##### Flexibility

_You ask the business what database they would like to use:_

> “Datab… what?  Let’s not be hasty, wouldn’t want to make the wrong choice.  I’ll get ops/IT on it.  Go ahead and get started though.”

The traditional methodology of choosing one single database for a web application/API is actually prohibitive for some production use cases. While most apps can get away with just one type of database, some applications need to maintain compatibility with existing data sets, or (if you’re working on a high-volume production app) use more than one type of database for performance reasons.

Since Sails uses sails-disk by default, you can start building your app with zero configuration, using a local temporary file as storage.  When you’re ready to switch to the real thing (and when everyone knows what that is), just change your app’s [datastore configuration](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores).

##### Compatibility

_The product owner/stakeholder walks up to you and says:_

> “Oh hey by the way, the product’s actually already live in our point of sale system. It’s some ERP thing I guess, something like “DB2”?  Anyway, I’m sure you’ll figure it out. Sounds easy right?”

Many enterprise applications must integrate with an existing database.  If you’re lucky, a one-time data migration may be all that’s necessary, but more commonly, the existing dataset is still being modified by other applications.  In order to build your app, you might need to marry data from multiple legacy systems, or with a separate dataset stored elsewhere.  These datasets could live on five different servers scattered across the world! One colocated database server might house a SQL database with relational data, while another cloud server might hold a handful of Mongo or Redis collections.

Sails/Waterline lets you hook up different models to different datastores, locally or anywhere on the internet.  You can build a User model that maps to a custom MySQL table in a legacy database (with weird crazy column names).  Likewise for a Product model that maps to a table in DB2, or an Order model that maps to a MongoDB collection.  Best of all, you can .populate() across these different datastores and adapters, so if you configure a model to live in a different database, your controller/model code doesn’t need to change (note that you _will_ need to migrate any important production data manually).

##### Performance

_You’re sitting in front of your laptop late at night, and you realize:_
> “How can I do keyword search?  The product data doesn’t have any keywords, and the business wants search results ranked based on n-gram word sequences.  Also I have no idea how this recommendation engine is going to work.  Also if I hear the words big data one more time tonight I’m quitting and going back to work at the coffee shop.”

So what about the “big data”?  Normally when you hear bloggers and analyst use that buzzword, you think of data mining and business intelligence.  You might imagine a process that pulls data from multiple sources, processes/indexes/analyzes it, then writes that extracted information somewhere else and either keeps the original data or throws it away.

However, there are some much more common challenges that lend themselves to the same sort of indexing/analysis needs: for example, features like “driving-direction-proximity” search, or a recommendation engine for related products.  Fortunately, a number of databases simplify specific big-data use cases. MongoDB, for instance, provides geospatial indexing, while ElasticSearch provides excellent support for indexing data for full-text search.

Using databases in the way they’re intended affords tremendous performance benefits, particularly when it comes to complex report queries, searching (which is really just customized sorting), and NLP/machine learning.  Certain databases are very good at answering traditional relational business queries, while others are better suited for map/reduce-style processing of data, with both optimizations and trade-offs for blazing-fast read/writes.  This consideration is especially important as your app’s user-base scales.

### Adapters

Like most MVC frameworks, Sails supports [multiple databases](https://sailsjs.com/features).  That means the syntax to query and manipulate our data is always the same, whether we’re using MongoDB, MySQL, or any other supported database.

Waterline builds on this flexibility with its concept of adapters.  An adapter is a bit of code that maps methods like find() and create() to a lower-level syntax like SELECT * FROM and INSERT INTO.  The Sails core team maintains open-source adapters for a handful of the [most popular databases](https://sailsjs.com/features), and a wealth of [community adapters](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters#?communitysupported-database-adapters) are also available.

Custom Waterline adapters are actually [pretty simple to build](https://github.com/balderdashy/sails-generate-adapter), and can make for more maintainable integrations: anything from a proprietary enterprise account system, to a cache, to a traditional database.

### Datastores

A datastore represents a particular database configuration.  This configuration object includes an adapter to use, plus information like the host, port, username, password, and so forth.  Datastores are defined in the Sails config [config/datastores.js](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores).

```javascript
// in config/datastores.js
// …
{

adapter: ‘sails-mysql’,
host: ‘localhost’,
port: 3306,
user: ‘root’,
password: ‘g3tInCr4zee&stUfF’,
database: ‘database-name’

}
// …
```

### Analogy

Imagine a file cabinet full of completed pen-and-ink forms. All of the forms have the same fields (e.g. “name”, “birthdate”, “maritalStatus”), but for each form, the _values_ written in the fields vary.  For example, one form might contain “Lara”, “2000-03-16T21:16:15.127Z”, “single”, while another form contains “Larry”, “1974-01-16T21:16:15.127Z”, “married”.

Now imagine you’re running a hot dog business.  If you were _very_ organized, you might set up your file cabinets as follows:


	Employee (contains your employee records)
+ fullName
+ hourlyWage
+ phoneNumber


	Location (contains a record for each location you operate)
+ streetAddress
+ city
+ state
+ zipcode
+ purchases



	a list of all the purchases made at this location








	manager
+ the employee who manages this location






	Purchase (contains a record for each purchase made by one of your customers)
+ madeAtLocation
+ productsPurchased
+ createdAt


	Product (contains a record for each of your various product offerings)
+ nameOnMenu
+ price
+ numCalories
+ percentRealMeat
+ availableAt



	a list of the locations where this product offering is available.











In your Sails app, a model is like one of the file cabinets.  It contains records, which are like the forms.  Attributes are like the fields in each form.

### Notes
+ This documentation on models is not applicable if you are overriding the built-in ORM, [Waterline](https://github.com/balderdashy/waterline).  In that case, your models will follow whatever convention you set up, on top of whatever ORM library you’re using (e.g. Mongoose).

<docmeta name=”displayName” value=”Models and ORM”>
<docmeta name=”nextUpLink” value=”/documentation/concepts/models-and-orm/models”>
<docmeta name=”nextUpName” value=”Models”>



            

          

      

      

    

  

    
      
          
            
  # Waterline query language

The syntax supported by Sails’ model methods is called Waterline Query Language.  Waterline knows how to interpret this syntax to retrieve or mutate records from any supported database.  Under the covers, Waterline uses the database adapter(s) installed in your project to translate this language into native queries and send those queries to the appropriate database.  This means that you can use the same query with MySQL as you do with Redis or MongoDB. It also means that you can change your database with minimal (if any) changes to your application code.

### Query language basics

The criteria objects are formed using one of four types of object keys. These are the top level
keys used in a query object. They are loosely based on the criteria used in MongoDB, with a few slight variations.

Queries can be built using either a where key to specify attributes, or excluding it.

Using the where key allows you to also use [query options](https://sailsjs.com/documentation/concepts/models-and-orm/query-language#query-options), such as limit, skip, and sort.

```javascript
var thirdPageOfRecentPeopleNamedMary = await Model.find({

where: { name: ‘mary’ },
skip: 20,
limit: 10,
sort: ‘createdAt DESC’

});

Constraints can be further joined together in a more complex example.

```javascript
var teachersNamedMaryInMaine = await Model.find({


where: { name: ‘mary’, state: ‘me’, occupation: { contains: ‘teacher’ } },
sort: [{ firstName: ‘ASC’}, { lastName: ‘ASC’}]






});

If where is excluded, the entire object will be treated as a where criteria.

```javascript
var peopleNamedMary = await Model.find({

name: ‘mary’

});

Key pairs

A key pair can be used to search records for values matching exactly what is specified. This is the base of a criteria object where the key represents an attribute on a model and the value is a strict equality check of the records for matching values.

```javascript
var peopleNamedLyra = await Model.find({


name: ‘lyra’






});

They can be used together to search multiple attributes.

```javascript
var waltersFromNewMexico = await Model.find({

name: ‘walter’,
state: ‘new mexico’

});

Complex constraints

Complex constraints also have model attributes for keys but they also use any of the supported criteria modifiers to perform queries where a strict equality check wouldn’t work.

```javascript
var peoplePossiblyNamedLyra = await Model.find({



	name{
	‘contains’ : ‘yra’





}






});

#### In modifier

Provide an array to find records whose value for this attribute exactly matches _any_ of the specified search terms.

> This is more or less equivalent to “IN” queries in SQL, and the $in operator in MongoDB.

```javascript
var waltersAndSkylers = await Model.find({

name : [‘walter’, ‘skyler’]

});

Not-in modifier

Provide an array wrapped in a dictionary under a != key (like { ‘!=’: […] }) to find records whose value for this attribute _ARE NOT_ exact matches for any of the specified search terms.

> This is more or less equivalent to “NOT IN” queries in SQL, and the $nin operator in MongoDB.

```javascript
var everyoneExceptWaltersAndSkylers = await Model.find({


name: { ‘!=’ : [‘walter’, ‘skyler’] }






});

#### Or predicate

Use the or modifier to match _any_ of the nested rulesets you specify as an array of query pairs.  For records to match an or query, they must match at least one of the specified query modifiers in the or array.

```javascript
var waltersAndTeachers = await Model.find({

	or[
	{ name: ‘walter’ },
{ occupation: ‘teacher’ }

]

});

Criteria modifiers

The following modifiers are available to use when building queries.

	‘<’

	‘<=’

	‘>’

	‘>=’

	‘!=’

	nin

	in

	contains

	startsWith

	endsWith

> Note that the availability and behavior of the criteria modifiers when matching against attributes with [JSON attributes](https://sailsjs.com/documentation/concepts/models-and-orm/validations#?builtin-data-types) may vary according to the database adapter you’re using. For instance, while sails-postgresql will map your JSON attributes to the JSON column type, you’ll need to [send a native query](https://sailsjs.com/documentation/reference/waterline-orm/datastores/send-native-query) in order to query those attributes directly. On the other hand, sails-mongo supports queries against JSON-type attributes, but you should be aware that if a field contains an array, the query criteria will be run against every _item_ in the array, rather than the array itself (this is based on the behavior of MongoDB itself).

‘<’

Searches for records where the value is less than the value specified.

```usage
Model.find({


age: { ‘<’: 30 }






});

#### ‘<=’

Searches for records where the value is less or equal to the value specified.

```usage
Model.find({

age: { ‘<=’: 20 }

});

‘>’

Searches for records where the value is greater than the value specified.

```usage
Model.find({


age: { ‘>’: 18 }






});

#### ‘>=’

Searches for records where the value is greater than or equal to the value specified.

```usage
Model.find({

age: { ‘>=’: 21 }

});

‘!=’

Searches for records where the value is not equal to the value specified.

```usage
Model.find({


name: { ‘!=’: ‘foo’ }






});

#### in

Searches for records where the value is in the list of values.

```usage
Model.find({

name: { in: [‘foo’, ‘bar’] }

});

nin

Searches for records where the value is NOT in the list of values.

```usage
Model.find({


name: { nin: [‘foo’, ‘bar’] }






});

#### contains

Searches for records where the value for this attribute _contains_ the given string.

```usage
var musicCourses = await Course.find({

subject: { contains: ‘music’ }

});

For performance reasons, case-sensitivity of contains depends on the database adapter.

startsWith

Searches for records where the value for this attribute _starts with_ the given string.

```usage
var coursesAboutAmerica = await Course.find({


subject: { startsWith: ‘american’ }






});

_For performance reasons, case-sensitivity of startsWith depends on the database adapter._

#### endsWith

Searches for records where the value for this attribute _ends with_ the given string.

```usage
var historyCourses = await Course.find({

subject: { endsWith: ‘history’ }

});

For performance reasons, case-sensitivity of endsWith depends on the database adapter.

Query options

Query options allow you refine the results that are returned from a query. They are used
in conjunction with a where key. The current options available are:

	limit

	skip

	sort

Limit

Limits the number of results returned from a query.

`usage
Model.find({ where: { name: 'foo' }, limit: 20 });
`

> Note: if you set limit to 0, the query will always return an empty array.

Skip

Returns all the results excluding the number of items to skip.

`usage
Model.find({ where: { name: 'foo' }, skip: 10 });
`

Pagination

skip and limit can be used together to build up a pagination system.

`usage
Model.find({ where: { name: 'foo' }, limit: 10, skip: 10 });
`

> Waterline
>
> You can find out more about the Waterline API below:
> * [Sails.js Documentation](https://sailsjs.com/documentation/reference/waterline-orm/queries)
> * [Waterline README](https://github.com/balderdashy/waterline/blob/master/README.md)
> * [Waterline Reference Docs](https://sailsjs.com/documentation/reference/waterline-orm)
> * [Waterline Github Repository](https://github.com/balderdashy/waterline)

Sort

Results can be sorted by attribute name. Simply specify an attribute name for natural (ascending)
sort, or specify an ASC or DESC flag for ascending or descending orders respectively.

```usage
// Sort by name in ascending order
Model.find({ where: { name: ‘foo’ }, sort: ‘name’ });

// Sort by name in descending order
Model.find({ where: { name: ‘foo’ }, sort: ‘name DESC’ });

// Sort by name in ascending order
Model.find({ where: { name: ‘foo’ }, sort: ‘name ASC’ });

// Sort by object notation
Model.find({ where: { name: ‘foo’ }, sort: [{ ‘name’: ‘ASC’ }] });

// Sort by multiple attributes
Model.find({ where: { name: ‘foo’ }, sort: [{ name:  ‘ASC’}, { age: ‘DESC’ }] });
```

<docmeta name=”displayName” value=”Query language”>

 # Records

A _record_ is what you get back from .find() or .findOne(). Each record is a uniquely identifiable object that corresponds one-to-one with a physical database entry; e.g. a row in Oracle/MSSQL/PostgreSQL/MySQL, a document in MongoDB, or a hash in Redis.

```js
var records = await Order.find();

console.log(‘Found %d records’, records.length);
if (records.length > 0) {


console.log(‘Found at least one record, and its id is:’,records[0].id);





}

### JSON serialization

In Sails, records are just dictionaries (plain JavaScript objects), which means they can easily be represented as JSON. But you can also customize the way that records from a particular model are _stringified_ using the [customToJSON model setting](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?customtojson).

### Populated values

In addition to basic attribute data like email addresses, phone numbers, and birthdates, Waterline can dynamically store and retrieve linked sets of records using [associations](https://sailsjs.com/documentation/concepts/models-and-orm/associations).  When [.populate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/populate) is called on a query, each of the resulting records will contain one or more populated values.  Each one of those populated values is a snapshot of the record (or array of records) linked to that particular association at the time of the query.

The type of a populated value depends on what kind of association it is:


	null, or a plain JavaScript object (if it corresponds to a “model” association)


	an empty array, or an array of plain JavaScript objects (if it corresponds to a “collection” association)




For example, assuming we’re dealing with orders of adorable wolf puppies:

```js
var orders = await Order.find()
.populate(‘buyers’) // a “collection” association
.populate(‘seller’); // a “model” association

// this array is a snapshot of the Customers who are associated with the first Order as “buyers”
console.log(orders[0].buyers);
// => [{id: 1, name: ‘Robb Stark’}, {id: 6, name: ‘Arya Stark’}]

// this object is a snapshot of the Company that is associated with the first Order as the “seller”
console.log(orders[0].seller);
// => { id: 42941, corporateName: ‘WolvesRUs Inc.’ }

// this array is empty because the second Order doesn’t have any “buyers”
console.log(orders[1].buyers);
// => []

// this is null because there is no “seller” associated with the second Order
console.log(orders[1].seller);
// => null
```

##### Expected types / values for association attributes

The table below shows what values you can expect in records returned from a .find() or .findOne() call under different circumstances.


&nbsp; |  without a .populate() added for the association | with .populate(), but no associated records found | with .populate(), with associated records found



|:— |:— | — |:— |
| Singular association (e.g. seller) | Whatever is in the database record for this attribute (typically null or a foreign key value) | null | A POJO representing a child record |
| Plural association (e.g. buyers) |  undefined (the key will not be present) | [] (an empty array) | An array of POJOs representing child records

##### Modifying populated values

To modify the populated values of a particular record or set of records, call the [.addToCollection()](https://sailsjs.com/documentation/reference/waterline-orm/models/add-to-collection), [.removeFromCollection()](https://sailsjs.com/documentation/reference/waterline-orm/models/remove-from-collection), or [.replaceCollection()](https://sailsjs.com/documentation/reference/waterline-orm/models/replace-collection) model methods.

<docmeta name=”displayName” value=”Records”>




            

          

      

      

    

  

    
      
          
            
  # Validations

Sails bundles support for automatic validations of your models’ attributes. Any time a record is updated, or a new record is created, the data for each attribute will be checked against all of your predefined validation rules. This provides a convenient failsafe to ensure that invalid entries don’t make their way into your app’s database(s).

Except for unique (which is implemented as a database-level constraint; [see “Unique”](https://sailsjs.com/documentation/concepts/models-and-orm/validations#?unique)), all validations below are implemented in JavaScript and run in the same Node.js server process as Sails.  Also keep in mind that, no matter what validations are used, an attribute must _always_ specify one of the built-in data types (string, number, json, etc).

```javascript
// User
module.exports = {

	attributes: {
	
	emailAddress: {
	type: ‘string’,
unique: true,
required: true

}

}

};

Built-in data types

In Sails/Waterline, model attributes always have some kind of data type guarantee. This is above and beyond any physical-layer constraints which might exist in your underlying database—it’s more about providing a way for developers to maintain reasonable assumptions about the data that goes in or comes out of a particular model.

This data type guarantee is used for logical validation and coercion of results and criteria. Here is a list of the data types supported by Sails and Waterline:

Data Type | Usage | Description |

|:----------------:|:—————————– |:———————————————————— |
| ((string)) | type: ‘string’ | Any string.
| ((number)) | type: ‘number’ | Any number.
| ((boolean)) | type: ‘boolean’ | true or false.
| ((json)) | type: ‘json’ | Any JSON-serializable value, including numbers, booleans, strings, arrays, dictionaries (plain JavaScript objects), and null.
| ((ref)) | type: ‘ref’ | Any JavaScript value except undefined. (Should only be used when taking advantage of adapter-specific behavior.) |

Sails’ ORM (Waterline) and its adapters perform loose validation to ensure that the values provided in criteria dictionaries and as values to .create() or .update() match the expected data type.

NOTE: In adapters that don’t support the ((json)) type natively, the adapter must support it in other ways. For example, in MySQL the data being written to a ((json)) attribute gets JSON.stringify() called on it and then is stored in a column with a type set to text. Each time the record is returned, the data has JSON.parse() called on it. This is something to be aware of when considering performance and compatibility with other applications or existing data in the database. The official PostgreSQL and mongoDB adapters can read and write ((json)) data natively.

Null and empty string

The string, number and boolean data types do _not_ accept null as a value when creating or updating records. In order to allow a null value to be set, toggle the allowNull flag on the attribute. The allowNull flag is only valid on the above data types; it is _not_ valid on attributes with types json or ref, any associations, or any primary key attributes.

Since empty string (“”) is a string, it is normally supported by type: ‘string’ attributes; but there are a couple of exceptions: primary keys (because primary keys never support empty string) and any attribute which has required: true.

Required

If an attribute is required: true, then a value must always be specified for it when calling .create(). This also prevents a value from being set to null or empty string (“”) when created or updated.

Validation rules

None of the following validation rules impose any additional restrictions against null. That is, if null would be allowed normally, then enabling the isEmail validation rule will not cause null to be rejected as invalid.

Similarly, _most_ of the following validation rules don’t impose any additional restrictions against empty string (“”). There are a few exceptions (isNotEmptyString and non-string-related rules like isBoolean, isNumber, max, and min), but otherwise, for any attribute where empty string (“”) would normally be allowed, adding a validation rule will not cause it to be rejected.

In the table below, the “Compatible Attribute Type(s)” column shows what data type(s) (i.e. for the attribute definition’s type property) are appropriate for each validation rule. In many cases, a validation rule can be used with more than one type. Note that the table below takes a shortcut: if compatible with ((string)), ((number)), or ((boolean)), then the validation rule is also compatible with ((json)) and ((ref)), even if it doesn’t explicitly say so.

Name of Rule | What It Checks For | Notes On Usage | Compatible Attribute Type(s) |

|:------------------|:——————————————————————————————————————–|:--|:—————————-:|
| custom | A value such that when it is provided as the first argument to the custom function, the function returns true. | [Example](https://sailsjs.com/documentation/concepts/models-and-orm/validations#?custom-validation-rules) | _Any_ |
| isAfter | A value that, when parsed as a date, refers to a moment _after_ the configured JavaScript Date instance. | isAfter: new Date(‘Sat Nov 05 1605 00:00:00 GMT-0000’) | ((string)), ((number)) |
| isBefore | A value that, when parsed as a date, refers to a moment _before_ the configured JavaScript Date instance. | isBefore: new Date(‘Sat Nov 05 1605 00:00:00 GMT-0000’) | ((string)), ((number)) |
| isBoolean | A value that is true or false | isBoolean: true | ((json)), ((ref)) |
| isCreditCard | A value that is a credit card number. | Do not store credit card numbers in your database unless your app is PCI compliant! If you want to allow users to store credit card information, a safe alternative is to use a payment API like [Stripe](https://stripe.com). | ((string)) |
| isEmail | A value that looks like an email address. | isEmail: true | ((string)) |
| isHexColor | A string that is a hexadecimal color. | isHexColor: true | ((string)) |
| isIn | A value that is in the specified array of allowed strings. | isIn: [‘paid’, ‘delinquent’] | ((string)) |
| isInteger | A number that is an integer (a whole number) | isInteger: true | ((number)) |
| isIP | A value that is a valid IP address (v4 or v6) | isIP: true | ((string)) |
| isNotEmptyString | A value that is _not_ an empty string | isNotEmptyString: true | ((json)), ((ref))
| isNotIn | A value that is not in the configured array. | isNotIn: [‘profanity1’, ‘profanity2’] | ((string)) |
| isNumber | A value that is a Javascript number | isNumber: true | ((json)), ((ref))
| isString | A value that is a string (i.e. typeof(value) === ‘string’) | isString: true | ((json)), ((ref))
| isURL | A value that looks like a URL. | isURL: true | ((string)) |
| isUUID | A value that looks like a UUID (v3, v4 or v5) | isUUID: true | ((string))
| max | A number that is less than or equal to the configured number. | max: 10000 | ((number)) |
| min | A number that is greater than or equal to the configured number. | min: 0 | ((number)) |
| maxLength | A string that has no more than the configured number of characters. | maxLength: 144 | ((string)) |
| minLength | A string that has at least the configured number of characters. | minLength: 8 | ((string)) |
| regex | A string that matches the configured regular expression. | regex: /^[a-z0-9]$/i | ((string)) |

Example: optional email address

Imagine that you have an attribute defined as follows:

```javascript
workEmail: {


type: ‘string’,
isEmail: true,






}

When you call .create() _or_ .update(), this value can be set to any valid email address (like “santa@clause.com”) OR to an empty string (“”).  You would _not_ be able to set it to null, though, because that would violate the type safety restriction imposed by type: ‘string’.

> To make this attribute accept null (e.g. if you are working with a pre-existing database), change it to type: ‘json’.  You’d normally also want to add isString: true, but since we already enforce isEmail: true in this example, there’s no need to do so.
>
> A more advanced feature to keep in mind is that, depending on your database, you can choose to take advantage of [columnType](https://sailsjs.com/documentation/concepts/models-and-orm/attributes#?columntype) to inform Sails / Waterline which column type to define during auto-migrations (if relevant).

##### Example: required star rating

If we want to indicate that an attribute supports certain numbers, like a star rating, we might do something like this:

```javascript
starRating: {

type: ‘number’,
min: 1,
max: 5,
required: true,

}

Example: optional star rating

If we want to make our star rating optional, it’s easiest to just remove the required: true flag. If omitted, the starRating will default to zero.

Example: optional star rating (with null)

But what if the star rating can’t _always_ be a number? Imagine we need to integrate with a legacy database in which star ratings could be either a number or the special null literal. In this scenario, we would like to define the starRating attribute to support both certain numbers and null.

To accomplish this, just use allowNull:

```javascript
starRating: {


type: ‘number’,
allowNull: true,
min: 1,
max: 5,






}

> Sails and Waterline attributes support allowNull for convenience, but another viable solution is to change starRating from type: ‘number’ to type: ‘json’.  Remember, though, that the json type allows other data, like booleans, arrays, etc. If we want to explicitly protect against those data types being supported by starRating, we could add the isNumber: true validation rule:
>
>
> `javascript
> starRating: {
>   type: 'json',
>   isNumber: true,
>   min: 1,
>   max: 5,
> }
> `

### Unique

unique is different from all of the validation rules listed above.  In fact, it isn’t really a validation rule at all: it is a database-level constraint.  More on that in a second.

If an attribute declares itself unique: true, then Sails ensures that no two records will be allowed with the same value.  The canonical example is an emailAddress attribute on a User model:

```javascript
// api/models/User.js
module.exports = {

	attributes: {
	
	emailAddress: {
	type: ‘string’,
unique: true,
required: true

}

}

};

Why is unique different from other validations?

Imagine you have 1,000,000 user records in your database. If unique was implemented like other validations, every time a new user signed up for your app, Sails would need to search through _one million_ existing records to ensure that no one else was already using the email address provided by the new user. That would be so slow that by the time we finished searching through all those records, someone else could have signed up!

Fortunately, this type of uniqueness check is perhaps the most universal feature of _any_ database. To take advantage of that, Sails relies on the [database adapter](https://sailsjs.com/documentation/concepts/models-and-orm#?adapters) to implement support for unique`—specifically, it adds a **uniqueness constraint** to the relevant field/column/attribute in the database itself during [auto-migration](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?migrate). That is, while your app is set to `migrate:’alter’, Sails will automatically generate tables/collections in the underlying database with uniqueness constraints built right in. Once you switch to migrate:’safe’, updating your database constraints is up to you.

What about indexes?

When you start using your production database, it is always a good idea to set up indexes to boost your database’s performance. The exact process and best practices for setting up indexes varies between databases and is beyond the scope of this documentation. That said, if you’ve never done this before, don’t worry: it’s [easier than you think](http://stackoverflow.com/a/1130/486547).

Just like everything else related to your production schema, once you set your app to use migrate: ‘safe’, Sails leaves database indexes entirely up to you.

> Note that this means you should be sure to update your indexes alongside your uniqueness constraints when performing [manual migrations](https://github.com/BlueHotDog/sails-migrations).

When to use validations

Validations can save you from writing many hundreds of lines of repetitive code, but keep in mind that model validations are run for _every create or update_ in your application. Before using a validation rule in one of your attribute definitions, make sure you are okay with it being applied _every time_ your application calls .create() or .update() to specify a new value for that attribute. If that is _not_ the case, write code that validates the incoming values inline in your controller, or call a custom function in one of your [services](https://sailsjs.com/documentation/concepts/services) or a [model class method](https://sailsjs.com/documentation/concepts/models-and-orm/models#?model-methods-aka-static-or-class-methods).

Suppose that your Sails app allows users to sign up for an account by either (A) entering an email address and password and then confirming that email address or (B) signing up with LinkedIn. Your User model might have one attribute called manuallyEnteredEmail and another called linkedInEmail. While one of those email address attributes is required, _which_ one that is depends on how a user signs up. In this case, your User model cannot use the required: true validation. In order to confirm that one of the two emails has been provided—and that the provided email is valid—you’ll instead have to manually check these values before the relevant .create() and .update() calls in your code:

```javascript
if ( !_.isString( req.param(‘email’) ) ) {


return res.badRequest();






}

Taking this one step further, let’s say your application accepts payments.  During the sign-up flow, if the user signs up with a paid plan, they must provide an email address for billing purposes (billingEmail), while if the user signs up with a free account, they skip that step.  On the account settings page, users on the paid plan see a “Billing Email” form field where they can customize their billing email. Users with the free plan, on the other hand, see a call to action which links to the “Upgrade Plan” page.

While these requirements seem specific, there are still unanswered questions:


	Do we update the billing email automatically when the other email address from which it was defaulted changes?


	What if the billing email had been changed at least once?


	What happens to the billing email after a user downgrades to the free plan? If that user upgrades to a paid plan again, do we request their billing email address anew or use the old one?


	What happens to the billing email when an existing user connects their LinkedIn account and a new linkedInEmail is saved?


	What happens to the billing email if a monthly invoice email cannot be delivered?


	What happens to the billing email if a member of your support team logs into the admin interface and changes it manually?


	What happens to the billing email if a POST request is received on the callback URL we provided to the LinkedIn API to notify our app that the user changed their email address on http://linkedin.com, saving a new linkedInEmail?


	What happens to the billing email when an existing user disconnects their LinkedIn account?


	Are two user accounts in the database allowed to have the same billing email?  What about the email from LinkedIn?  Or the one they entered manually?




Depending on the answers to questions like these, we might end up keeping the required validation on billingEmail, adding new attributes (like hasBillingEmailBeenChangedManually), or even rethinking whether we use a unique constraint.

### Best practices

Finally, here are a few tips:


	Your initial decision about whether or not to use validations for a particular attribute should depend on your app’s requirements and how you are calling .update() and .create(). Don’t be afraid to forgo built-in validation support in favor of checking values by hand in your controllers or in a helper function.  Oftentimes this is the cleanest and most maintainable approach.


	There’s nothing wrong with adding or removing validations from your models as your app evolves, but once in production, there is one very important exception: unique.  During development, when your app is configured to use [migrate: ‘alter’](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?migrate), you can add or remove unique validations at will.  However, if you are using migrate: safe (e.g. with your production database), you will want to update constraints/indices in your database, as well as [migrate your data by hand](https://github.com/BlueHotDog/sails-migrations).


	It is a very good idea to take the time to fully understand your application’s user interface _first_, before setting up complex validations on your model attributes.




> As much as possible, it is best to obtain or flesh out your own wireframes of your app’s user interface _before_ you spend any serious amount of time implementing _any_ backend code.  Of course, this isn’t always possible, and that’s what the [blueprint API](https://sailsjs.com/documentation/concepts/blueprints) is for.  Applications built with a UI-centric, or “front-end first”, philosophy are easier to maintain, tend to have fewer bugs, and&mdash;since mindfulness of the user experience is at their core&mdash;often have more elegant APIs.

### Custom validation rules

You can define your own custom validation rules by specifying a custom function in your attributes.

```javascript
// api/models/User.js
module.exports = {

// Values passed for creates or updates of the User model must obey the following rules:
attributes: {

	firstName: {
	// Note that a base type (in this case “string”) still has to be defined, even though validation rules are in use.
type: ‘string’,
required: true,
minLength: 5,
maxLength: 15

},

	location: {
	type: ‘json’,
custom: function(value) {

return _.isObject(value) &&
_.isNumber(value.x) && _.isNumber(value.y) &&
value.x !== Infinity && value.x !== -Infinity &&
value.y !== Infinity && value.y !== -Infinity;

}

},

	password: {
	type: ‘string’,
custom: function(value) {

// • be a string
// • be at least 6 characters long
// • contain at least one number
// • contain at least one letter
return _.isString(value) && value.length >= 6 && value.match(/[a-z]/i) && value.match(/[0-9]/);

}

}

}

}

Custom validation functions receive the incoming value to be validated as their first argument. They are expected to return true if valid and false otherwise.

Custom validation messages

Out of the box, Sails.js does not support custom validation messages. Instead, your code should [look at (or “negotiate”) validation errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors#?usage-errors) thrown by .create() or .update() calls and take the appropriate action, whether that’s sending a particular error code in your JSON response or rendering the appropriate message in an HTML error page.

<docmeta name=”displayName” value=”Validations”>

 # Errors

When a call to any model method or helper fails, Sails throws a [JavaScript Error instance](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Error) whose properties can be useful in diagnosing what went wrong.

Waterline normalizes these Error instances, classifying them with consistent err.name values and, when applicable, err.code:

```js
try {


await Something.create({…});





	} catch (err) {
	// err.name
// err.code
// …






}

### Negotiating errors

Catch-all error handling, while better than nothing, often just isn’t enough. (There’s a big difference between “that is not a valid username” and “we aren’t able to create new users at all right now”.)  In order to negotiate the different kinds of errors appropriately, you’ll need to be able to examine them in a granular way.

Fortunately, Sails provides some syntactic sugar for doing this out of the box, without resorting to try… catch: [.intercept()](https://sailsjs.com/documentation/reference/waterline-orm/queries/intercept) and [.tolerate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/tolerate).

```javascript
await Something.create({…})
.intercept((err)=>{

// Return a modified error here (or a special exit signal)
// and .create() will throw that instead
err.message = ‘Uh oh: ‘+err.message;
return err;

});

Property | Type | Details |

|:---------------|—————|:-------------------|
| name | ((string)) | The broad classification of the error.

 e.g.`’UsageError’` |
| message | ((string)) | See [.message](https://nodejs.org/dist/latest/docs/api/errors.html#errors_error_message). |
| stack | ((string)) | See [.stack](https://nodejs.org/dist/latest/docs/api/errors.html#errors_error_stack). |
| _code_ | ((string?)) | A narrower classification of the error that is sometimes included.

e.g. ‘E_UNIQUE’ |

When using code that interacts with Waterline (usually through model methods) there are a few different kinds of error you may encounter.

Usage errors

When an error has name: ‘UsageError’, this indicates that a Waterline method was used incorrectly, or executed with invalid options (for example, attempting to create a new record that would violate one of your model’s [high-level validation rules](https://sailsjs.com/documentation/concepts/models-and-orm/validations#?validation-rules).)

This sort of error can come from any model method.

`
err.name === 'UsageError'
`

Adapter errors

Adapter errors usually indicate a problem in the underlying adapter, and not in the request itself. This can happen when a database goes offline, when there is a permission issue, because of some database-specific edge case, or (more rarely) a bug in the adapter. This kind of error will have name: ‘AdapterError’.

This sort of error can come from any model method.

`
err.name === 'AdapterError'
`

E_UNIQUE

A uniqueness error occurs when a value that _should_ be unique matches that of another record in the database. While this is considered an adapter error, it has its own code to differentiate it from a normal adapter error: code: ‘E_UNIQUE’.

This sort of error can only come from the .create(), .update(), .addToCollection(), and .replaceCollection() model methods.

`
err.code === 'E_UNIQUE'
`

Examples

The exact strategy you use to do this in your Sails app depends on whether you’re using await, promises, or callbacks.

Negotiating errors with await

To handle the different errors that may occur when attempting to create a new user from within an action:

```javascript
await User.create({ emailAddress: inputs.emailAddress })
// Uniqueness constraint violation
.intercept(‘E_UNIQUE’, (err)=> {


return ‘emailAlreadyInUse’;




})
// Some other kind of usage / validation error
.intercept({name:’UsageError’}, (err)=> {


return ‘invalid’;




});
// If something completely unexpected happened, the error will be thrown as-is.

return exits.success();
```

Negotiating errors with callbacks or promise chaining

If you’re not able to use await because you’re using Node.js <= v7.9, then prepare yourself: error handling works a bit differently when [using callbacks or promise chaining](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#flow-control) instead of await.

> Please use await if at all possible! It is much safer for your app, your code will be cleaner, and you will be happier.

For example, if you’re using promise chaining, here’s how you might handle the different errors that could occur when attempting to create a new user:

```javascript
User.create({


emailAddress: req.param(‘emailAddress’)




})
.then(function (){


res.ok();




})
// Uniqueness constraint violation
.catch({ code: ‘E_UNIQUE’ }, function (err) {


res.sendStatus(409);




})
// Some other kind of usage / validation error
.catch({ name: ‘UsageError’ }, function (err) {


res.badRequest();




})
// If something completely unexpected happened.
.catch(function (err) {


res.serverError(err);






});

Here’s the same example, but written with traditional Node.js callbacks instead of promise chaining:

```javascript
User.create({

emailAddress: req.param(‘emailAddress’)

})
.exec(function (err){

	if (err && err.code === ‘E_UNIQUE’) {
	return res.sendStatus(409);

	} else if (err && err.name === ‘UsageError’) {
	return res.badRequest();

	} else if (err) {
	return res.serverError(err);

}

return res.ok();

});

> But beware [uncaught exceptions](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#handling-uncaught-exceptions)!

<docmeta name=”displayName” value=”Errors”>

 # Model settings

In Sails, the top-level properties of model definitions are called model settings. This includes everything from [attribute definitions](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?attributes), to the [database settings](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?datastore) the model will use, as well as a few other options.

The majority of this page is devoted to a complete tour of the model settings supported by Sails. But before we begin, let’s look at how to actually apply these settings in a Sails app.

Overview

Model settings allow you to customize the behavior of the models in your Sails app. They can be specified on a per-model basis by setting top-level properties in a [model definition](https://sailsjs.com/documentation/concepts/models-and-orm/models), or as app-wide defaults in [sails.config.models](https://sailsjs.com/documentation/reference/configuration/sails-config-models).

Changing default model settings

To modify the [default model settings](https://sailsjs.com/documentation/reference/configuration/sails-config-models) shared by all of the models in your app, edit [config/models.js](https://sailsjs.com/documentation/anatomy/my-app/config/models-js).

For example, when you generate a new app, Sails automatically includes three different default attributes in your config/models.js file: id, createdAt, and updatedAt. Let’s say that, for all of your models, you wanted to use a slightly different, customized id attribute. To do so, you could just override attributes: { id: {…} } in your config/models.js definition.

Overriding settings for a particular model

To further customize these settings for a particular model, you can specify them as top-level properties in that model’s definition file (e.g. api/models/User.js). This will override default model settings with the same name.

For example, if you add fetchRecordsOnUpdate: true to one of your model definitions (api/models/UploadedFile.js), then that model will now return the records that were updated. But the rest of your models will be unaffected: they will still use the default setting (which is fetchRecordsOnUpdate: false, unless you’ve changed it).

Choosing an approach

In your day to day development, the model setting you’ll interact with most often is attributes. Attributes are used in almost every model definition, and some default attributes are included in config/models.js. For future reference, here are a few additional tips:

	If you are specifying a tableName, you should always do so on a per-model basis. (An app-wide table name wouldn’t make sense!)

	There is no reason to specify an app-wide datastore, since you already have one out of the box (named “default”). Even so, you might want to override datastore for a particular model in certain situations—if, for example, your default datastore is PostgreSQL but you have an CachedBloodworkReport model that you want to live in Redis.

	For the sake of clarity, it is best to only specify migrate and schema settings as app-wide defaults, never on a per-model basis.

Now that you have an idea of what model settings are and how to configure them, let’s run through and have a look at each one.

attributes

The set of attribute definitions for a model.

`
attributes: { /* ... */ }
`

Type | Example | Default |

————– |:------------------------|:————–|

((dictionary)) | _See below._ | {} |

Most of the time, you’ll define attributes in your individual model definitions (in api/models/), but you can also specify default attributes in config/models.js. This allows you to define a set of global attributes in one place, then rely on Sails to make them available to all of your models implicitly and without repeating yourself. Default attributes can also be overridden on a per-model basis by defining a replacement attribute with the same name in the relevant model definition.

```js
attributes: {


id: { type: ‘number’, autoIncrement: true },
createdAt: { type: ‘number’, autoCreatedAt: true },
updatedAt: { type: ‘number’, autoUpdatedAt: true },





}

For a complete introduction to model attributes, including how to define and use them in your Sails app, see [Concepts > ORM > Attributes](https://sailsjs.com/documentation/concepts/orm/attributes).

### customToJSON

A function that allows you to customize the way a model’s records are serialized to JSON.

`
customToJSON: function() { /*...*/ }
`


Type         | Example                 | Default       |

———— |:------------------------|:————–|

((function)) | _See below._            | _n/a_         |



Adding the customToJSON setting to a model changes the way that the model&rsquo;s records are _stringified_.  In other words, it allows you to inject custom logic that runs any time one of these records are passed into JSON.stringify().  This is most commonly used to implement a failsafe, making sure sensitive data like user passwords aren’t accidentally included in a response (since [res.send()](https://sailsjs.com/documentation/reference/response-res/res-send) and actions2 may stringify data before sending).

The customToJSON function takes no arguments, but provides access to the record as the this variable.  This allows you to omit sensitive data and return the sanitized result, which is what JSON.stringify() will actually use when generating a JSON string.  For example:

```js
customToJSON: function() {

// Return a shallow copy of this record with the password and ssn removed.
return _.omit(this, [‘password’, ‘ssn’])

}

The customToJSON function is deisgned not to support async capabilities. This allows synchronous bits in core to stay synchronous and provide better stability to the system as a whole.

> Note that the this variable available in customToJSON is a _direct reference to the actual record object_, so be careful not to modify it. In other words, avoid writing code like delete this.password. Instead, use methods like _.omit() or _.pick() to get a _copy_ of the record. Or just construct a new dictionary and return that (e.g. return { foo: this.foo }).

tableName

The name of the SQL table (/MongoDB collection) where a model will store and retrieve its records as rows (/MongoDB documents).

`
tableName: 'some_preexisting_table'
`

Type | Example | Default |

———– |:---------------------------|:————–|

((string)) | ‘some_preexisting_table’ | _Same as model’s identity._

The tableName setting gives you the ability to customize the name of the underlying _physical model_ that a particular model should use. In other words, it lets you control where a model stores and retrieves records within the database, _without_ affecting the code in your controller actions / helpers.

By default, Sails uses the model’s [identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings?identity) to determine its table name:

`js
await User.find();
// => SELECT * FROM user;
`

This is a recommended convention, and shouldn’t need to be changed in most cases. But, if you are sharing a legacy database with an existing application written for a different platform like Python or C#, or if your team prefers a different naming convention for their database tables, then it may be useful to customize this mapping.

Returning to the example above, if you modified your model definition in api/models/User.js, and set tableName: ‘foo_bar’, then you’d see slightly different results:

`js
await User.find();
// => SELECT * FROM foo_bar;
`

> What’s in a tableName? In databases like MySQL and PostgreSQL, the setting refers to a literal “table”. In MongoDB, it refers to a “collection”. It’s really just about familiarity: That which we call a “table”, by any other word would query as well.

migrate

The auto-migration strategy that Sails will run every time your app loads.

`
migrate: 'alter'
`

Type | Example | Default |

———– |:------------------------|:————–|

((string)) | ‘alter’ | _You’ll be prompted._

**Note**: In production, this is always ‘safe’.

The migrate setting controls your app’s auto-migration strategy. In short, this tells Sails whether or not you’d like it to attempt to automatically rebuild the tables/collections/sets/etc. in your database(s).

Database migrations

In the course of developing an app, you will almost always need to make at least one or two breaking changes to the structure of your database. Exactly _what_ constitutes a “breaking change” depends on the database you’re using: For example, imagine you add a new attribute to one of your model definitions. If that model is configured to use MongoDB, then this is no big deal; you can keep developing as if nothing happened. But if that model is configured to use MySQL, then there is an extra step: a column must be added to the corresponding table (otherwise model methods like .create() will stop working). So for a model using MySQL, adding an attribute is a breaking change to the database schema.

> Even if all of your models use MongoDB, there are still some breaking schema changes to watch out for. For example, if you add unique: true to one of your attributes, a [unique index](https://docs.mongodb.com/manual/core/index-unique/) must be created in MongoDB.

In Sails, there are two different modes of operation when it comes to [database migrations](https://en.wikipedia.org/wiki/Schema_migration):

	Manual migrations: The art of updating your database tables/collections/sets/etc. by hand. For example, writing a SQL query to [add a new column](http://dev.mysql.com/doc/refman/5.7/en/alter-table.html), or sending a [Mongo command to create a unique index](https://docs.mongodb.com/manual/core/index-unique/). If the database contains data you care about (in production, for example), you must carefully consider whether that data needs to change to fit the new schema, and, if necessary, write scripts to migrate it. While a [number of](https://www.npmjs.com/package/sails-migrations) great [open-source tools](http://knexjs.org/#Migrations-CLI) exist for managing manual migration scripts, as well as hosted products like the [database migration service on AWS](https://aws.amazon.com/blogs/aws/aws-database-migration-service/), we recommend doing all database migrations by hand, using [sails run](https://sailsjs.com/documentation/concepts/shell-scripts).

	Auto-migrations: A convenient, built-in feature in Sails that allows you to make iterative changes to your model definitions during development, without worrying about the reprecussions. Auto-migrations should _never_ be enabled when connecting to a database with data you care about. Instead use auto-migrations with fake data, or with cached data that you can easily recreate.

Whenever you need to apply breaking changes to your _production database_, you should use manual database migrations. Otherwise, when you’re developing on your laptop or running your automated tests, auto-migrations can save you tons of time.

How auto-migrations work

When you lift your Sails app in a development environment (e.g. running sails lift in a brand new Sails app), the configured auto-migration strategy will run. If you are using migrate: ‘safe’, then nothing additional will happen, but if you are using drop or alter, Sails will load every record in your development database into memory, then drop and recreate the physical layer representation of the data (i.e. tables/collections/sets/etc.). This allows any breaking changes you’ve made in your model definitions, like removing a uniqueness constraint, to be automatically applied to your development database. Finally, if you are using alter, Sails will then attempt to re-seed the freshly generated tables/collections/sets with the records it saved earlier.

Auto-migration strategy | Description |

|:-------------------------|:———————————————|
| safe | never auto-migrate my database(s). I will do it myself, by hand.
| alter | auto-migrate columns/fields, but attempt to keep my existing data (experimental)
| drop | wipe/drop ALL my data and rebuild models every time I lift Sails

> Keep in mind that when using the alter or drop strategies, any manual changes you have made to your database since the last time you lifted your app may be lost. This includes things like custom indexes, foreign key constraints, column order and comments. In general, tables created by auto-migrations are not guaranteed to be consistent regarding any details of your physical database columns besides setting the column name, type (including character set / encoding if specified) and uniqueness.

Can I use auto-migrations in production?

The drop and alter auto-migration strategies in Sails exist as a feature for your convenience during development, and when running automated tests. They are not designed to be used with data you care about. Please take care to never use drop or alter with a production dataset. In fact, as a failsafe to help protect you from doing this inadvertently, any time you lift your app [in a production environment](https://sailsjs.com/documentation/reference/configuration/sails-config#?sailsconfigenvironment), Sails _always_ uses migrate: ‘safe’, no matter what you have configured.

In many cases, hosting providers automatically set the NODE_ENV environment variable to “production” when they detect a Node.js app. Even so, please don’t rely only on that failsafe, and take the usual precautions to keep your users’ data safe. Any time you connect Sails (or any other tool or framework) to a database with pre-existing production data, do a dry run, especially the very first time. Production data is sensitive, valuable, and in many cases irreplaceable. Customers, users, and their lawyers are not cool with it getting flushed.

As a best practice, make sure to never lift or [deploy](https://sailsjs.com/documentation/concepts/deployment) your app with production database credentials unless you are 100% sure you are running in a production environment. A popular approach for solving this at an organization-wide scale is simply to _never_ push up production database credentials to your source code repository in the first place, instead relying on [environment variables](https://sailsjs.com/documentation/reference/configuration) for all sensitive credentials. (This is an especially good idea if your app is subject to regulatory requirements, or if a large number of people have access to your code base.)

Are auto-migrations slow?

If you are working with a relatively large amount of development/test data, the alter auto-migration strategy may take a long time to complete at startup. If you notice that a command like npm test, sails console, or sails lift appears to hang, consider decreasing the size of your development dataset. (Remember: Sails auto-migrations should only be used on your local laptop/desktop computer, and only with small, development datasets.)

schema

Whether or not a model expects records to conform to a specific set of attributes.

`
schema: true
`

Type | Example | Default |

———– |:------------------------|:————–|

((boolean)) | true | _Depends on the adapter._

The schema setting allows you to toggle a model between “schemaless” or “schemaful” mode. More specifically, it governs the behavior of methods like .create() and .update(). Normally you are allowed to store arbitrary data in a record, as long as the adapter you’re using supports it. But if you enable schema:true, only properties that correspond with the model’s attributes will actually be stored.

> This setting is only relevant for models using schemaless databases like MongoDB. When hooked up to a relational database like MySQL or PostgreSQL, a model is always effectively schema:true, since the underlying database can only store data in tables and columns that have been set up ahead of time.

datastore

The name of the [datastore configuration](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores) that a model will use to find records, create records, etc.

`
datastore: 'legacyECommerceDb'
`

Type | Example | Default |

———- |:------------------------|:————–|

((string)) | ‘legacyECommerceDb’ | ‘default’ |

This allows you to indicate the database where this model will fetch and save its data. Unless otherwise specified, every model in your app uses a built-in datastore named “default”, which is included in every new Sails app out of the box. This makes it easy to configure your app’s primary database while still allowing you to override the datastore setting for any particular model.

For more about configuring your app’s datastores, see [Reference > Configuration > Datastores](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores).

dataEncryptionKeys

A set of keys to use when decrypting data. The default data encryption key (or “DEK”) is always used for encryption unless configured otherwise.

```javascript
dataEncryptionKeys: {


default: ‘tVdQbq2JptoPp4oXGT94kKqF72iV0VKY/cnp7SjL7Ik=’






}

> Unless your use case requires key rotation, the default key is all you need.  Any other data encryption keys besides default are just there to allow for decrypting older data that was encrypted with them.

##### Key rotation

To retire a data encryption key, you’ll need to give it a new key id (like 2028) and then create a new default key for use in any new encryption. For example, if you release a Sails app in year 2028 and your keys are rotated out yearly, then the following year your dataEncryptionKeys may look like this:

```javascript
dataEncryptionKeys: {

default: ‘DZ7MslaooGub3pS/0O734yeyPTAeZtd0Lrgeswwlt0s=’,
‘2028’: ‘C5QAkA46HD9pK0m7293V2CzEVlJeSUXgwmxBAQVj+xU=’

}

After changing out the default key _the year after that_ in January 2030, you might have:

```javascript
dataEncryptionKeys: {


default: ‘tVdQbq2JptoPp4oXGT94kKqF72iV0VKY/cnp7SjL7Ik=’,
‘2029’: ‘DZ7MslaooGub3pS/0O734yeyPTAeZtd0Lrgeswwlt0s=’,
‘2028’: ‘C5QAkA46HD9pK0m7293V2CzEVlJeSUXgwmxBAQVj+xU=’






}

### cascadeOnDestroy

Whether or not to _always_ act like you set cascade: true any time you call .destroy() using this model.

`
cascadeOnDestroy: true
`


Type        | Example                 | Default       |

———– |:------------------------|:————–|

((boolean)) | true                  | false



This is disabled by default, for performance reasons.  You can enable it with this model setting, or on a per-query basis using [.meta({cascade: true})](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).

### dontUseObjectIds

> ##### _**This feature is for use with the [sails-mongo adapter](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters#?sailsmongo) only.**_

If set to true, the model will _not_ use an auto-generated MongoDB ObjectID object as its primary key.  This allows you to create models using the sails-mongo adapter with primary keys that are arbitrary strings or numbers, not just big long UUID-looking things.  Note that setting this to true means that you will have to provide a value for id in every call to [.create()](https://sailsjs.com/documentation/reference/waterline-orm/models/create) or [.createEach()](https://sailsjs.com/documentation/reference/waterline-orm/models/create-each).


Type        | Example                 | Default       |

———– |:------------------------|:————–|

((boolean)) | true                  | false



This is disabled by default, for performance reasons.  You can enable it with this model setting, or on a per-query basis using [.meta({dontUseObjectIds: true})](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).

### Seldom-used settings

The following low-level settings are included in the spirit of completeness, but in practice, they should rarely (if ever) be changed.

##### primaryKey

The name of a model’s primary key attribute.

> You should never need to change this setting.  Instead, if you need to use a custom primary key, set a custom `columnName` on the “id” attribute.

`javascript
primaryKey: 'id'
`


Type       | Example       | Default       |

———- |:--------------|:————–|

((string)) | ‘id’        | ‘id’        |



Conventionally this is “id”, a default attribute that is included for you automatically in the config/models.js file of new apps generated as of Sails v1.0.  The best way to change the primary key for your model is simply to customize the columnName of that default attribute.

For example, imagine you have a User model that needs to integrate with a table in a pre-existing MySQL database.  That table might have a column named something other than “id” (like “email_address”) as its primary key.  To make your model respect that primary key, you’d specify an override for your id attribute in the model definition; like this:

```js
id: {

type: ‘string’,
columnName: ‘email_address’,
required: true

}

Then, in your app’s code, you’ll be able to look up users by primary key, while the mapping to email_address in all generated SQL queries is taken care of for you automatically:

`js
await User.find({ id: req.param('emailAddress' });
`

> All caveats aside, lets say you’re an avid user of MongoDB. In your new Sails app, you’ll start off by setting columnName: ‘_id’ on your default “id” attribute in config/models.js. Then you can use Sails and Waterline just like normal, and everything will work just fine.
>
> But what if you find yourself wishing that you could change the actual name of the “id” attribute itself for the sake of familiarity? That way, when you call built-in model methods in your code, instead of the usual “id”, you would use syntax like .destroy({ _id: ‘ba8319abd-13810-ab31815’ }).
>
> That’s where this model setting might become useful. All you’d have to do is edit config/models.js so that it contains primaryKey: ‘_id’, and then rename the default “id” attribute to “_id”. But there are some [good reasons to reconsider](https://gist.github.com/mikermcneil/9247a420488d86f09be342038e114a08) this course of action.

identity

The lowercase, unique identifier for a model.

> A model’s `identity` is read-only. It is automatically derived, and should never be set by hand.

`
Something.identity;
`

Type | Example |

———- |:--------------|

((string)) | ‘purchase’ |

In Sails, a model’s identity is inferred automatically by lowercasing its filename and stripping off the file extension. For example, the identity of api/models/Purchase.js would be purchase. It would be accessible as sails.models.purchase, and if blueprint routes were enabled, you’d be able to reach it with requests like GET /purchase and PATCH /purchase/1.

`javascript
assert(Purchase.identity === 'purchase');
assert(sails.models.purchase.identity === 'purchase');
assert(Purchase === sails.models.purchase);
`

globalId

The unique global identifier for a model, which also determines the name of its corresponding global variable (if relevant).

> A model’s `globalId` is read-only. It is automatically derived, and should never be set by hand.

`
Something.globalId;
`

Type | Example |

———- |:--------------|

((string)) | ‘Purchase’ |

The primary purpose of a model’s globalId is to determine the name of the global variable that Sails automatically exposes on its behalf—that is, unless globalization of models has been [disabled](https://sailsjs.com/documentation/concepts/globals?q=disabling-globals). In Sails, a model’s globalId is inferred automatically from its filename. For example, the globalId of api/models/Purchase.js would be Purchase.

```javascript
assert(Purchase.globalId === ‘Purchase’);
assert(sails.models.purchase.globalId === ‘Purchase’);
if (sails.config.globals.models) {


assert(sails.models.purchase === Purchase);




}
else {


assert(typeof Purchase === ‘undefined’);






}

<docmeta name=”displayName” value=”Model settings”>




            

          

      

      

    

  

    
      
          
            
  # Standalone Waterline usage

In addition to built-in usage with the Sails framework, Waterline can be used as a standalone module.

> Warning: This section of the documentation is for fairly advanced Node.js users.  If you aren’t planning to use Waterline outside of your Sails app (e.g. to build your own framework), you might want to skip this page and head back to [Models and ORM](https://sailsjs.com/documentation/concepts/models-and-orm) instead.

### Installation

Waterline is available via NPM.

`sh
$ npm install --save waterline
`
Waterline ships without any adapters, so you will need to install these separately. For example:

`sh
$ npm install --save sails-mysql
$ npm install --save-dev sails-disk
`

You can install any number of adapters into your application.

The sails-disk adapter is a common choice for development and testing.

> If you are new to Node, hop on over to [Getting Started](https://sailsjs.com/get-started) to learn about installing Node on your preferred platform.

### Getting Started

To get started with Waterline as a standalone module, we need two ingredients: adapters and model definitions.

The simplest adapter is the sails-disk adapter. Let’s install that and Waterline in an empty directory.

`sh
mkdir my-tool
cd my-tool
npm init
# ...
npm install waterline sails-disk
`

Now we want some sample code. Copy the [example code demonstrating raw Waterline usage from here](https://github.com/balderdashy/waterline-docs/blob/master/examples/src/getting-started.js) into a file in the same directory where the waterline and sails-disk packages were installed.

Before we run it, let’s explore how it works.

`js
var Waterline = require('waterline');
var sailsDiskAdapter = require('sails-disk');
var waterline = new Waterline();
`

Here we are simply bootstrapping our main objects. We are setting up the Waterline factory object, an instance of an adapter, and an instance of waterline itself.

Next we define the specification for the user model, like so:

```js
var userCollection = Waterline.Collection.extend({

identity: ‘user’,
datastore: ‘default’,
primaryKey: ‘id’,

	attributes: {
	
	id: {
	type: ‘number’,
autoMigrations: {autoIncrement: true}

},
firstName: {type:’string’},
lastName: {type:’string’},

// Add a reference to Pets
pets: {

collection: ‘pet’,
via: ‘owner’

}

}

});

What’s important here is the object that we are passing into that factory method.

We need to give our model an identity by which it can be referred to later, and also declare which datastore we are going to use.

> A datastore is an instance of an adapter. For example, you could have one datastore for each type of storage you are using (file, MySQL, etc). You might even have more than one datastore for the same type of adapter.

The attributes define the properties of the model. In a traditional database, these attributes would align with columns in a table. Our example, pets, is a little different because it’s defining an association that allows a user to own multiple pets.

> In a relational database, the pets attribute won’t appear as a column. Rather, it establishes a virtual one-to-many association with the pets model that we are about to define.

We must now define what a pet is:

```js
var petCollection = Waterline.Collection.extend({


identity: ‘pet’,
datastore: ‘default’,
primaryKey: ‘id’


	attributes: {
	
	id: {
	type: ‘number’,
autoMigrations: {autoIncrement: true}





},
breed: {type:’string’},
type: {type:’string’},
name: {type:’string’},

// Add a reference to User
owner: {


model: ‘user’




}





}






});

Most of the structure is the same as for the user, except there’s an additional owner field which specifies the owner of this pet.

> In our example, a pet can only have one owner, and we provide the associated model (in this case, user) within the owner field. Notice that the name of the model needs to match the identity given to the model. See, too, that a relational database will, in this example, create a column called owner containing a foreign key back to the user table.

Next we have some more boring setup chores:

`js
waterline.registerModel(userCollection);
waterline.registerModel(petCollection);
`

Here we are adding the model specifications into the waterline instance itself.

Last, but not least, we have to configure the datastores:

```js
var config = {

	adapters: {
	‘disk’: sailsDiskAdapter

},

	datastores: {
	
	default: {
	adapter: ‘disk’

}

}

};

Here we specify the adapters that will be used—one for each type of storage we intend to employ—and our datastores, which will usually contain datastore details for the target storage system (login details, file paths, etc.). Each datastore can be named; in this case we’ve named our datastore “default” for simplicity. Depending on the adapter, further configuration may be available for items within datastores. For instance, the sails-disk adapter allows the dir and inMemoryOnly settings to be configured. See the [sails-disk adapter reference](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters#?optional-datastore-settings-for-sailsdisk) for more information.

Ok, it’s time to crank things up and work with the datastore. First we’ll initialize the waterline instance, and then we can go to work:

```js
waterline.initialize(config, (err, ontology)=>{



	if (err) {
	console.error(err);
return;





}

// Tease out fully initialized models.
var User = ontology.collections.user;
var Pet = ontology.collections.pet;

// Since we’re using await, we’ll scope our selves an async IIFE:
(async ()=>{


// First we create a user
var user = await User.create({


firstName: ‘Neil’,
lastName: ‘Armstrong’




});

// Then we create the pet
var pet = await Pet.create({


breed: ‘beagle’,
type: ‘dog’,
name: ‘Astro’,
owner: user.id




});

// Then we grab all users and their pets
var users = await User.find().populate(‘pets’);
console.log(users);




})()
.then(()=>{


// All done.




})
.catch((err)=>{


console.error(err);




});//_∏_






});

That’s a fair chunk of code, so let’s unpack it piece by piece.

First we initialize the Waterline instance. This wires up the datastores (maybe logs into a database server or two), parses any models looking for associations, and does a heap of other whizbangery. When all that’s done, it defers to the callback we passed in the second argument.

After checking for an error, the ontology variable gathers the collection objects for our users and our pets. In the next lines, we add some shortcut variables to those collection objects in the form of User and Pet.

> We typically name models in the singular form; that is, for the _type_ of _object_ you’d get back from a query.

Next, we use some await goodness to create a user and a pet and see what we can get back out of the datastore.

We first use the create method to create a new user. We just need to supply the attributes for our user to get a copy of the record that was created.

> Note: unless you specify otherwise, Waterline adds an id primary key by default.

We then create a new pet. Notice that we can associate the id of the user that was created in the previous step with that pet. This is done by setting the owner field directly.

Once the pet is created, both sides of the association are ready. To join them, we simply add the pet to a pets array in our new user. Then we just save the record using the save method on the model.

> Note that save is only available on model objects returned by the query. Our User collection object does not have access to this.

Finally, we want to see what actually got stuffed into the database, so we use User.find to get all the User records out of the datastore. We also want the query to resolve the pet association, so we add the populate method to tell the query to retrieve the pet records for each user.

Running that simple application gives us:

```sh
$ node getting-started.js
[{ pets:

	[{ breed: ‘beagle’,
	type: ‘dog’,
name: ‘Astro’,
owner: 1,
createdAt: Thu May 07 2015 20:44:37 GMT+1000 (AEST),
updatedAt: Thu May 07 2015 20:44:37 GMT+1000 (AEST),
id: 1 }],

firstName: ‘Neil’,
lastName: ‘Armstrong’,
createdAt: Thu May 07 2015 20:44:37 GMT+1000 (AEST),
updatedAt: Thu May 07 2015 20:44:37 GMT+1000 (AEST),
id: 1 }]


```

There are the attributes given to the models, and we can see the primary keys that were automatically generated for us. We can also see that Waterline has thrown in some default createdAt and updatedAt timestamps. Cool!

> You can turn off the timestamps with other global or per-model configuration options.

### Testing

This section will walk you through running integration tests for Waterline models. For documentation on testing in Sails apps, see [Concepts > Testing](https://sailsjs.com/documentation/concepts/testing).

##### The testing framework

To run the tests, we need a testing framework. There are several out there, but for our examples we will be using [Mocha](mochajs.org). It’s best to install this on the command line like so:

`js
$ npm install -g mocha
`

If you are interested in code coverage, you might want to check out a tool called [Istanbul](https://www.npmjs.com/package/istanbul). For spying, stubbing, and mocking, [Sinon](http://sinonjs.org) is a good choice. For simulating HTTP requests, [nock](https://www.npmjs.com/package/nock) is worth a look.

##### Testing a Waterline model

The following example shows how you might test a Waterline model. It assumes the following extremely simple application structure:

```none
root
|- models
| |- Pet.js
| `- User.js
`- test

|- mocha.opts
`- UserModelTest.js


```

##### Pet.js

Here’s our standard example Pet model:

```js
module.exports = {

identity: ‘pet’,
datastore: ‘default’,

	attributes: {
	breed: ‘string’,
type: ‘string’,
name: ‘string’,

// Add a reference to User
owner: {

model: ‘user’

}

}

};

User.js

And our standard example User model:

```js
module.exports = {


identity: ‘user’,
datastore: ‘default’,


	attributes: {
	firstName: ‘string’,
lastName: ‘string’,

// Add a reference to Pets
pets: {


collection: ‘pet’,
via: ‘owner’




}





}






};

##### UserModelTest.js

Here’s how to test our User model.

The setup function wires up the Waterline instance with our models, then initializes it. The models are using the default adapter, but here the test is overriding that configuration to use the disk adapter. We do this because it’s fast, and because it may detect where we’re trying to use “magic” in our models that might not be portable across database storages.

The teardown function clears the adapters so that future tests can start with a clean slate (it allows you to safely use the -w option with Mocha). Note that teardown assumes you are using Node 0.12; if you aren’t, you’ll either need to use a promise library, like Bluebird, or to convert the method to use async or similar.

Finally, we get to our test method that tries to create a user and make some basic assertions:

```js
var assert = require(‘assert’);
var Waterline = require(‘waterline’);
var sailsDiskAdapter = require(‘sails-disk’);

	suite(‘UserModel’, function () {
	var waterline = new Waterline();
var config = {

	adapters: {
	‘sails-disk’: sailsDiskAdapter

},
datastores: {

	default: {
	adapter: ‘sails-disk’

}

}

}

	setup(function (done) {
	
	waterline.loadCollection(
	Waterline.Collection.extend(require(‘../models/User.js’))

);
waterline.loadCollection(

Waterline.Collection.extend(require(‘../models/Pet.js’))

);
waterline.initialize(config, function (err, ontology) {

	if (err) {
	return done(err);

}
done();

});

});

	teardown(function () {
	var adapters = config.adapters || {};
var promises = [];

	Object.keys(adapters)
	
	.forEach(function (adapter) {
	
	if (adapters[adapter].teardown) {
	
	var promise = new Promise(function (resolve) {
	adapters[adapter].teardown(null, resolve);

});
promises.push(promise);

}

});

return Promise.all(promises);

});

	test(‘should be able to create a user’, function () {
	var User = waterline.collections.user;

	return User.create({
	
firstName: ‘Neil’,
lastName: ‘Armstrong’

})
.then(function (user) {

assert.equal(user.firstName, ‘Neil’, ‘should have set the first name’);
assert.equal(user.lastName, ‘Armstrong’, ‘should have set the last name’);
assert.equal(user.pets.length, 0, ‘should have no pets’);

});

});

});

> Obviously there is a lot of scope to refactoring the code into a utility library as you add more test files for your models.

Now all we have to to is run the tests:

```sh
$ mocha



	UserModel
	✓ should be able to create a user





1 passing (83ms)




```

<docmeta name=”displayName” value=”Standalone Waterline usage”>

 # Associations

Overview

In addition to being literal types like string and number, attributes in a Sails model can represent links to other records in a datastore. Attributes of this type are called _associations_. For example, given a User model and a Pet model, the User may contain a pets attribute that links a given user to one or more pets.

Setting values for associations

Depending on the type of link, an association attribute can be set in a [.create()](https://sailsjs.com/documentation/reference/waterline-orm/models/create) or [.update()](https://sailsjs.com/documentation/reference/waterline-orm/models/update) call by giving it the value of another record’s primary key, or by using special model methods like [.addToCollection](https://sailsjs.com/documentation/reference/waterline-orm/models/add-to-collection), [.removeFromCollection()](https://sailsjs.com/documentation/reference/waterline-orm/models/remove-from-collection), or [.replaceCollection()](https://sailsjs.com/documentation/reference/waterline-orm/models/replace-collection).

Associations in retrieved records

Unlike normal attributes, association attribute values are not always returned when retrieving a record with [.find()](https://sailsjs.com/documentation/reference/waterline-orm/models/find) or [.findOne()](https://sailsjs.com/documentation/reference/waterline-orm/models/find-one). Instead, you declare which associations to retrieve by using the [.populate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/populate) method:

`js
// Find a single user, including its pets
var userWithPets = await User.findOne(123).populate('pets');
`

How an association attribute is represented in a returned record depends on the type of association, whether there are actual records linked, and whether .populate() is chained to the query. See [this table](https://sailsjs.com/documentation/concepts/models-and-orm/records#?expected-types-values-for-association-attributes) for a full description of what to expect in a returned record with association attributes.

Cross-adapter associations

With Sails and Waterline, you can associate models across multiple data stores. This means that even if your users live in [PostgreSQL](http://www.postgresql.org/) and their comments live in [MongoDB](http://www.mongodb.com/), you can interact with the data as if they lived together in the same database. You can also have associations that span different [datastores](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores) using the same adapter. This comes in handy if, for example, your app needs to access/update legacy recipe data stored in a [MySQL](http://www.mysql.com/) database somewhere in your company’s data center, but also store/retrieve ingredient data from a brand new MySQL database in the cloud.

> IMPORTANT NOTE
>
> In tutorials and example code, you might sometimes see associations’ collection, model, or through properties reference models in either lowercase (the _identity_) or capitalized (the _global ID_). For example, in the following association, the collection property is set to product`—the identity of the Sails model called `Product:
>
>```javascript
>wishlist: {
> collection: ‘product’,
> via: ‘wishlistedBy’
>}
>```
>
> In the Sails docs, we always use the global ID approach for consistency’s sake. But realize that either approach will work.

<docmeta name=”displayName” value=”Associations”>

 # Many-to-many

AKA “Has and Belongs To Many”

Overview

A many-to-many association states that one record can be associated with many other records and vice-versa. This type of relationship involves the creation of a _join table_ to keep track of the many links between records. When Waterline detects that two models have collection attributes that point to each other through their via keys (see below), it will automatically build up a join table for you.

The via key

Because you may want a model to have multiple many-to-many associations on another model a via key is needed on the collection attribute. The via key indicates the related attribute on the other side of a many-to-many association.

Using the User and Pet example, let’s look at how to build a schema where a User may have many Pet records and a Pet may have multiple owners.

```javascript
// myApp/api/models/User.js
// A user may have many pets
module.exports = {



	attributes: {
	
	firstName: {
	type: ‘string’





},
lastName: {


type: ‘string’




},

// Add a reference to Pet
pets: {


collection: ‘pet’,
via: ‘owners’




}





}





};

```javascript
// myApp/api/models/Pet.js
// A pet may have many owners
module.exports = {

	attributes: {
	
	breed: {
	type: ‘string’

},
type: {

type: ‘string’

},
name: {

type: ‘string’

},

// Add a reference to User
owners: {

collection: ‘user’,
via: ‘pets’

}

}

};

To associate records together, the Model method [.addToCollection()](https://sailsjs.com/documentation/reference/waterline-orm/models/add-to-collection) is used. This allows you to set the primary keys of the records that will be associated.

`javascript
// To add a Pet to a user's `pets` collection where the User has an id of
// 10 and the Pet has an id of 300.
await User.addToCollection(10, 'pets', 300);
`

You can also add multiple pets at once:

`javascript
await User.addToCollection(10, 'pets', [300, 301]);
`

Removing associations is just as easy using the [.removeFromCollection()](https://sailsjs.com/documentation/reference/waterline-orm/models/remove-from-collection) method. It works the same way as addToCollection:

`javascript
// To remove a User from a pet's collection of owners where the User has an id of
// 10 and the Pet has an id of 300.
await Pet.removeFromCollection(300, 'owners', 10);
`

And you can remove multiple owners at once:

`javascript
await Pet.removeFromCollection(300, 'owners', [10, 12]);
`

Note that adding or removing associated records from one side of a many-to-many relationship will automatically affect the other side. For example, adding records to the pets attribute of a User model record with .addToCollection() will immediately affect the owners attributes of the linked Pet records.

To return associated collections along with a record retrieved by [.find()](https://sailsjs.com/documentation/reference/waterline-orm/models/find) or [.findOne()](https://sailsjs.com/documentation/reference/waterline-orm/models/find-one), use the [.populate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/populate) method.

Dominance

In most cases, Sails will be able to create the join table for a many-to-many association without any input from you. However, if the two models in the association use different datastores, you may want to choose which one should contain the join table. You can do this by setting dominant: true on one of the associations in the relationship.

Consider the following models:

```javascript
// User.js
module.exports = {


datastore: ‘ourMySQL’,
attributes: {


email: ‘string’,
wishlist: {


collection: ‘product’,
via: ‘wishlistedBy’




}




}






};

```javascript
// Product.js
module.exports = {

datastore: ‘ourRedis’,
attributes: {

name: ‘string’,
wishlistedBy: {

collection: ‘user’,
via: ‘wishlist’

}

}

};

In this case, User and Product records exist in different databases. By default, Sails will arbitrarily choose one of the datastores (either ourMySQL or ourRedis) to contain the join table linking the wishlist attribute of User to the wishlistedBy attribut of Product. In order to force the join table to exist in the ourMySQL datastore, you would add dominant: true to the wishlist attribute definition. Conversely, adding dominant: true to the wishlistedBy attribute would cause the join table to be created in the ourRedis datastore.

Choosing a “dominant”

Several factors may influence your decision of where to create the join table:

	If one side is a SQL database, placing the join table on that side will allow your queries to be more efficient, since the relationship table can be joined before the other side is communicated with. This reduces the number of total queries required from 3 to 2.

	If one datastore is much faster than the other, all other things being equal, it probably makes sense to put the join table on that side.

	If you know that it is much easier to migrate one of the datastores, you may choose to set that side as dominant. Similarly, regulations or compliance issues may affect your decision as well. If the relationship contains sensitive patient information (for instance, a relationship between Patient and Medicine) you want to be sure that all relevant data is saved in one particular database over the other (in this case, Patient is likely to be dominant).

	Along the same lines, if one of your datastores is read-only (perhaps Medicine in the previous example is connected to a read-only vendor database), you won’t be able to write to it, so you’ll want to make sure your relationship data can be persisted safely on the other side.

<docmeta name=”displayName” value=”Many-to-many”>

 # One way association

AKA “Belongs To”

Overview

A one way association is where a model is associated with another model. You could query that model and [populate](https://sailsjs.com/documentation/reference/waterline-orm/queries/populate) to get the associated model. You can’t however query the associated model and populate to get the associating model.

One Way Example

In this example, we are associating a User with a Pet but not a Pet with a User.

```javascript
// myApp/api/models/Pet.js
module.exports = {



	attributes: {
	
	name: {
	type: ‘string’





},
color: {


type: ‘string’




}





}





}

```javascript
// myApp/api/models/User.js
module.exports = {

	attributes: {
	
	name: {
	type: ‘string’

},
age: {

type: ‘number’

},
pony:{

model: ‘Pet’

}

}

}

Now that the association is setup, you can [populate](https://sailsjs.com/documentation/reference/waterline-orm/queries/populate) the pony association.

```javascript
var usersWithPonies = await User.find({ name:’Mike’ }).populate(‘pony’);


// The users object would look something like:
// [{
//  name: ‘Mike’,
//  age: 21,
//  pony: {
//    name: ‘Pinkie Pie’,
//    color: ‘pink’,
//    id: 5,
//    createdAt: Tue Feb 11 2014 15:45:33 GMT-0600 (CST),
//    updatedAt: Tue Feb 11 2014 15:45:33 GMT-0600 (CST)
//  },
//  createdAt: Tue Feb 11 2014 15:48:53 GMT-0600 (CST),
//  updatedAt: Tue Feb 11 2014 15:48:53 GMT-0600 (CST),
//  id: 1
// }]




```

Notes
> Because we have only formed an association on one of the models, a Pet has no restrictions on the number of User models it can belong to. If we wanted to, we could change this and associate the Pet with exactly one User and the User with exactly one Pet.

<docmeta name=”displayName” value=”One way association”>

 # One-to-many

AKA “Has Many”

Overview

A one-to-many association states that a model can be associated with many other models. To build this
association a virtual attribute is added to a model using the collection property. In a one-to-many
association, the “one” side must have a collection attribute, and the “many” side must contain a model attribute. This allows the “many” side to know which records it needs to get when populate is used.

Because you may want a model to have multiple one-to-many associations on another model, a via key
is needed on the collection attribute. This states which model attribute on the one side of the
association is used to populate the records.

```javascript
// myApp/api/models/User.js
// A user may have many pets
module.exports = {



	attributes: {
	
	firstName: {
	type: ‘string’





},
lastName: {


type: ‘string’




},

// Add a reference to Pets
pets: {


collection: ‘pet’,
via: ‘owner’




}





}





};

```javascript
// myApp/api/models/Pet.js
// A pet may only belong to a single user
module.exports = {

	attributes: {
	
	breed: {
	type: ‘string’

},
type: {

type: ‘string’

},
name: {

type: ‘string’

},

// Add a reference to User
owner: {

model: ‘user’

}

}

};

Now that the pets and users know about each other, they can be associated. To do this we can create
or update a pet with the user’s primary key for the owner value.

```javascript
await Pet.create({


breed: ‘labrador’,
type: ‘dog’,
name: ‘fido’,

// Set the User’s Primary Key to associate the Pet with the User.
owner: 123






});

Now that the Pet is associated with the User, all the pets belonging to a specific user can
be populated by using the [.populate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/populate) method.

```javascript
var users = await User.find().populate(‘pets’);

// The users object would look something like the following
// [{
// id: 123,
// firstName: ‘Foo’,
// lastName: ‘Bar’,
// pets: [{
// id: 1,
// breed: ‘labrador’,
// type: ‘dog’,
// name: ‘fido’,
// user: 123
// }]
// }]


```

<docmeta name=”displayName” value=”One-to-many”>




            

          

      

      

    

  

    
      
          
            
  # One-to-one

AKA “has one”

### Overview

A one-to-one association states that a model may only be associated with one other model. In order
for the model to know which other model it is associated with, a foreign key must be included on one of the
records along with a unique database constraint on it.

There are currently two ways of handling this association in Waterline.

### Has one using a collection

In this example, we are associating a Pet with a User. The User may only have one Pet, and a Pet can only have one User. However, in order to query from both sides in this example, we must add a collection attribute to the User model. This allows us to call both User.find().populate(‘pet’) along with Pet.find().populate(‘owner’).

The two models will stay in sync by updating the Pet model’s owner attribute. Adding the unique property ensures that only one value for each owner will exist in the database. The downside is that when populating from the User side, you will always get an array back.

```javascript
// myApp/api/models/Pet.js
module.exports = {

	attributes: {
	
	name: {
	type: ‘string’

},
color: {

type: ‘string’

},
owner:{

model:’user’,
unique: true

}

}

}

```javascript
// myApp/api/models/User.js
module.exports = {



	attributes: {
	
	name: {
	type: ‘string’





},
age: {


type: ‘number’




},
pet: {


collection:’pet’,
via: ‘owner’




}





}






}

### Has one manual sync

In this example, we are associating a Pet with a User. The User may only have one Pet and a Pet can only have one User. However, in order to query from both sides, a model property is added to the User model. This allows us to call both User.find().populate(‘pet’) along with Pet.find().populate(‘owner’).

Note that the two models will not stay in sync, so when updating one side you must remember to update the other side as well.

```javascript
// myApp/api/models/Pet.js
module.exports = {

	attributes: {
	
	name: {
	type: ‘string’

},
color: {

type: ‘string’

},
owner:{

model:’user’

}

}

}

```javascript
// myApp/api/models/User.js
module.exports = {



	attributes: {
	
	name: {
	type: ‘string’





},
age: {


type: ‘number’




},
pet: {


model:’pet’




}





}






}

<docmeta name=”displayName” value=”One-to-one”>




            

          

      

      

    

  

    
      
          
            
  # Reflexive associations

### Overview

In most cases, an association will be between attributes of two different models&mdash;for example, a relationship between a User model and a Pet model.  However, it is also possible to have a relationship between two attributes in the _same_ model.  This is called a _reflexive association_.

Consider the following User model:

```javascript
// myApp/api/models/User.js
module.exports = {

	attributes: {
	
	firstName: {
	type: ‘string’

},
lastName: {

type: ‘string’

},

// Add a singular reflexive association
bestFriend: {

model: ‘user’,

},

// Add one side of a plural reflexive association
parents: {

collection: ‘user’,
via: ‘children’

},

// Add the other side of a plural reflexive association
children: {

collection: ‘user’,
via: ‘parents’

},

// Add another plural reflexive association, this one via-less
bookmarkedUsers: {

collection: ‘user’

}

}

};

The reflexive associations in the example User model above operate just like any other associations. The singular bestFriend attribute can be set to the primary key of another user (or for the narcissistic, to the same user!). The parents and children attributes can be modified using .addToCollection(), .removeFromCollection() and .replaceCollection(). Note that as with all plural associations, adding to one side will allow the relationship to be accessed by either side, so running:

`javascript
// Add User #12 as a parent of User #23
await User.addToCollection(23, 'parents', 12);
// Find User #12 and populate its children
var userTwelve = await User.findOne(12).populate('children');
`

would return something like:

```javascript
{


id: 12,
firstName: ‘John’,
lastName: ‘Doe’,
bestFriend: null,
children: [



	{
	id: 23,
firstName: ‘Jane’,
lastName: ‘Doe’,
bestFriend: null





}




]






}

### Notes
> As with all &ldquo;via-less&rdquo; plural associations, reflexive via-less associations are only accessible from the side on which they are declared.  In the above User model, you can do User.findOne(55).populate(‘bookmarkedUsers’) to find all of the users that User #55 bookmarked, but there&rsquo;s no way to get a list of all of the users that have bookmarked User #55.  To do so would require an additional attribute (e.g. bookmarkedBy) that would be joined to bookmarkedUsers using the via property.

<docmeta name=”displayName” value=”Reflexive associations”>




            

          

      

      

    

  

    
      
          
            
  # Through associations

AKA “has many through”

### Overview

Many-to-many through associations behave in the same way as many-to-many associations, except that in a many-to-many through association, the join table is created automatically. In a many-to-many through assocation, you define a model containing two fields that correspond to the two models you will be joining together. When defining an association, you will add the through key to show that the model should be used instead of the automatic join table.

### Has many through example

```javascript
// myApp/api/models/User.js
module.exports = {

	attributes: {
	
	name: {
	type: ‘string’

},
pets:{

collection: ‘pet’,
via: ‘owner’,
through: ‘petuser’

}

}

}

```javascript
// myApp/api/models/Pet.js
module.exports = {



	attributes: {
	
	name: {
	type: ‘string’





},
color: {


type: ‘string’




},
owners:{


collection: ‘user’,
via: ‘pet’,
through: ‘petuser’




}





}






}

```javascript
// myApp/api/models/PetUser.js
module.exports = {

	attributes: {
	
	owner:{
	model:’user’

},
pet: {

model: ‘pet’

}

}

}

By using the PetUser model, we can use [.populate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/populate) on both the User model and Pet model just as we do in a normal [many-to-many](https://sailsjs.com/documentation/concepts/models-and-orm/associations/many-to-many) association.

> Currently, if you would like to add additional information to the through table, it will not be available when calling .populate. To do this you will need to query the through model manually.

<docmeta name=”displayName” value=”Through associations”>

 # Access control and permissions

Policies in Sails are designed for controlling binary (“yes or no”) access to particular actions. They work great for checking whether a user is logged in or for other simple “yes or no” checks, like whether the logged in user is a “super admin”.

To see an example of access control in action—as well as login, authentication, and password recovery—generate the starter web app:

```bash
sails new foo

# Then choose “Web App”
```

Dynamic permissions

For more complex permission schemes, like those in which a requesting user agent’s access rights depend on both _who they are_ and _what they’re trying to do_, you’ll want to involve the database. While you can use policies to accomplish this, it’s usually more straightforward and maintainable to use a [helper](https://sailsjs.com/documentation/concepts/helpers).

For example, you might create api/helpers/check-permissions.js:

```javascript
module.exports = {


friendlyName: ‘Check permissions’,

description: ‘Look up a user's “rights” within a particular organization.’,


	inputs: {
	userId: { type: ‘number’, required: true },
orgId: { type: ‘number’, required: true }





},


	exits: {
	
	success: {
	outputFriendlyName: ‘Rights’,
outputDescription: A user’s “rights” within an org.,
outputType: [‘string’]





},
orgNotFound: {


description: ‘No such organization exists.’




}





},


	fn: async function(inputs, exits) {
	var org = await Organization.findOne(inputs.orgId)
.populate(‘adminUsers’, { id: inputs.userId })
.populate(‘regularUsers’, { id: inputs.userId });

if (!org) { throw ‘orgNotFound’; }

var rights = [];
if (org.regularUsers.length !== 0) {


rights = [‘basicAccess’, ‘inviteRegularUsers’];





	} else if (org.adminUsers.length !== 0) {
	rights = [‘basicAccess’, ‘inviteRegularUsers’, ‘removeRegularUsers’, ‘inviteOrgAdmins’];



	} else if (org.owner === inputs.userId) {
	rights = [‘basicAccess’, ‘inviteRegularUsers’, ‘removeRegularUsers’, ‘inviteOrgAdmins’, ‘removeOrDemoteOrgAdmins’];





}
// ^^This could be as simple or as granular as you need, e.g.
// [‘basicAccess’, ‘inviteRegularUsers’, ‘inviteOrgAdmins’, ‘removeRegularUsers’, ‘removeOrDemoteOrgAdmins’]

return exits.success(rights);





}





};

Your action&mdash;`api/controllers/demote-org-admin.js`, for example&mdash;might look like this:

```javascript
//…
var rights = await checkPermissions(this.req.session.userId, inputs.orgId)
.intercept(‘orgNotFound’, ‘notFound’);

	if (!_.contains(rights, ‘removeOrDemoteOrgAdmins’)) {
	throw ‘forbidden’;

}

await Organization.removeFromCollection(inputs.orgId, ‘adminUsers’, inputs.targetUserId);
await Organization.addToCollection(inputs.orgId, ‘regularUsers’, inputs.targetUserId);

return exits.success();
```

> ### Note
> Remember that, while we used checkPermissions(…,…) here, we could have
> also used .with() and switched to named parameters:
>
> `js
> await checkPermissions.with({
>   userId: this.req.session.userId,
>   orgId: inputs.orgId
> });
> `
>
> You may choose to use different ways of calling a helper in order to enhance code readability in different situations.        When in doubt, a good best practice is to optimize first for explicitness, then for readability, and last for conciseness.  Still, these priorities may shift as you implement a helper more frequently and become more familiar with its usage.

<docmeta name=”displayName” value=”Access Control and Permissions”>




            

          

      

      

    

  

    
      
          
            
  # Policies
### Overview

Policies in Sails are versatile tools for authorization and access control: they let you execute some logic _before_ an action is run in order to determine whether or not to continue processing the request.  The most common use-case for policies is to restrict certain actions to _logged-in users only_.

> NOTE: policies apply only to controllers and actions, not to views.  If you define a route in your [routes.js config file](https://sailsjs.com/documentation/reference/configuration/sails-config-routes) that points directly to a view, no policies will be applied to it.  To make sure policies are applied, you can instead define an action which displays your view and then point your route to that action. &nbsp;

### When to use policies

It’s best to avoid implementing numerous or complex policies in your app.  Instead, when implementing features like granular, role-based permissions, rely on your [actions](https://sailsjs.com/documentation/concepts/actions-and-controllers) to reject unwanted access.  Your actions should also be responsible for any necessary personalization of the view locals and JSON response data you send in the response.

For example, if you need to implement user-level or role-based permissions in your application, the most straightforward solution is to take care of the relevant checks at the top of your controller action&mdash;either inline or by calling out to a helper.  Following this best practice will significantly improve the maintainability of your code.

### Protecting actions and controllers with policies

Sails has a built in ACL (access control list) located in config/policies.js.  This file is used to map policies to actions and controllers.

This file is  declarative, meaning it describes what the permissions for your app should look like rather than how they should work.  This makes it easier for new developers to understand what’s going on, and it makes your app more flexible as requirements inevitably change over time.

The config/policies.js file is a dictionary whose properties and values differ depending on whether you are applying policies to [controllers](https://sailsjs.com/documentation/concepts/actions-and-controllers#?controllers) or [standalone actions](https://sailsjs.com/documentation/concepts/actions-and-controllers#?standalone-actions).

##### Applying policies to a controller

To apply policies to a controller, use the controller name as the name of a property in the  config/policies.js dictionary, and set its value to a dictionary mapping actions in that controller to policies that should be applied to them.  Use * to represent &ldquo;all unmapped actions&rdquo;.  A policy’s _name_ is the same as its filename, minus the file extension.

```js
module.exports.policies = {

	UserController: {
	// By default, require requests to come from a logged-in user
// (runs the policy in api/policies/isLoggedIn.js)
‘*’: ‘isLoggedIn’,

// Only allow admin users to delete other users
// (runs the policy in api/policies/isAdmin.js)
‘delete’: ‘isAdmin’,

// Allow anyone to access the login action, even if they’re not logged in.
‘login’: true

}

};

Applying policies to standalone actions

To apply policies to one or more standalone actions, use the action path (relative to api/controllers) as a property name in the config/policies.js dictionary, and set the value to the policy or policies that should apply to those actions. By using a wildcard * at the end of the action path, you can apply policies to all actions that begin with that path. Here’s the same set of policies as above, rewritten to apply to standalone actions:

```js
module.exports.policies = {


‘user/*’: ‘isLoggedIn’,
‘user/delete’: ‘isAdmin’,
‘user/login’: true






}

> Note that this example differs slightly from that of the controller-based policies in that the isLoggedIn policy will apply to all actions in the api/controllers/user folder _and subfolders_ (except for user/delete and user/login, as is explained in the next section).

##### Policy ordering and precedence

It is important to note that policies do _not_ cascade.  In the examples above, the isLoggedIn policy will be applied to all actions in the UserController.js file (or standalone actions living under api/controllers/user ) _except for delete and `login`_.  If you wish to apply multiple policies to an action, list the policies in an array. For example:

`javascript
'getEncryptedData': ['isLoggedIn', 'isInValidRegion']
`

##### Using policies with blueprint actions

Sails’ built-in [blueprint API](https://sailsjs.com/documentation/concepts/blueprints) is implemented using regular Sails actions.  The only difference is that blueprint actions are implicit.

To apply your policies to blueprint actions, set up your policy mappings just like we did in the example above, but pointed at the name of the relevant implicit [blueprint action](https://sailsjs.com/documentation/concepts/blueprints/blueprint-actions) in your controller (or as a standalone action).  For example:
```js
module.exports.policies = {

	UserController: {
	// Apply the ‘isLoggedIn’ policy to the ‘update’ action of ‘UserController’
update: ‘isLoggedIn’

}

};

or
```js
module.exports.policies = {


‘user/update’: ‘isLoggedIn’






};

##### Global policies

You can apply a policy to _all_ actions that are not otherwise explicitly mapped by using the * property.  For example:

```js
module.exports.policies = {

‘*’: ‘isLoggedIn’,
‘user/login’: true

};

This would apply the isLoggedIn policy to every action except the login action in api/controllers/user/login.js (or in api/controllers/UserController.js).

Built-in policies
Sails provides two built-in policies that can be applied globally or to a specific controller or action:

	true: public access (allows anyone to get to the mapped controller/action)

	false: NO access (allows no-one to access the mapped controller/action)

‘*’: true is the default policy for all controllers and actions. In production, it’s good practice to set this to false to prevent access to any logic you might have inadvertently exposed.

Writing Your First Policy

Here is a simple isLoggedIn policy to prevent access for unauthenticated users. It checks the session for a userId property, and if it doesn’t find one, sends the default [forbidden response](https://sailsjs.com/documentation/concepts/extending-sails/custom-responses/default-responses#?resforbidden. For many apps, this will likely be the only policy needed. The following example assumes that, in the controller actions for authenticating a user, you set req.session.userId to a [truthy](https://developer.mozilla.org/en-US/docs/Glossary/Truthy) value.

```javascript
// policies/isLoggedIn.js
module.exports = async function (req, res, proceed) {


// If req.me is set, then we know that this request originated
// from a logged-in user.  So we can safely proceed to the next policy–
// or, if this is the last policy, the relevant action.
// > For more about where req.me comes from, check out this app’s
// > custom hook (api/hooks/custom/index.js).
if (req.me) {


return proceed();




}

//–•
// Otherwise, this request did not come from a logged-in user.
return res.forbidden();






};

<docmeta name=”displayName” value=”Policies”>
<docmeta name=”nextUpLink” value=”/documentation/concepts/helpers”>
<docmeta name=”nextUpName” value=”Helpers”>




            

          

      

      

    

  

    
      
          
            
  # Using Sails programmatically

### Overview

Usually you will interact with Sails through its [command-line interface](https://sailsjs.com/documentation/reference/command-line-interface), starting servers with [sails lift](https://sailsjs.com/documentation/reference/command-line-interface/sails-lift), but Sails apps can also be started and manipulated from within other Node apps by using the [programmatic interface](https://sailsjs.com/documentation/reference/application).  One of the main uses of this interface is to run Sails apps inside of automated test suites.

### Creating a Sails app programmatically

To create a new Sails app from within a Node.js script, use the Sails _constructor_.  The same constructor can be used to create as many distinct Sails apps as you like:

`javascript
var Sails = require('sails').constructor;
var mySailsApp = new Sails();
var myOtherSailsApp = new Sails();
`

### Configuring, starting and stopping Sails apps programmatically

Once you have a reference to a new Sails app, you can use [.load()](https://sailsjs.com/documentation/reference/application/sails-load) or [.lift()](https://sailsjs.com/documentation/reference/application/sails-lift) to start it.  Both methods take two arguments: a dictionary of configuration options, and a callback function that will be run after the Sails app starts.

> When Sails is started programmatically, it will still use the api, config and other folders underneath the current working directory to load controllers, models, and configuration options.  One notable exception is that .sailsrc files will _not_ be loaded when starting apps this way.

> Any configuration options sent as arguments to .load() or .lift() will take precedence over options loaded from anywhere else.

> Configuration options set via environment variables will _not_ automatically be applied to Sails app started programmatically, with the exception of NODE_ENV and PORT.

> To load configuration options from .sailsrc files and environment variables, use the rc module that Sails makes available via require(‘sails/accessible/rc’).

The difference between .load() and .lift() is that .lift() takes the additional steps of (1) running the app’s [bootstrap](https://sailsjs.com/documentation/reference/configuration/sails-config-bootstrap), if any, and (2) starting an HTTP server on the port configured via sails.config.port (1337 by default).  This allows you to make HTTP requests to the lifted app.  To make requests to an app started with .load(), you can use the [.request()](https://sailsjs.com/documentation/reference/application/sails-request) method of the loaded app.

##### .lift()

Starting an app with .lift() on port 1338 and sending a POST request via HTTP:

```javascript
var request = require(‘request’);
var Sails = require(‘sails’).constructor;

var mySailsApp = new Sails();
mySailsApp.lift({

port: 1338
// Optionally pass in any other programmatic config overrides you like here.

	}, function(err) {
	
	if (err) {
	console.error(‘Failed to lift app. Details:’, err);
return;

}

// –•
// Make a request using the “request” library and display the response.
// Note that you still must have an api/controllers/FooController.js file
// under the current working directory, with an index action,
// or a /foo or POST /foo route set up in config/routes.js.
request.post(‘/foo’, function (err, response) {

	if (err) {
	console.log(‘Could not send HTTP request. Details:’, err);

}
else {

console.log(‘Got response:’, response);

}

// >–
// In any case, whether the request worked or not, now we need to call .lower().
mySailsApp.lower(function (err) {

	if (err) {
	console.log(‘Could not lower Sails app. Details:’,err);
return;

}

// –•
console.log(‘Successfully lowered Sails app.’);

});//</lower sails app>

});//</request.post() :: send http request>

});//</lift sails app>
```

Starting an app with .lift() using the current environment and .sailsrc settings:

```javascript
var Sails = require(‘sails’).constructor;

var rc = require(‘sails/accessible/rc’);

var mySailsApp = new Sails();
mySailsApp.lift(rc(‘sails’), function(err) {

});

.load()

Here’s an alternative to the previous example: starting a Sails app with .load() and sending what is _semantically_ the same POST request, but this time we’ll use a virtual request instead of HTTP:

```javascript
mySailsApp.load({


// Optionally pass in any programmatic config overrides you like here.





	}, function(err) {
	
	if (err) {
	console.error(‘Failed to load app.  Details:’, err);
return;





}

// –•
// Make a request using the “request” method and display the response.
// Note that you still must have an api/controllers/FooController.js file
// under the current working directory, with an index action,
// or a /foo or POST /foo route set up in config/routes.js.
mySailsApp.request({url:’/foo’, method: ‘post’}, function (err, response) {



	if (err) {
	console.log(‘Could not send virtual request.  Details:’, err);





}
else {


console.log(‘Got response:’, response);




}

// >–
// In any case, whether the request worked or not, now we need to call .lower().
mySailsApp.lower(function (err) {



	if (err) {
	console.log(‘Could not lower Sails app.  Details:’,err);
return;





}

// –•
console.log(‘Successfully lowered Sails app.’);




});//</lower sails app>




});//</send virtual request to sails app>





});//</load sails app (but not lift!)>
```

.lower()

To stop an app programmatically, use .lower():

```javascript
mySailsApp.lower(function(err) {



	if (err) {
	console.log(‘An error occured when attempting to stop app:’, err);
return;





}

// –•
console.log(‘Lowered app successfully.’);






});

##### Using moduleDefinitions to add actions, models and more

> Warning:  declarative loading of modules with the moduleDefinitions setting is currently experimental, and may undergo breaking changes _even between major version releases_.  Before using this setting, be sure your project’s Sails dependency is pinned to an exact version (i.e. no ^).

Whenever a Sails app starts, it typically loads and initializes all modules stored in api/* (e.g. models from api/models, policies from api/policies, etc.).  You can add _additional_ modules by specifying them in the runtime configuration passed in as the first argument to .load() or .lift(), using the moduleDefinitions key.  This is mainly useful when running tests.

The following Sails modules can be added programmatically:



Module type          | Config key        | Details




:——————   |:———-        |:——-
Actions | controllers.moduleDefinitions | A dictionary mapping [standalone action](https://sailsjs.com/documentation/concepts/actions-and-controllers#?standalone-actions) paths to action definitions ([classic](https://sailsjs.com/documentation/concepts/actions-and-controllers#?classic-actions) or [Actions2](https://sailsjs.com/documentation/concepts/actions-and-controllers#?actions-2)).
Helpers | helpers.moduleDefinitions | A dictionary mapping helper names to helper definitions.
Models  | orm.moduleDefinitions.models | A dictionary mapping model identities (lower-cased model names) to model definitions.
Policies | policies.moduleDefinitions | A dictionary mapping policy names (e.g. isAdmin) to policy functions.




### Reference

The full reference for Sails’ programmatic interface is available in [Reference > Application](https://sailsjs.com/documentation/reference/application).

<docmeta name=”displayName” value=”Programmatic usage”>




            

          

      

      

    

  

    
      
          
            
  # Tips and tricks for programmatic usage

When loading a Sails app programmatically, you will usually want to turn off hooks that are not being used, both for optimization and to ensure minimal interference between the Sails app and the Node script enclosing it.  To turn off a hook, set it to false in the hooks dictionary that is sent as part of the first argument to .load() or .lift().

You may also want to turn off Sails [globals](https://sailsjs.com/documentation/concepts/globals), _especially when loading more than one Sails app simultaneously_.  Since all Node apps in the same process share the same globals, starting more than one Sails app with globals turned on is a surefire way to end up with collisions between models, controllers, and other app-wide entities.

```javascript
// Turn off globala and commonly unused hooks in programmatic apps
mySailsApp.load({

	hooks: {
	grunt: false,
sockets: false,
pubsub: false

},
globals: false

})

Finally, note that while you can use the Sails constructor to programmatically create and start as many Sails apps as you like, each app can only be started once. Once you call .lower() on an app, it cannot be started again.

<docmeta name=”displayName” value=”Tips and tricks”>

 # Realtime communication in a multi-server (aka “clustered”) environment

With the default configuration, Sails allows realtime communication between a single server and all of its connected clients. When [scaling your Sails app to multiple servers](https://sailsjs.com/documentation/concepts/deployment/scaling), some extra setup is necessary in order for realtime messages to be reliably delivered to clients regardless of which server they’re connected to. This setup typically involves:

	Setting up a [hosted](https://www.google.com/search?q=hosted+redis) instance of [Redis](http://redis.io/).

2. Installing [@sailshq/socket.io-redis](https://npmjs.com/package/@sailshq/socket.io-redis) as a dependency of your Sails app.
1. Updating your [sails.config.sockets.adapter](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets#?commonlyused-options) setting to @sailshq/socket.io-redis and setting the appropriate host, password, etc. fields to point to your hosted Redis instance.

No special setup is necessary in your hosted Redis install; just plug the appropriate host address and credentials into your /config/sockets.js file and the @sailshq/socket.io-redis adapter will take care of everything for you.

> Note: When operating in a multi-server environment, some socket methods without callbacks are _volatile_, meaning that they take an indeterminate amount of time to complete, even if the code appears to execute immediately. It’s good to keep this in mind when considering code that would, for example, follow a call to [.addRoomMembersToRoom()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/add-room-members-to-room) immediately with a call to [.broadcast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-broadcast). In such cases, the new room member probably won’t receive the newly broadcasted message, since it is unlikely that the updated room membership had already been propagated to the other servers in the cluster when .broadcast() was called.

Reference

	See the full reference for the [sails.io.js library](https://sailsjs.com/documentation/reference/web-sockets/socket-client) to learn how to use sockets on the client side to communicate with your Sails app.

	See the [sails.sockets](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) reference to learn how to send messages from the server to connected sockets

	See the [resourceful pub-sub](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) reference to learn how to use Sails blueprints to automatically send realtime messages about changes to your [models](https://sailsjs.com/documentation/concepts/models-and-orm/models).

	Visit the [Socket.io](http://socket.io) website to learn more about the underlying library Sails uses for realtime communication

<docmeta name=”displayName” value=”Multi-server environments”>

 # Realtime communication between the client and the server

The easiest way to send a realtime message from a client to a Sails app is by using the [sails.io.js](https://sailsjs.com/documentation/reference/web-sockets/sails-io-js) library. This library allows you to easily connect sockets to a running Sails app, and provides methods for making requests to [Sails routes](https://sailsjs.com/documentation/concepts/routes) that are handled in the same manner as a “regular” HTTP request.

The sails.io.js library is automatically added to the default [layout template](https://sailsjs.com/documentation/concepts/views/layouts) of new Sails apps using a <script> tag. When a web page loads the sails.io.js script, it attempts to create a new [client socket](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket) and connect it to the Sails app, exposing it as the global variable io.socket.

Examples

Include the sails.io.js library, and make a request to the /hello route of a Sails app using the automatically-connected socket:

```html
<script type=”text/javascript” src=”/js/dependencies/sails.io.js”></script>
<script type=”text/javascript”>
io.socket.get(‘/hello’, function responseFromServer (body, response) {


console.log(“The server responded with status ” + response.statusCode + ” and said: “, body);




});
</script>
```

Now consider this more advanced (and less common) use case: let’s disable the eager (auto-connecting) socket, and instead create a new client socket manually. When it successfully connects to the server, we’ll make it log a message:
```html
<script type=”text/javascript” src=”/js/dependencies/sails.io.js” autoConnect=”false”></script>
<script type=”text/javascript”>
var mySocket = io.sails.connect();
mySocket.on(‘connect’, function onConnect () {


console.log(“Socket connected!”);




});
</script>
```

Socket requests vs traditional AJAX requests

You may have noticed that a client socket .get() is very similar to making an AJAX request, for example by using jQuery’s $.get() method. This is intentional—the goal is for you to be able to get the same response from Sails no matter where the request originated from. The benefit to making the request using a client socket is that the [controller action](https://sailsjs.com/documentation/concepts/controllers#?actions) in your Sails app will have access to the socket which made the request, allowing it to _subscribe_ that socket to realtime notifications (see [sending realtime messages from the server](https://sailsjs.com/documentation/concepts/realtime/on-the-server)).

Reference

	View the full [sails.io.js library](https://sailsjs.com/documentation/reference/web-sockets/socket-client) reference.

	See the [sails.sockets](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) reference to learn how to send messages from the server to connected sockets

	See the [resourceful pub-sub](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) reference to learn how to use Sails blueprints to automatically send realtime messages about changes to your [models](https://sailsjs.com/documentation/concepts/models-and-orm/models).

	Visit the [Socket.io](http://socket.io) website to learn more about the underlying library Sails uses for realtime communication

<docmeta name=”displayName” value=”On the client”>

 # Sending realtime messages from the server to one or more clients

Overview

Sails exposes two APIs for communicating with connected socket clients: the higher-level [resourceful pubsub API](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub), and the lower-level [sails.sockets API](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets).

Resourceful PubSub

The Resourceful PubSub (Published/Subscribe) API provides a high-level way to subscribe sockets to Sails model classes and instances. It is entirely possible to create a rich realtime experience (for example, a chat app) using just this API. Sails blueprints use Resourceful PubSub to automatically send out notifications about new model instances and changes to existing instances, but you can use them in your custom controller actions as well.

Example

Create a new User model instance and notify all interested clients

```javascript
// Create the new user
User.create({


name: ‘johnny five’





	}).exec(function(err, newUser) {
	
	if (err) {
	// Handle errors here!
return;





}
// Tell any socket watching the User model class
// that a new User has been created!
User.publishCreate(newUser);






});

### sails.sockets

The sails.sockets API allows for lower-level communication directly with sockets, using methods like [sails.sockets.join()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-join) (subscribe a socket to all messages sent to a particular “room”), [sails.sockets.leave()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-leave) (unsubscribe a socket from a room), and [sails.sockets.broadcast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-broadcast) (broadcast a message to all subscribers in one or more rooms).

##### Example

Add a socket to the room “funSockets”

`javascript
sails.sockets.join(someSocket, "funSockets");
`

Broadcast a “hello” message to the “funSockets” room.  This message will be received by all client sockets that have (1) been added to the “funSockets” room on the server with sails.sockets.join() and (2) added a listener for the “hello” event on the client with [socket.on(‘hello’, …)](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-on).

`javascript
sails.sockets.broadcast("funSockets", "hello", "Hello to all my fun sockets!");
`

### Reference


	View the full [sails.sockets](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) API reference


	See the reference for the [sails.io.js library](https://sailsjs.com/documentation/reference/web-sockets/socket-client) to learn how to use sockets on the client side to communicate with your Sails app.


	See the [resourceful pub-sub](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) reference to learn how to use Sails blueprints to automatically send realtime messages about changes to your [models](https://sailsjs.com/documentation/concepts/models-and-orm/models).


	Visit the [Socket.io](http://socket.io) website to learn more about the underlying library Sails uses for realtime communication




<docmeta name=”displayName” value=”On the server”>




            

          

      

      

    

  

    
      
          
            
  # Realtime communication (aka Sockets)

### Overview

Sails apps are capable of full-duplex, realtime communication between the client and server.  This means that a client (e.g. browser tab, Raspberry Pi, etc.) can maintain a persistent connection to a Sails backend, and messages can be sent from client to server (e.g. AJAX) or from server to client (e.g. “comet”) at any time.  Two common uses of realtime communication are live chat implementations and multiplayer games.  Sails implements realtime on the server using the [socket.io](http://socket.io) library, and on the client using the [sails.io.js](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-on) library.  Throughout the Sails documentation, the terms socket and websocket are commonly used to refer to a two-way, persistent communication channel between a Sails app and a client.

Communicating with a Sails app via sockets is similar to using AJAX, in that both methods allow a web page to interact with the server without refreshing.  However, sockets differ from AJAX in two important ways: first, a socket can stay connected to the server for as long as the web page is open, allowing it to maintain _state_ (AJAX requests, like all HTTP requests, are _stateless_).  Second, because of the always-on nature of the connection, a Sails app can send data down to a socket at any time (hence the “realtime” moniker), whereas AJAX only allows the server to respond when a request is made.

### Realtime model updates with resourceful pub-sub

Sockets making requests to Sails’ [blueprint actions](https://sailsjs.com/documentation/reference/blueprint-api) are automatically subscribed to realtime messages about the models they retrieve via the [resourceful pub-sub API](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub).  You can also use this API in your custom controller actions to send out messages to clients interested in certain models.

##### Example

Connect a client-side socket to the server, subscribe to the user event, and request /user to subscribe to current and future User model instances.

```html
<!– Simply include the sails.io.js script, and a client socket will be created for you –>
<script type=”text/javascript” src=”/js/dependencies/sails.io.js”></script>
<script type=”text/javascript”>
// The automatically-created socket is exposed as io.socket.
// Use .on() to subscribe to the ‘user’ event on the client.
// This event is sent by the Sails “create”, “update”,
// “delete”, “add” and “remove” blueprints to any socket that
// is subscribed to one or more User model instances.
io.socket.on(‘user’, function gotHelloMessage (data) {

console.log(‘User alert!’, data);

});
// Using .get(‘/user’) will retrieve a list of current User models,
// subscribe this socket to those models, AND subscribe this socket
// to notifications about new User models when they are created.
io.socket.get(‘/user’, function gotResponse(body, response) {

console.log(‘Current users: ‘, body);

})
</script>
```

### Custom realtime communication with sails.sockets

Sails exposes a rich API on both the client and the server for sending custom realtime messages.

##### Example

Here’s the client-side code to connect a socket to the Sails/Node.js server and listen for an socket event named “hello”:

```html
<!– Simply include the sails.io.js script, and a client socket will be created and auto-connected for you –>
<script type=”text/javascript” src=”/js/dependencies/sails.io.js”></script>
<script type=”text/javascript”>

// The auto-connecting socket is exposed as io.socket.

// Use io.socket.on() to listen for the ‘hello’ event:
io.socket.on(‘hello’, function (data) {

console.log(‘Socket ‘ + data.id + ‘ joined the party!’);

});
</script>
```

Then, also on the client, we can send a _socket request_.  In this case, we’ll wire up the browser to send a socket request when a particular button is clicked:

```js
$(‘button#say-hello’).click(function (){

// And use io.socket.get() to send a request to the server:
io.socket.get(‘/say/hello’, function gotResponse(data, jwRes) {

console.log(‘Server responded with status code ‘ + jwRes.statusCode + ‘ and data: ‘, data);

});

});

```

Meanwhile, on the server…

To respond to requests to GET /say/hello, we use an action.  In our action, we’ll subscribe the requesting socket to the “funSockets” room, then broadcast a “hello” message to all sockets in that room (excluding the new one).

```javascript
// In /api/controllers/SayController.js
module.exports = {

hello: function(req, res) {

// Make sure this is a socket request (not traditional HTTP)
if (!req.isSocket) {

return res.badRequest();

}

// Have the socket which made the request join the “funSockets” room.
sails.sockets.join(req, ‘funSockets’);

// Broadcast a notification to all the sockets who have joined
// the “funSockets” room, excluding our newly added socket:
sails.sockets.broadcast(‘funSockets’, ‘hello’, { howdy: ‘hi there!’}, req);

// ^^^
// At this point, we’ve blasted out a socket message to all sockets who have
// joined the “funSockets” room. But that doesn’t necessarily mean they
// are _listening_. In other words, to actually handle the socket message,
// connected sockets need to be listening for this particular event (in this
// case, we broadcasted our message with an event name of “hello”). The
// client-side code you’d need to write looks like this:
//
// io.socket.on(‘hello’, function (broadcastedData){
// console.log(data.howdy);
// // => ‘hi there!’
// }
//

// Now that we’ve broadcasted our socket message, we still have to continue on
// with any other logic we need to take care of in our action, and then send a
// response. In this case, we’re just about wrapped up, so we’ll continue on

// Respond to the request with a 200 OK.
// The data returned here is what we received back on the client as data in:
// io.socket.get(‘/say/hello’, function gotResponse(data, jwRes) { /* … */ });
return res.json({

anyData: ‘we want to send back’

});

}

}

Reference

	See the full reference for the [sails.io.js library](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-on) to learn how to use sockets on the client side to communicate with your Sails app.

	See the [sails.sockets](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) reference to learn how to send custom messages from the server to connected sockets.

	See the [resourceful pub-sub](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) reference to learn how Sails’ blueprint API automatically sends realtime messages about changes to your [models](https://sailsjs.com/documentation/concepts/models-and-orm/models).

	Visit the [Socket.io](http://socket.io) website to learn more about the underlying library Sails uses for realtime communication

<docmeta name=”displayName” value=”Realtime”>

 # Custom routes

Overview

Sails allows you to explicitly route URLs in several different ways in your config/routes.js file. Every route configuration consists of an address and a target, for example:

`js
'GET /foo/bar': 'UserController.subscribe'
^^^address^^^ ^^^^^^^^^^target^^^^^^^^^^
`

Route address

The route address indicates what URL should be matched in order to apply the handler and options defined by the target. A route consists of an optional verb and a mandatory path:

`js
'POST /foo/bar'
^verb^ ^^path^^
`

If no verb is specified, the route will match any CRUD method (GET, PUT, POST, DELETE or PATCH). If ALL is specified as the verb, the route will match _any_ method.

Note the initial / in the path–all paths should start with one in order to work properly.

Wildcards and dynamic parameters

In addition to specifying a static path like foo/bar, you can use * as a wildcard:

`js
'/*'
`

will match all paths, where as:

`js
'/user/foo/*'
`

will match all paths that start with /user/foo.

> Note: When using a route with a wildcard, such as ‘/*’, be aware that this will also match requests to static assets (i.e. /js/dependencies/sails.io.js) and override them. To prevent this, consider using the skipAssets option [described below](https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-target-options).

Another way to capture parts of the address is to use pattern variables. This lets a route match special named parameters which _never contain any / characters_ by using the :paramName pattern variable syntax instead of the *:

`js
'/user/foo/bar/:name'
`

Or for an optional path parameter, add ? to the end of the pattern variable:

`js
'/user/foo/bar/:name?'
`

This will match _almost_ the same requests as /user/foo/bar/*, but will provide the value of the dynamic portions of the route URL to the route handler as parameter values (e.g. req.param(‘name’)).

> Note that the wildcard (*) syntax matches slashes, where the URL pattern variable (:) syntax does not. So in the example above, given the route address GET /user/foo/bar/*, incoming requests with URLs like /user/foo/bar/baz/bing/bong/bang would match (whereas if you used the :name syntax, the same URL would not match.)

Regular expressions in addresses

In addition to the wildcard address syntax, you may also use regular expressions to define the URLs that a route should match. The syntax for defining an address with a regular expression is:

‘r|<regular expression string>|<comma-delimited list of param names>’

That’s the letter “r”, followed by a pipe character |, a regular expression string without delimiters, another pipe, and a list of parameter names that should be mapped to parenthesized groups in the regular expression. For example:

‘r|^/\d+/(\w+)/(\w+)$|foo,bar”: “message/my-action’

Will match /123/abc/def, running the action in api/controllers/message/my-action.js, and supplying the values abc and def as req.param(‘foo’) and req.param(‘bar’), respectively.

Note the double-backslash in \d and \w; this escaping is necessary for the regular expression to work correctly!

About route ordering

While you are free to add items to your config/routes.js file in any order, be aware that Sails will internally sort your routes by _inclusiveness_, a measure of how many potential requests an address can handle. In general, routes with addresses containing no dynamic components will be matched first, followed by routes with dynamic parameters, followed by those with wildcards. This prevents routes from blocking each other (for example, a /* route, if left at the top of the list, would respond to all requests and no other routes would ever be matched).

If you have any [regular expression addresses](https://sailsjs.com/documentation/concepts/routes/custom-routes#?regular-expressions-in-addresses), they will be left in the order you specify. For example, if your config/routes.js file contains a GET /foo/bar route followed by a GET r|^/foo/\d+$| route, the second route will always be sorted to appear immediately after GET /foo/bar. This is due to the extreme difficulty of determining the inclusiveness of a regular expression route. Take care when specifying these routes that you order them so that they won’t match more requests than intended.

Route target

The address portion of a custom route specifies which URLs the route should match. The target portion specifies what Sails should do after the match is made. A target can take one of several different forms. In some cases you may want to chain multiple targets to a single address by placing them in an array, but in most cases each address will have only one target. The different types of targets are discussed below, followed by a discussion of the various options that can be applied to them.

Controller / action target syntax

This syntax binds a route to an action in a [controller file](https://sailsjs.com/documentation/concepts/actions-and-controllers#?controllers). The following four routes are equivalent:

`js
'GET /foo/go': 'FooController.myGoAction',
'GET /foo/go': 'foo.myGoAction',
'GET /foo/go': { controller: 'foo', action: 'myGoAction' },
'GET /foo/go': { controller: 'FooController', action:'myGoAction' },
`

Each one maps GET /foo/go to the myGoAction action of the controller in api/controllers/FooController.js, or to the action in api/controllers/foo/mygoaction.js. If no such controller or action exists, Sails will output an error message and ignore the route. Otherwise, whenever a GET request to /foo/go is made, the code in that action will be run.

The controller and action names in this syntax are case-insensitive.

Standalone action target syntax

This syntax binds an address to a [standalone Sails action](https://sailsjs.com/documentation/concepts/actions-and-controllers#?standalone-actions). Simply specify the path of the action (relative to api/controllers):

```js
‘GET /’: { action: ‘index’ },   // Use the action in api/controllers/index.js


	‘GET /foo/go’: { action: ‘foo/go-action’ } // Use the action in api/controllers/foo/go-action.js OR
	// the “go-action” action in api/controllers/FooController.js





‘GET /bar/go’: ‘foo/go-action’ // Binds to the same action as above, using shorthand notation
```

Routing to blueprint actions

The [blueprint API](https://sailsjs.com/documentation/reference/blueprint-api) adds several actions for each of your models, all of which are available for routing. For example, if you have a model defined in api/models/User.js, you’ll automatically be able to do:

`js
'GET /foo/go': 'user/find' // Return a list of users
`
or
`js
'GET /foo/go': 'UserController.find' // Same as above
`

If you have a custom action in api/controllers/user/find.js or api/controllers/UserController.js, that action will be run instead of the default blueprint find. For a full list of the actions provided for your models, see the [blueprint API reference](https://sailsjs.com/documentation/reference/blueprint-api).

View target syntax

Another common target is one that binds a route to a [view](https://sailsjs.com/documentation/concepts/Views). This is particularly useful for binding static views to a custom URL, and it’s how the default homepage for new projects is set up out of the box.

The syntax for view targets is simple: it is just the path to the view file, without the file extension (e.g. .ejs) and relative to the views/ folder :

`js
'GET /team': { view: 'brochure/about' }
`

This tells Sails to handle GET requests to /team by serving the view template located at views/brochure/about.ejs (assuming the default EJS [template engine](https://sailsjs.com/documentation/concepts/views/view-engines) is used). As long as that view file exists, a GET request to /home will display it. For consistency with Express/consolidate, if the specified relative path does not match a view file, then Sails will look for a sub-folder with the same name (e.g. pages/brochure) and serve the “index” view in that sub-folder (e.g. pages/brochure/index.ejs) if one exists.

> Note that since this route is bound directly to the view, none of your configured policies will be applied. If you need to configure a policy, use res.view() from a controller action. See [this StackOverflow question](http://stackoverflow.com/questions/21303217/sailsjs-policy-based-route-with-a-view/21340313#21340313) for more background information.

Redirect target syntax
You can have one address redirect to another, either within your Sails app or on another server entirely. This can be done just by specifying the redirect URL as a string:

`js
'/alias' : '/some/other/route/url',
'GET /google': 'http://www.google.com'
`

Be careful to avoid redirect loops when redirecting within your Sails app!

Note that when redirecting, the HTTP method of the original request (and any extra headers / parameters) will likely be lost, and the request will be transformed to a simple GET request. In the above example, a POST request to /alias will result in a GET request to /some/other/route. This is somewhat browser-dependent behavior, but it is recommended that you don’t expect request methods and other data to survive a redirect.

Response target syntax
You can map an address directly to a default or custom [response](https://sailsjs.com/documentation/concepts/extending-sails/custom-responses) using this syntax:

`js
'/foo': { response: 'notFound' }
`

Simply specify the name of the response file in your api/responses folder, without the .js extension. The response name in this syntax is case-sensitive. If you attempt to bind a route to a non-existent response, Sails will output an error and ignore the route.

Policy target syntax

In most cases, you will want to apply [policies](https://sailsjs.com/documentation/concepts/policies) to your controller actions using the [config/policies.js](https://sailsjs.com/documentation/reference/configuration/sails-config-policies) config file. However, there are some instances when you’ll want to apply a policy directly to a custom route, particularly when you are using the [view](https://sailsjs.com/documentation/concepts/routes/custom-routes#?view-target-syntax) target syntax. The policy target syntax is:

`js
'/foo': { policy: 'my-policy' }
`

Note that you will always want to chain the policy to at least one other type of target using an array:

```js
‘/foo’: [


{ policy: ‘my-policy’ },
{ view: ‘dashboard’ }





]

This will apply the my-policy policy to the route and, if it passes, continue by displaying the views/dashboard.ejs view.

##### Function target syntax

For one-off jobs (quick tests, for example), you can assign a route directly to a function:
```js
‘/foo’: function(req, res) {

return res.send(‘hello!’);

},

You can also combine this syntax with others using an array. This allows you to define quick, inline middleware:

```js
‘/foo’: [



	function(req, res, next) {
	sails.log(‘Quick and dirty test:’, req.allParams());
return next();





},
{ controller: ‘user’, action: ‘find’ }






],

You can also use a dictionary with an fn key to assign a function.  This allows you to also specify [other route target  options](https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-target-options) at the same time:
```js
‘GET /*’: {

skipAssets: true,
fn: function(req, res) {

return res.send(‘hello!’);

}

},

> Best practice is to use the function syntax only for temporary routes, since doing so goes against the structural conventions that make Sails useful! (Plus, the less cluttered your routes.js file, the better.)

Route target options

In addition to the options discussed in the various route target syntaxes above, any other property added to a route target object will be passed through to the route handler in the req.options object. There are several reserved properties that can be used to affect the behavior of the route handlers. These are listed in the table below.

Property | Applicable Target Types | Data Type | Details |

|-------------|:———-:|-----------|———–|
|`skipAssets`|all|((boolean))|Set to `true` if you *don't* want the route to match URLs with dots in them (e.g. **myImage.jpg**). This will keep your routes with [wildcard notation](https://sailsjs.com/documentation/concepts/routes/custom-routes#?wildcards-and-dynamic-parameters) from matching URLs of static assets. Useful when creating [URL slugs](https://sailsjs.com/documentation/concepts/routes/url-slugs).|
|`skipRegex`|all|((regexp))|If skipping every URL containing a dot is too permissive, or you need a route's handler to be skipped based on different criteria entirely, you can use `skipRegex`. This option allows you to specify a regular expression or array of regular expressions to match the request URL against; if any of the matches are successful, the handler is skipped. Note that unlike the syntax for binding a handler with a regular expression, `skipRegex` expects *actual [RegExp objects](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/RegExp)*, not strings.|
|`locals`|[controller](https://sailsjs.com/documentation/concepts/routes/custom-routes#?controller-action-target-syntax), [view](https://sailsjs.com/documentation/concepts/routes/custom-routes#?view-target-syntax), [blueprint](https://sailsjs.com/documentation/concepts/routes/custom-routes#?routing-to-blueprint-actions), [response](https://sailsjs.com/documentation/concepts/routes/custom-routes#?response-target-syntax)|((dictionary))|Sets default [local variables](https://sailsjs.com/documentation/reference/response-res/res-view?q=arguments) to pass to any view that is rendered while handling the request.|
|`cors`|all|((dictionary)) or ((boolean)) or ((string))|Specifies how to handle requests for this route from a different origin. See the [main CORS documentation](https://sailsjs.com/documentation/concepts/security/cors) for more info.|
|`csrf`|all|((boolean))|Indicate whether the route should be protected by requiring a CSRF token to be passed with the request. See the [main CSRF documentation](https://sailsjs.com/documentation/concepts/security/csrf) for more info.
|`parseBlueprintOptions`|[blueprint](https://sailsjs.com/documentation/concepts/routes/custom-routes#?routing-to-blueprint-actions)|((function))|Provide this function in order to override the default behavior for a blueprint action (including search criteria, skip, limit, sort and population). See the [blueprints configuration reference](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints#?using-parseblueprintoptions) for more info.
<docmeta name=”displayName” value=”Custom routes”>

 # Routes

Overview

The most basic feature of any web application is the ability to interpret a request sent to a URL, then send back a response. In order to do this, your application has to be able to distinguish one URL from another.

Like most web frameworks, Sails provides a router: a mechanism for mapping URLs to actions and views. Routes are rules that tell Sails what to do when faced with an incoming request. There are two main types of routes in Sails: custom (or “explicit”) and automatic (or “implicit”).

Custom routes

Sails lets you design your app’s URLs in any way you like—there are no framework restrictions.

Every Sails project comes with [config/routes.js](https://sailsjs.com/documentation/reference/configuration/sails-config-routes), a simple [Node.js module](http://nodejs.org/api/modules.html) that exports an object of custom, or “explicit” routes. For example, this routes.js file defines six routes; some of them point to actions, while others route directly to views:

```javascript
// config/routes.js
module.exports.routes = {


‘GET /signup’: { view: ‘conversion/signup’ },
‘POST /signup’: { action: ‘entrance/signup’ },
‘GET /login’: { view: ‘portal/login’ },
‘POST /login’: { action: ‘entrance/login’ },
‘/logout’: { action: ‘account/logout’ },
‘GET /me’: { action: ‘account/profile’ }




```

Each route consists of an address on the left (e.g. ‘GET /me’) and a target on the right (e.g. { action: ‘account/profile’ }) The address is a URL path and (optionally) a specific [HTTP method](http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods). The target can be defined in a number of different ways ([see the expanded concepts section on the subject](https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-target)), but the syntax above is the most common. When Sails receives an incoming request, it checks the address of all custom routes for matches. If a matching route is found, the request is then passed to its target.

For example, we might read ‘GET /me’: { action: ‘account/profile’ } as:

> “Hey Sails, when you receive a GET request to http://mydomain.com/me, run the account/profile action, would’ya?”

You can also specify the view layout within the route itself:

```javascript
‘GET /privacy’: {



view: ‘legal/privacy’,
locals: {


layout: ‘users’




}




},




```

Notes
+ That a request matches a route address doesn’t necessarily mean it will be passed to that route’s target _directly_. HTTP requests will usually pass through some [middleware](https://sailsjs.com/documentation/concepts/Middleware) before being passed to a route’s target, and if the route points to a controller [action](https://sailsjs.com/documentation/concepts/Controllers?q=actions), the request will first need to pass through any configured [policies](https://sailsjs.com/documentation/concepts/Policies). There are also a few special [route options](https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-target-options) which allow a route to be “skipped” for certain kinds of requests.
+ The router can also programmatically bind a route to any valid route target, including canonical Node middleware functions (i.e. function (req, res, next) {}). However, you should always use the conventional [route target syntax](https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-target) when possible—it streamlines development, simplifies training, and makes your app more maintainable.

Automatic routes

In addition to your custom routes, Sails binds many routes for you automatically. If a URL doesn’t match a custom route, it may match one of the automatic routes and still generate a response. The main types of automatic routes in Sails are:

	[blueprint routes](https://sailsjs.com/documentation/reference/blueprint-api?q=blueprint-routes), which provide your [controllers](https://sailsjs.com/documentation/concepts/controllers) and [models](https://sailsjs.com/documentation/concepts//models-and-orm/models) with a full REST API.

	[assets](https://sailsjs.com/documentation/concepts/assets), such as images, Javascript and stylesheet files.

Unhandled requests

If no custom or automatic route matches a request URL, Sails will send back a default 404 response. This response can be customized by adding a api/responses/notFound.js file to your app. See [custom responses](https://sailsjs.com/documentation/concepts/extending-sails/custom-responses) for more info.

Unhandled errors in request handlers

If an unhandled error is thrown during the processing of a request (for instance, in some [action code](https://sailsjs.com/documentation/concepts/actions-and-controllers)), Sails will send back a default 500 response. This response can be customized by adding an api/responses/serverError.js file to your app. See [custom responses](https://sailsjs.com/documentation/concepts/extending-sails/custom-responses) for more info.

Supported protocols

The Sails router is “protocol-agnostic”—it knows how to handle both [HTTP requests](http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol) and messages sent via [WebSockets](http://en.wikipedia.org/wiki/Websockets). It accomplishes this by listening for Socket.io messages sent to reserved event handlers in a simple format, called JWR (JSON-WebSocket Request/Response). This specification is implemented and available out of the box in the [client-side socket SDK](https://sailsjs.com/documentation/reference/web-sockets/socket-client).

Notes
Advanced users may opt to circumvent the router entirely and send low-level, completely customizable WebSocket messages directly to the underlying Socket.io server. You can bind socket events directly in your app’s [onConnect](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets#?commonlyused-options) function (located in [config/sockets.js](https://sailsjs.com/documentation/anatomy/config/sockets.js)), but bear in mind that in most cases you are better off leveraging the request interpreter for socket communication. Maintaining consistent routes across HTTP and WebSockets helps keep your app maintainable.

<docmeta name=”displayName” value=”Routes”>
<docmeta name=”nextUpLink” value=”/documentation/concepts/actions-and-controllers”>
<docmeta name=”nextUpName” value=”Actions”>

 # URL slugs
A common use case for explicit routes is the design of slugs or [vanity URLs](http://en.wikipedia.org/wiki/Clean_URL#Slug). For example, consider the URL of a repository on Github, http://www.github.com/balderdashy/sails. In Sails, we might define this route at the bottom of our `config/routes.js` file like so:

```javascript
‘get /:account/:repo’: {


controller: ‘RepoController’,
action: ‘show’,
skipAssets: true





}

In your RepoController’s show action, we’d use req.param(‘account’) and req.param(‘repo’) to look up the data for the appropriate repository, then pass it in to the appropriate [view](https://sailsjs.com/documentation/concepts/Views) as [locals](https://sailsjs.com/documentation/concepts/views/locals).  The [skipAssets option](https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-target-options) ensures that the vanity route doesn’t accidentally match any of our [assets](https://sailsjs.com/documentation/concepts/assets) (e.g. /images/logo.png), so they are still accessible.

## Slugs that might contain slashes

There is one particular case where the simple implementation of URL pattern variables (e.g. :foo) is not enough.

If your application will tolerate slugs containing unescaped forward slash (/) characters, then instead of addressing the dynamic parts of your route address path using pattern variables like :foo, you will need to use a URL wildcard suffix (*).

For example:

```javascript
‘get /admin/email-template-previews/*’: {

action: ‘admin/view-email-template-preview’,
skipAssets: true

}

To receive the runtime value corresponding with this wildcard (*) in a [modern Sails action](https://sailsjs.com/documentation/concepts/actions-and-controllers#?what-does-an-action-file-look-like), use urlWildcardSuffix at the top level of your action definition to indicate the name of the input you would like to use to represent the dynamic value:

```javascript
urlWildcardSuffix: ‘template’,
inputs: {



	template: {
	description: ‘The relative path to an EJS template within our views/emails/ folder – WITHOUT the file extension.’,
extendedDescription: ‘Use strings like “foo” or “foo/bar”, but NEVER “foo/bar.ejs” or “/foo/bar”.  For example, ‘+


‘“internal/email-contact-form” would send an email using the “views/emails/internal/email-contact-form.ejs” template.’,




example: ‘email-reset-password’,
type: ‘string’,
required: true





},




},
fn: async function({ template }) {


// …






}

### Notes
> - Alternatively, in a classic (req,res) action, you can use req.param(‘0’) to access the dynamic value of a route’s URL wildcard suffix (*).
> - For more background, see https://www.npmjs.com/package/machine-as-action

<docmeta name=”displayName” value=”URL slugs”>




            

          

      

      

    

  

    
      
          
            
  # Cross-Origin Resource Sharing (CORS)

<!–
Every Sails app comes ready to handle AJAX requests from a web page on the same domain.  But what if you need to handle AJAX requests
originating from other domains?
–>

[CORS](http://en.wikipedia.org/wiki/Cross-origin_resource_sharing) is a mechanism that allows browser scripts on pages served from other domains (e.g. myothersite.com) to talk to your server (e.g. api.mysite.com).  Like [JSONP](https://en.wikipedia.org/wiki/JSONP), the goal of CORS is to circumvent the [same-origin policy](http://en.wikipedia.org/wiki/Same-origin_policy), allowing your Sails server to successfully respond to requests from client-side JavaScript code running on a page hosted from some other domain.  Unlike JSONP, it works with more than just GET requests, and it allows you to whitelist particular origins (staging.yoursite.com or yourothersite.net) and prevent requests from others (evil.com).

Sails can be configured to allow cross-origin requests from a list of domains you specify, or from every domain.  This can be done on a per-route basis, or globally for every route in your app.

### Enabling CORS

For security reasons, CORS is disabled by default in Sails.  But enabling it is simple.

To allow cross-origin requests from a whitelist of trusted domains to _any_ route in your app, simply enable allRoutes and provide an origin setting in [config/security.js](https://sailsjs.com/documentation/reference/configuration/sails-config-security#?sailsconfigsecuritycors):

```javascript
cors: {

allRoutes: true,
allowOrigins: [’http://example.com’,’https://api.example.com’,’http://blog.example.com:1337’,’https://foo.com:8888 [http://example.com','https://api.example.com','http://blog.example.com:1337','https://foo.com:8888]’]

}

To allow cross-origin requests from _any_ domain to _any_ route in your app, use allowOrigins: ‘*’:

```javascript
cors: {


allRoutes: true,
allowOrigins: ‘*’,
allowCredentials: false






}

Note that when using allowOrigins: ‘*’, the allowCredentials setting _must_ be false, which means that requests containing cookies will be blocked.  This restriction exists to prevent third-party sites from being able to trick your logged-in users into making unauthorized requests to your app.  You can lift this restriction (at your own risk!) using the [allowAnyOriginWithCredentialsUnsafe](https://sailsjs.com/documentation/reference/configuration/sails-config-security#?sailsconfigsecuritycors) setting.

See [sails.config.security.cors](https://sailsjs.com/documentation/reference/configuration/sails-config-security#?sailsconfigsecuritycors) for a comprehensive reference of all available options.

### Configuring CORS for individual routes
In addition to the global CORS configuration in config/security.js, these settings can be configured on a per-route basis in [config/routes.js](https://sailsjs.com/documentation/anatomy/config/routes-js).

If you set allRoutes: true in config/security.js but want to exempt a specific route, set cors: false in the route’s target:

```javascript
‘POST /signup’: {

action: ‘user/signup’,
cors: false

}

To enable or override global CORS configuration for a particular route, provide cors as a dictionary:

```javascript
‘GET /videos’: {


action: ‘video/find’,
cors: {


allowOrigins: [’http://example.com’,’https://api.example.com’,’http://blog.example.com:1337’,’https://foo.com:8888 [http://example.com','https://api.example.com','http://blog.example.com:1337','https://foo.com:8888]’],
allowCredentials: false




}






}

### Notes

> + CORS support is only relevant for HTTP requests.  Requests made via sockets are not subject to cross-origin restrictions.  To ensure that your app is secure via sockets, configure the [onlyAllowOrigins](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets) setting (typically in [config/env/production.js](https://sailsjs.com/documentation/anatomy/config/env/production-js)).
> + CORS is not supported in Internet Explorer 7.  Fortunately, it is supported in IE8 and up, as well as in all other modern browsers.
> + Read [more about CORS from MDN](https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS).
> + Read the [CORS spec](https://www.w3.org/TR/cors/).

<docmeta name=”displayName” value=”CORS”>




            

          

      

      

    

  

    
      
          
            
  # CSRF

Cross-site request forgery ([CSRF](https://www.owasp.org/index.php/Cross-Site_Request_Forgery)) is a type of attack which forces an end user to execute unwanted actions on a web application backend with which he/she is currently authenticated.  In other words, without protection, cookies stored in a browser like Google Chrome can be used to send requests to Chase.com from a user’s computer whether that user is currently visiting Chase.com or Horrible-Hacker-Site.com.

### About CSRF tokens

CSRF tokens are like limited-edition swag.  While a session tells the server that a user “is who they say they are”, a csrf token tells the server they “were where they say they were”.  When CSRF protection is enabled in your Sails app, all non-GET requests to the server must be accompanied by a special “CSRF token”, which can be included as either the ‘_csrf’ parameter or the ‘X-CSRF-Token’ header.

Using tokens protects your Sails app against cross-site request forgery (or CSRF) attacks. A would-be attacker needs not only a user’s session cookie, but also this timestamped, secret CSRF token, which is refreshed/granted when the user visits a URL on your app’s domain.  This allows you to have certainty that your users’ requests haven’t been hijacked, and that the requests they’re making are intentional and legitimate.

Enabling CSRF protection requires managing the token in your front-end app.  In traditional form submissions, this can be easily accomplished by sending along the CSRF token as a hidden input in your <form>.  Or better yet, include the CSRF token as a request param or header when you send AJAX requests.  To do that, you can either fetch the token by sending a request to the route where you mounted security/grant-csrf-token, or better yet, harvest the token from view locals using the exposeLocalsToBrowser partial.

Here are some examples:

#### (a) For modern, view-driven hybrid apps that submit forms with AJAX:
Use the exposeLocalsToBrowser partial to provide access to the token from
your client-side JavaScript, e.g.:
```html
<%- exposeLocalsToBrowser() %>
<script>

	$.post({
	foo: ‘bar’,
_csrf: window.SAILS_LOCALS._csrf

})

</script>
```

#### (b) For single-page apps with static HTML:
Fetch the token by sending a GET request to the route where you mounted
the security/grant-csrf-token.  It will respond with JSON, e.g.:
`js
{ _csrf: 'ajg4JD(JGdajhLJALHDa' }
`

#### (c) For traditional HTML form submissions:
Render the token directly into a hidden form input element in your HTML, e.g.:
```html
<form>

<input type=”hidden” name=”_csrf” value=”<%= _csrf %>” />

</form>
```

### Enabling CSRF protection

Sails bundles optional CSRF protection out of the box. To enable the built-in enforcement, just make the following adjustment to [sails.config.security.csrf](https://sailsjs.com/docs/reference/configuration/sails-config-security-csrf) (conventionally located in your project’s [config/security.js](https://sailsjs.com/anatomy/config/security-js) file):

`js
csrf: true
`

You can also turn CSRF protection on or off on a per-route basis by adding csrf: true or csrf: false to any route in your [config/routes.js](https://sailsjs.com/anatomy/config/routes-js) file.

Note that if you have existing code that communicates with your Sails backend via POST, PUT, or DELETE requests, you’ll need to acquire a CSRF token and include it as a parameter or header in those requests.  More on that in a sec.

### CSRF tokens

Like most Node applications, Sails and Express are compatibile with Connect’s [CSRF protection middleware](http://www.senchalabs.org/connect/csrf.html) for guarding against such attacks.  This middleware implements the [Synchronizer Token Pattern](https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet#General_Recommendation:_Synchronizer_Token_Pattern).  When CSRF protection is enabled, all non-GET requests to the Sails server must be accompanied by a special token, identified by either a header or a parameter in the query string or HTTP body.

CSRF tokens are temporary and session-specific; e.g. Imagine Mary and Muhammad are both shoppers accessing our e-commerce site running on Sails, and CSRF protection is enabled.  Let’s say that on Monday, Mary and Muhammad both make purchases.  In order to do so, our site needed to dispense at least two different CSRF tokens- one for Mary and one for Muhammad.  From then on, if our web backend received a request with a missing or incorrect token, that request will be rejected. So now we can rest assured that when Mary navigates away to play online poker, the 3rd party website cannot trick the browser into sending malicious requests to our site using her cookies.

### Dispensing CSRF tokens

To get a CSRF token, you should either bootstrap it in your view using [locals](https://sailsjs.com/documentation/concepts/views/locals) (good for traditional multi-page web applications) or fetch it using AJAX from a special protected JSON endpoint (handy for single-page-applications (SPAs).)

##### Using view locals:

For old-school form submissions, it’s as easy as passing the data from a view into a form action.  You can grab hold of the token in your view, where it may be accessed as a view local: <%= _csrf %>

e.g.:
```html
<form action=”/signup” method=”POST”>

<input type=”text” name=”emailaddress”/>
<input type=’hidden’ name=’_csrf’ value=’<%= _csrf %>’>
<input type=’submit’>

</form>
```
If you are doing a multipart/form-data upload with the form, be sure to place the _csrf field before the file input, otherwise you run the risk of a timeout and a 403 firing before the file finishes uploading.

##### Using AJAX/WebSockets

In AJAX/Socket-heavy apps, you might prefer to get the CSRF token dynamically rather than having it bootstrapped on the page.  You can do so by setting up a route in your [config/routes.js](https://sailsjs.com/anatomy/config/routes-js) file pointing to the security/grant-csrf-token action:

```json
{

‘GET /csrfToken’: { action: ‘security/grant-csrf-token’ }

}

Then send a GET request to the route you defined, and you’ll get CSRF token returned as JSON, e.g.:

```json
{


_csrf: ‘ajg4JD(JGdajhLJALHDa’






}

> For security reasons, you can&rsquo;t retrieve a CSRF token via a socket request.  You can however _spend_ CSRF tokens (see below) via socket requests.
> The security/grant-csrf-token action is not intended to be used in cross-origin requests, since some browsers block third-party cookies by default.  See the [CORS documentation](https://sailsjs.com/documentation/concepts/security/cors) for more info about cross-origin requests.

### Spending CSRF tokens

Once you’ve enabled CSRF protection, any POST, PUT, or DELETE requests (including virtual requests, e.g. from Socket.io) made to your Sails app will need to send an accompanying CSRF token as a header or parameter.  Otherwise, they’ll be rejected with a 403 (Forbidden) response.

For example, if you’re sending an AJAX request from a webpage with jQuery:
```js
$.post(‘/checkout’, {

order: ‘8abfe13491afe’,
electronicReceiptOK: true,
_csrf: ‘USER_CSRF_TOKEN’

}, function andThen(){ … });
```

With some client-side modules, you may not have access to the AJAX request itself. In this case, you can consider sending the CSRF token directly in the URL of your query. However, if you do so, remember to URL-encode the token before spending it:
```js
…, {

checkoutAction: ‘/checkout?_csrf=’+encodeURIComponent(‘USER_CSRF_TOKEN’)

}

Notes

> + You can choose to send the CSRF token as the X-CSRF-Token header instead of the _csrf parameter.
> + For most developers and organizations, CSRF attacks need only be a concern if you allow users to log into/securely access your Sails backend _from the browser_ (i.e. from your HTML/CSS/JavaScript front-end code). If you _don’t_ (e.g. users only access the secured sections from your native iOS or Android app), it is possible you don’t need to enable CSRF protection. Why? Because technically, the common CSRF attack discussed on this page is only _possible_ in scenarios where users use the _same client application_ (e.g. Chrome) to access different web services (e.g. Chase.com, Horrible-Hacker-Site.com.)
> + For more information on CSRF, check out [Wikipedia](http://en.wikipedia.org/wiki/Cross-site_request_forgery)
> + For “spending” CSRF tokens in a traditional form submission, refer to the example above (under “Using view locals”.)

<docmeta name=”displayName” value=”CSRF”>

 # Clickjacking

[Clickjacking](https://www.owasp.org/index.php/Clickjacking) (aka “UI redress attacks”) happens when an attacker manages to trick your users into triggering “unintended” UI events (e.g. DOM events).

X-FRAME-OPTIONS

One simple way to help prevent clickjacking attacks is to enable the X-FRAME-OPTIONS header.

Using [lusca](https://github.com/krakenjs/lusca#luscaxframevalue)

> lusca is open-source under the [Apache license](https://github.com/krakenjs/lusca/blob/master/LICENSE.txt)

First:

`sh
In your sails app
npm install lusca --save
`

Then, in the middleware config object in config/http.js:


	```js
	// …
// maxAge ==> Number of seconds strict transport security will stay in effect.
xframe: require(‘lusca’).xframe(‘SAMEORIGIN’),
// …
order: [


// …
‘xframe’
// …




]





```

Additional Resources
+ [Clickjacking (OWasp)](https://www.owasp.org/index.php/Clickjacking)

<docmeta name=”displayName” value=”Clickjacking”>
<docmeta name=”tags” value=”clickjacking,ui redress attack”>

 # Content security policy

[Content Security Policy (CSP)](https://www.owasp.org/index.php/Clickjacking) is a [W3C specification](https://w3c.github.io/webappsec/specs/content-security-policy) for instructing the client browser as to which location and/or which type of resources are allowed to be loaded. This spec uses “directives” to define loading behaviors for target resource types. Directives can be specified using HTTP response headers or HTML <meta> tags.

Enabling CSP

Using [lusca](https://github.com/krakenjs/lusca#luscacspoptions)

> lusca is open-source under the [Apache license](https://github.com/krakenjs/lusca/blob/master/LICENSE.txt)

First:

`sh
In your sails app
npm install lusca --save --save-exact
`

Then add csp in [config/http.js](https://sailsjs.com/anatomy/config/http-js):

```js


// …


	csp: require(‘lusca’).csp({
	
	policy: {
	‘default-src’: ‘*’





}





}),

// …


	order: [
	// …
‘csp’,
// …





]




```

Supported directives

To give you an idea how this works, here’s a snapshot of supported CSP directives, as of 2017:

Directive | |

:—————	:————————–
default-src	Loading policy for all resources type in case a resource type dedicated directive is not defined (fallback)
script-src	Defines which scripts the protected resource can execute
object-src	Defines from where the protected resource can load plugins
style-src	Defines which styles (CSS) the user applies to the protected resource
img-src	Defines from where the protected resource can load images
media-src	Defines from where the protected resource can load video and audio
frame-src	Defines from where the protected resource can embed frames
font-src	Defines from where the protected resource can load fonts
connect-src	Defines which URIs the protected resource can load using script interfaces
form-action	Defines which URIs can be used as the action of HTML form elements
sandbox	Specifies an HTML sandbox policy that the user agent applies to the protected resource
script-nonce	Defines script execution by requiring the presence of the specified nonce on script elements
plugin-types	Defines the set of plugins that can be invoked by the protected resource by limiting the types of resources that can be embedded
reflected-xss	Instructs a user agent to activate or deactivate any heuristics used to filter or block reflected cross-site scripting attacks, equivalent to the effects of the non-standard X-XSS-Protection header
report-uri	Specifies a URI to which the user agent sends reports about policy violation

> For more information, see the [W3C CSP Spec](https://w3c.github.io/webappsec/specs/content-security-policy/).

Browser compatibility

Different CSP response headers are supported by different browsers. For example, Content-Security-Policy is the W3C standard, but various versions of Chrome, Firefox, and IE use X-Content-Security-Policy or X-WebKit-CSP. For the latest information on browser support, see [OWasp](https://www.owasp.org/index.php/Content_Security_Policy).

Additional Resources
+ [Content Security Policy (OWasp)](https://www.owasp.org/index.php/Content_Security_Policy)
+ Learn more about installing HTTP middleware in [Concepts > Middleware](https://sailsjs.com/documentation/concepts/middleware).

<docmeta name=”displayName” value=”Content security policy”>
<docmeta name=”tags” value=”csp,content security policy”>

 # DDOS

The prevention of [denial of service attacks](https://www.owasp.org/index.php/Application_Denial_of_Service) is a [complex problem](http://en.wikipedia.org/wiki/Denial-of-service_attack#Handling) which involves multiple layers of protection, up and down the networking stack.
This type of attack has achieved [notoriety](http://www.darkreading.com/vulnerabilities-and-threats/10-strategies-to-fight-anonymous-ddos-attacks/d/d-id/1102699) in recent years due to widespread media coverage of groups like Anonymous.

At the API layer, there isn’t much that can be done in the way of prevention. However, Sails offers a few settings to mitigate certain types of DDOS attacks:

	The session in Sails can be [configured](https://sailsjs.com/documentation/reference/configuration/sails-config-session) to use a separate session store (e.g. [Redis](http://redis.io/)), allowing your application to run without relying on the memory state of any one API server. This means that multiple copies of your Sails app may be deployed to as many servers as is necessary to handle traffic. This is achieved by using a [load balancer](https://en.wikipedia.org/wiki/Load_balancing_(computing)), which directs each incoming request to a free server with the resources to handle it, eliminating any one app server as a single point of failure.

	Socket.io connections may be [configured](https://sailsjs.com/docs/reference/configuration/sails-config-sockets) to use a separate [socket store](sailsjs.com/docs/concepts/deployment/scaling) (e.g. Redis) for managing pub/sub state and message queueing. This eliminates the need for sticky sessions at the load balancer, preventing would-be attackers from directing their attacks against the same server again and again.

> Note that, if you have the long-polling transport enabled in [sails.config.sockets](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets), you’ll still want to make sure TCP sticky sessions are enabled at your load balancer. For more on that, check out this writeup about [sockets on Deis and Kubernetes](https://deis.com/blog/2016/socket.io-applications-kubernetes/).

Additional Resources

	[Backpressure and Unbounded Concurrency in Node.js](http://engineering.voxer.com/2013/09/16/backpressure-in-nodejs/) ([Voxer](http://voxer.com/))

	[Building a Node.js Server That Won’t Melt](https://hacks.mozilla.org/2013/01/building-a-node-js-server-that-wont-melt-a-node-js-holiday-season-part-5/) ([Mozilla](https://hacks.mozilla.org/))

	[Security in Node.js](https://www.harrytorry.co.uk/node-js/security-flaws-in-node-js/) - see the “Denial of Service” section ([Harry Torry](https://www.harrytorry.co.uk))

	[Slowloris DDoSAttacks](http://www.ddosattacks.biz/attacks/slowloris-ddos-attack-aka-slow-and-low/)

<docmeta name=”displayName” value=”DDOS”>

 # P3P

Background

P3P stands for the “Platform for Privacy Preferences” and is a browser/web standard designed to facilitate better consumer web privacy control. Currently (as of 2014), out of all the major browsers, only Internet Explorer supports it. P3P most often comes into play when dealing with legacy applications.

Many modern organizations are willfully ignoring P3P. Here’s what [Facebook has to say](https://www.facebook.com/help/327993273962160/) on the subject:

> The organization that established P3P, the World Wide Web Consortium, suspended its work on this standard several years ago because most modern web browsers don’t fully support P3P. As a result, the P3P standard is now out of date and doesn’t reflect technologies that are currently in use on the web, so most websites currently don’t have P3P policies.
>
> See also: http://www.zdnet.com/blog/facebook/facebook-to-microsoft-p3p-is-outdated-what-else-ya-got/9332

Supporting P3P with Sails

All of that aside, sometimes you have to support P3P anyways.

Fortunately, a few different modules exist that bring P3P support to Express and Sails by enabling the relevant P3P headers. To use one of these modules for handling P3P headers, install it from npm using the directions below, then open config/http.js in your project and configure it as a custom middleware. To do that, define your P3P middleware as “p3p”, and add the string “p3p” to your middleware.order array wherever you’d like it to run in the middleware chain (a good place to put it might be right before cookieParser):

E.g. in config/http.js:

```js
// …..
module.exports.http = {


middleware: {


p3p: require(‘p3p’)(p3p.recommmended), // <==== set up the custom middleware here and named it “p3p”


	order: [
	‘startRequestTimer’,
‘p3p’, // <============ configured the order of our “p3p” custom middleware here
‘cookieParser’,
‘session’,
‘bodyParser’,
‘handleBodyParserError’,
‘compress’,
‘methodOverride’,
‘poweredBy’,
‘$custom’,
‘router’,
‘www’,
‘favicon’,
‘404’,
‘500’





],
// …..




}





};

Check out the examples below for more guidance, and be sure and follow the links to see the docs for the module you’re using for the latest information, comparative analysis of its features, any recent bug fixes, and advanced usage details.

##### Using [node-p3p](https://github.com/troygoode/node-p3p)

> node-p3p is open-source under the [MIT license](https://github.com/troygoode/node-p3p/blob/master/LICENSE).

`sh
# In your sails app
npm install p3p --save
`

Then in the middleware config object in config/http.js:


	```js
	// …
// node-p3p provides a recommended compact privacy policy out of the box
p3p: require(‘p3p’)(require(‘p3p’).recommended)
// …


```

##### Using [lusca](https://github.com/krakenjs/lusca#luscap3pvalue)

> lusca is open-source under the [Apache license](https://github.com/krakenjs/lusca/blob/master/LICENSE.txt)

`sh
# In your sails app
npm install lusca --save
`

Then in the middleware config object in config/http.js:


	```js
	// …
// “ABCDEF” ==> The compact privacy policy to use.
p3p: require(‘lusca’).p3p(‘ABCDEF’)
// …


```

### Additional Resources:


	[Description of the P3P Project (Microsoft)](http://support.microsoft.com/kb/290333)


	[“P3P Work suspended” (W3C)](http://www.w3.org/P3P/)


	[P3P Compact Specification (CompactPrivacyPolicy.org)](http://compactprivacypolicy.org/compact_specification.htm)




<docmeta name=”displayName” value=”P3P”>




            

          

      

      

    

  

    
      
          
            
  # Security

### Overview

Sails and Express provide built-in, easily configurable protection against most known types of web-application-level attacks.

> Note: If you believe you have found a security vulnerability in Sails, please refer to our [security policy](https://sailsjs.com/security) for instructions for reporting it.

### Security topics

Learn about several different types of attacks that Node.js/Sails helps prevent out of the box, and how to enable and configure security settings in your app:


	[CORS](https://sailsjs.com/documentation/concepts/security/cors)


	[DDOS](https://sailsjs.com/documentation/concepts/security/ddos)


	[CSRF](https://sailsjs.com/documentation/concepts/security/csrf)


	[Clickjacking](https://sailsjs.com/documentation/concepts/security/clickjacking)


	[P3P](https://sailsjs.com/documentation/concepts/security/p3p)


	[Content Security Policy](https://sailsjs.com/documentation/concepts/security/content-security-policy)


	[Socket hijacking](https://sailsjs.com/documentation/concepts/security/socket-hijacking)


	[XSS](https://sailsjs.com/documentation/concepts/security/xss)


	[Strict Transport Security](https://sailsjs.com/documentation/concepts/security/strict-transport-security)




<docmeta name=”displayName” value=”Security”>



            

          

      

      

    

  

    
      
          
            
  # Socket hijacking

Unfortunately, cross-site request forgery attacks are not limited to the HTTP protocol.  WebSocket hijacking (sometimes known as [CSWSH](http://www.christian-schneider.net/CrossSiteWebSocketHijacking.html)) is a commonly overlooked vulnerability in most realtime applications.  Fortunately, since Sails treats both HTTP and WebSocket requests as first-class citizens, its built-in [CSRF protection](https://sailsjs.com/documentation/concepts/security/csrf) and [configurable CORS rulesets](https://sailsjs.com/documentation/concepts/security/cors) apply to both protocols.

You can prepare your Sails app against CSWSH attacks by enabling the built-in protection in [config/security.js](https://sailsjs.com/documentation/anatomy/config/security.js) and ensuring that a _csrf token is sent with all relevant incoming socket requests.  Additionally, if you’re planning on allowing sockets to connect to your Sails app cross-origin (i.e. from a different domain, subdomain, or port) you’ll want to configure your CORS settings accordingly.  You can also define the authorization setting in [config/sockets.js](https://sailsjs.com/documentation/anatomy/config/sockets.js) as a custom function which allows or denies the initial socket connection based on your needs.

#### Notes
+ CSWSH prevention is only a concern in scenarios where people use the same client application to connect sockets to multiple web services (e.g. cookies in a browser like Google Chrome can be used to connect a socket to Chase.com from both Chase.com and Horrible-Hacker-Site.com.)

<docmeta name=”displayName” value=”Socket hijacking”>



            

          

      

      

    

  

    
      
          
            
  # HTTP Strict Transport Security

Strict Transport Security (STS) is an opt-in security enhancement that forces usage of HTTPS instead of HTTP (in modern browsers, at least).

### Enabling STS

Implementing STS is actually very simple and [only takes a few lines of code](https://github.com/krakenjs/lusca/blob/master/lib/hsts.js).  Better yet, a few different open-source modules exist that bring support for this feature to Express and Sails.  To use one of these modules, install it from npm using the directions below, then open config/http.js in your project and [configure it as a custom middleware](https://sailsjs.com/documentation/concepts/Middleware).  The example below covers basic usage and configuration.  For more guidance and advanced usage details, be sure and follow the link to the docs.

##### Using [lusca](https://github.com/krakenjs/lusca#luscahstsoptions)

> lusca is open-source under the [Apache license](https://github.com/krakenjs/lusca/blob/master/LICENSE.txt)

`sh
# In your sails app
npm install lusca --save
`

Then in the middleware config object in config/http.js:


	```js
	// …
// maxAge ==> Number of seconds strict transport security will stay in effect.
strictTransportSecurity: require(‘lusca’).hsts({ maxAge: 31536000 })
// …


```

### Additional Resources
+ [HTTP Strict Transport Security (OWasp)](https://www.owasp.org/index.php/HTTP_Strict_Transport_Security)

<docmeta name=”displayName” value=”Strict Transport Security”>



            

          

      

      

    

  

    
      
          
            
  # XSS

Cross-site scripting (XSS) is a type of attack in which a malicious agent manages to inject client-side JavaScript into your website, so that it runs in the trusted environment of your users’ browsers.

### Protecting against XSS attacks

The cleanest way to prevent XSS attacks is to escape untrusted data _at the point of injection_.  That means at the point where it’s actually being injected into the HTML.

#### On the server

##### When injecting data into a server-side view…

Use <%= %> to HTML-encode data:

```html
<h3 is=”welcome-msg”>Hello <%= me.username %>!</h3>

<h4><%= owner.username %>’s projects:</h4>
<% _.each(projects, function (project) { %>

	
	<a href=”/<%= owner.username %>/<%= project.slug %>”><%= project.friendlyName %>

<% }); %>
```

##### When exposing view locals to client-side JavaScript…

Use the exposeLocalsToBrowser partial to safely expose some or all of your view locals to client-side JavaScript:

```html
<%- exposeLocalsToBrowser(); %>

<script>
console.log(window.SAILS_LOCALS);
// {
// me: {
// username: ‘eleven’,
// memberSince: ‘1982-08-01T05:00:00.000Z’
// },
// owner: {
// username: ‘joyce’,
// memberSince: ‘1987-11-03T05:00:00.000Z’
// },
// projects: [
// {
// slug: ‘my-neat-stuff-n-things’,
// friendlyName: ‘My neat stuff & things’,
// description: ‘Yet another project.’
// },
// {
// slug: ‘kind-of-neat-stuff-but-not-that-great’,
// friendlyName: ‘Kind of neat stuff, but not that great…’,
// description: ‘I am so sick and tired of these project. <script>alert('attack');</script>’
// }
//],
// _csrf: ‘oon95Uac-wKfWQKC5pHx1rP3HsiN9tjqGMyE’
// }
</script>
```

> Note that when you use this strategy, the strings in your view locals are no longer HTML unescaped after being exposed to client-side JavaScript.
> That’s because you’ll want to escape them _again_ when you stick them in the DOM.  If you always escape at the point of injection, this stuff is a
> lot easier to keep track of.  This way, you know you can safely escape _any_ string you inject into the DOM from your client-side JavaScript.
> (More on that below.)

#### On the client

A lot of XSS prevention is about what you do in your client-side code.  Here are a few examples:

##### When injecting data into a client-side JST template…

Use <%- %> to HTML-encode data:

```html
<div data-template-id=”welcome-box”>

<h3 is=”welcome-msg”>Hello <%- me.username %>!</h3>

</div>
```

##### When modifying the DOM with client-side JavaScript…

Use something like $(…).text() to HTML-encode data:

```js
var $welcomeMsg = $(‘#signup’).find(‘[is=”welcome-msg”]’);
welcomeMsg.text(‘Hello, ‘+window.SAILS_LOCALS.me.username+’!’);

// Avoid using $(…).html() to inject untrusted data.
// Even if you know an XSS is not possible under particular circumstances,
// accidental escaping issues can cause really, really annoying client-side bugs.
```

> As you’ve probably figured out, the example above assumes you are using jQuery, but the same concepts apply regardless of what front-end library you are using.

### Additional Resources
+ [XSS (OWasp)](https://www.owasp.org/index.php/XSS)
+ [XSS Prevention Cheatsheet](https://www.owasp.org/index.php/XSS_Prevention_Cheat_Sheet)

### Notes

> + The examples above assume you are using the default view engine (EJS) and client-side JST/Lodash templates from the default asset pipeline.

<docmeta name=”displayName” value=”XSS”>



            

          

      

      

    

  

    
      
          
            
  # Services

> _**Note**_: Although Services are still fully supported in Sails 1.0, it is recommended that you use [helpers](https://sailsjs.com/documentation/concepts/helpers) instead.

Services are stateless libraries of functions that you can use from anywhere in your Sails app.  For example, you might have an EmailService which tidily wraps up one or more utility functions so you can use them in more than one place within your application.

Another benefit of using services in Sails is that they are globalized, which means that you don’t have to use require() to access them, although you can if you prefer (you can also disable the automatic exposure of global variables in your app’s configuration). By default, you can access a service and call its functions (e.g. EmailService.sendHtmlEmail() or EmailService.sendPasswordRecoveryEmail()) from anywhere: within controller actions, from inside other services, in custom model methods, or even from command-line scripts.

Hypothetically, one could create a service for:


	Sending an email


	Blasting tweets to celebrities


	Retrieving data from a third party API




But [helpers](https://sailsjs.com/documentation/concepts/helpers) are a better bet.

<docmeta name=”displayName” value=”Services”>



            

          

      

      

    

  

    
      
          
            
  # How sessions work in Sails (advanced)

For our purposes, sessions are defined to be a few components that together allow you to store information about a user agent between requests.

> A user agent is the software (browser or native application) that represents you on a device (e.g. a browser tab on your computer, a smartphone application, or your refrigerator).  It is associated one-to-one with a cookie or access token.

Sessions can be very useful because the request/response cycle is stateless. The request/response cycle is considered stateless because neither the client nor the server inherently stores any information between different requests about a particular request.  Therefore, the lifecycle of a request/response ends when a response is made to the requesting user agent (e.g. res.send()).

Note: we’re going to discuss sessions in the context of a browser user agent. While you can use sessions in Sails for whatever you like, it is generally a best practice to use them purely for storing the state of user agent authentication. Authentication is a process that allows a user agent to prove that they have a certain identity.  For example, in order to access some protected functionality, I might need to prove that my browser tab actually corresponds with a particular user record in a database.  If I provide you with a unique name and a password, you can look up the name and compare my password with a stored (hopefully [encrypted](http://node-machine.org/machinepack-passwords/encrypt-password)) password.  If there’s a match, I’m authenticated. But how do you store that “authenticated-ness” between requests? That’s where sessions come in.

### What sessions are made of
There are three main components to the implementation of sessions in Sails:
1. the session store where information is retained
2. the middleware that manages the session
3. a cookie that is sent along with every request and stores a session id (by default, sails.sid)

The session store can either be in memory (this is the default Sails session store) or in a database (Sails has built-in support for using Redis for this purpose).  Sails builds on top of Connect middleware to manage the session, which includes using a cookie to store a session id (sid) on the user agent.

### A day in the life of a request, a response, and a session
When a request is sent to Sails, the request header is parsed by the session middleware.

##### Scenario 1: The request header has no cookie

If the header does not contain a cookie, a sid is created in the session and a default session dictionary is added to req (e.g. req.session).  At this point you can make changes to the session property (usually in a controller/action).  For example, let’s look at the following login action:

```javascript
module.exports = {

login: function(req, res) {

// Authentication code here

// If successfully authenticated

req.session.userId = foundUser.id; // returned from a database

return res.json(foundUser);

}

}

Here we added a userId property to req.session.

> Note: the property will not be stored in the session store, nor will it be available to other requests until the response is sent.

Once the response is sent, any new requests will have access to req.session.userId. Since we didn’t have a cookie in the request header, a cookie will be established for us.

Scenario 2: The request header has a cookie with a Sails.sid

Now when the user agent makes the next request, the Sails.sid stored on the cookie is checked for authenticity. If it matches an existing sid in the session store, the contents of the session store are added as a property on the req dictionary (req.session). We can access properties on req.session (e.g. req.session.userId) or set properties on it (e.g. req.session.userId == someValue). The values in the session store might change, but the Sails.sid and sid generally do not.

When does the Sails.sid change?
During development, the Sails session store is in memory. Therefore, when you close the Sails server, the current session store disappears. When Sails is restarted, although a user agent request contains a Sails.sid in the cookie, the sid is no longer in the session store. Therefore, a new sid will be generated and replaced in the cookie. The Sails.sid will also change if the user agent cookie expires or is removed.

>The lifespan of a Sails cookie can be changed from its default setting (never expires) to a new setting by accessing the cookie.maxAge property in projectName/config/session.js.

Using Redis as the session store

Redis is a key-value database package that can be used as a session store that is separate from the Sails instance. This configuration for sessions has two benefits. The first is that the session store will remain viable between Sails restarts. The second is that if you have multiple Sails instances behind a load balancer, all of the instances can point to a single consolidated session store.

Enabling Redis session store in development

To enable Redis as your session store in development, first make sure you have a local Redis instance running on your machine (redis-server). Then, lift your app with sails lift –redis.

This is just a shortcut for sails lift –session.adapter=@sailshq/connect-redis –sockets.adapter=@sailshq/socket.io-redis. These packages are included as dependencies of new Sails apps by default, but if you’re working with an upgraded app you’ll need to npm install @sailshq/connect-redis and npm install @sailshq/socket.io-redis.

> Note that this built-in configuration uses your local Redis instance. For advanced session configuration options, see [Reference > Configuration > sails.config.session](https://sailsjs.com/documentation/reference/configuration/sails-config-session).

Nerdy details of how the session cookie is created
The value for the cookie is created by first hashing the sid with a configurable secret which is just a long string.

> You can change the session secret property in projectName/config/session.js.

The Sails sid (e.g. Sails.sid) then becomes a combination of the plain sid followed by a hash of the sid plus the secret. To take this out of the world of abstraction, let’s use an example. Sails creates a sid of 234lj232hg234jluy32UUYUHH and a session secret of 9238cca11a83d473e10981c49c4f. These values are simply two strings that Sails combines and hashes to create a signature of AuSosBAbL9t3Ev44EofZtIpiMuV7fB2oi. So the Sails.sid becomes 234lj232hg234jluy32UUYUHH.AuSosBAbL9t3Ev44EofZtIpiMuV7fB2oi and is stored in the user agent cookie by sending a set-cookie property in the response header.

What does this prevent? This prevents a user from guessing the sid. It also prevents a evildoer from spoofing a user into making an authetication request with a sid that the evildoer knows. This could allow the evildoer to use the sid to do bad things while the user is authenticated via the session.

Disabling sessions

Even if your Sails app is designed to be accessed by non-browser clients, such as toasters, you are strongly encouraged to use sessions for authentication. While it can sometimes be complex to understand, the built-in session mechanism in Sails (session store + HTTP-only cookies) is a tried and true solution that is generally [less brittle, easier to use, and lower-risk than rolling out something yourself](http://cryto.net/~joepie91/blog/2016/06/13/stop-using-jwt-for-sessions/).

That said, sessions may not always be an option (for example, if you must [integrate with a different authentication scheme](https://github.com/sails101/jwt-login) like JWT). In these cases, you can disable sessions on an app-wide or per-request basis.

Disabling sessions for your entire app

To entirely turn off session support for your app, add the following to your .sailsrc file:

```javascript
“hooks”: {


“session”: false






}

This disables the core Sails session hook.  You can also accomplish this by setting the sails_hooks__session environment variable to false.

##### Disabling sessions for certain requests

To turn off session support on a per-route (or per-request) basis, use the [sails.config.session.isSessionDisabled setting](https://sailsjs.com/documentation/reference/configuration/sails-config-session#?properties).  By default, Sails enables session support for all requests except those that [look like](https://sailsjs.com/documentation/reference/application/advanced-usage/sails-looks-like-asset-rx) they’re pointed at static assets like images, stylesheets, etc.

<docmeta name=”displayName” value=”Sessions”>




            

          

      

      

    

  

    
      
          
            
  # Testing your code

This section of the documentation runs through how you might go about testing your Sails application.  There are countless test frameworks and assertion libraries for Sails and Node.js; pick one that fits your needs.

> There is no official strategy for testing in the Sails framework, and this page is a collaborative, community-driven guide that has not been thoroughly vetted by Sails core team members.  If you run across something that seems confusing or incorrect, feel free to submit a pull request.

### Preparation

For our example test suite, we’ll use [mocha](http://mochajs.org/).

`bash
npm install mocha --save-dev
`

Before you start building your test cases, organize your test/ directory structure.  Once again, when it comes to automated testing, there are several different organizational approaches you might choose.  For this example, we’ll go about it as follows:

```bash
./myApp
├── api/
├── assets/
├── …
├── test/
│ ├── integration/
│ │ ├── controllers/
│ │ │ └── UserController.test.js
│ │ ├── models/
│ │ │ └── User.test.js
│ │ └── helpers/
| | └── …
│ ├── fixtures/
| │ └── …
│ ├── lifecycle.test.js
│ └── mocha.opts
├── …
└── views/

```

##### lifecycle.test.js

This file is useful when you want to execute some code before and after running your tests (e.g. lifting and lowering your Sails application). Since your models are converted to Waterline collections on lift, it is necessary to lift your Sails app before trying to test them (this applies controllers and other parts of your app, too, so be sure to call this file first).

```javascript
var sails = require(‘sails’);

// Before running any tests…
before(function(done) {

// Increase the Mocha timeout so that Sails has enough time to lift, even if you have a bunch of assets.
this.timeout(5000);

	sails.lift({
	// Your Sails app’s configuration files will be loaded automatically,
// but you can also specify any other special overrides here for testing purposes.

// For example, we might want to skip the Grunt hook,
// and disable all logs except errors and warnings:
hooks: { grunt: false },
log: { level: ‘warn’ },

	}, function(err) {
	if (err) { return done(err); }

// here you can load fixtures, etc.
// (for example, you might want to create some records in the database)

return done();

});

});

// After all tests have finished…
after(function(done) {

// here you can clear fixtures, etc.
// (e.g. you might want to destroy the records you created above)

sails.lower(done);

});

mocha.opts

This file is optional. You can use it as an alternative to command-line options for specifying [custom Mocha configuration](https://mochajs.org/#mochaopts).

One notable customization option is timeout. The default timeout in Mocha is 2 seconds, which is sufficient for most test cases but may be too short depending on how often your tests are lifting and lowering Sails. To ensure that Sails lifts in time to finish your first test, you may need to increase the timeout value in mocha.opts:

`bash
--timeout 10000
`

> Note: If you are writing your tests in a transpiled language such as CoffeeScript (.coffee files instead of .js files), you’ll need to take an extra step to configure Mocha accordingly. For example, you might add these lines to your mocha.opts:
>
> `bash
> --require coffee-script/register
> --compilers coffee:coffee-script/register
> `
>
> _If you prefer Typescript, the approach is basically the same, except you’ll want to use –require ts-node/register.

Writing tests

Once you have prepared your directory, you can start writing your integration tests:

```js
// ./test/integration/models/User.test.js

var util = require(‘util’);

describe(‘User (model)’, function() {



	describe(‘#findBestStudents()’, function() {
	
	it(‘should return 5 users’, function (done) {
	User.findBestStudents()
.then(function(bestStudents) {



	if (bestStudents.length !== 5) {
	
	return done(new Error(
	‘Should return exactly 5 students – the students ‘+
‘from our test fixtures who are considered the “best”.  ‘+
‘But instead, got: ‘+util.inspect(bestStudents, {depth:null})+’’





));





}//-•

return done();




})
.catch(done);





});





});






});

### Testing actions & controllers

The most fundamental tests for your backend code involve sending an HTTP request and checking the response.  There are numerous ways to go about this, whether it’s a full-fledged testing tool, like Supertest, or a pure utility like [request](https://npmjs.com/package/request) or [mp-http](https://npmjs.com/package/machinepack-http), combined with [assert](https://nodejs.org/dist/latest/docs/api/assert.html).

##### Using Supertest

Let’s take [Supertest](https://github.com/visionmedia/supertest) for a spin:

`bash
npm install supertest --save-dev
`

The idea behind Supertest is to provide a high-level tool that helps build a specific type of test&mdash;specifically, the type of test that send an HTTP request to your Sails app and checks the response.

```js
// test/integration/controllers/UserController.test.js
var supertest = require(‘supertest’);

describe(‘UserController.login’, function() {

	describe(‘#login()’, function() {
	
	it(‘should redirect to /my/page’, function (done) {
	supertest(sails.hooks.http.app)
.post(‘/users/login’)
.send({ name: ‘test’, password: ‘test’ })
.expect(302)
.expect(‘location’,’/my/page’, done);

});

});

});

Running tests

In order to run your test using Mocha, you’ll have to use mocha in the command line then pass as arguments any test you want to run. Be sure to call lifecycle.test.js before the rest of your tests, like this: mocha test/lifecycle.test.js test/integration/**/*.test.js

Using npm test to run your test

You can modify your package.json file to use npm test instead of Mocha, and thus avoid typing out the Mocha command described above. This is particularly useful when calling lifecycle.test.js.

On the scripts dictionary, add a test key and use the following as its value: mocha test/lifecycle.test.js test/integration/**/*.test.js. This looks like:


	```json
	
	“scripts”: {
	“start”: “node app.js”,
“debug”: “node debug app.js”,
“test”: “node ./node_modules/mocha/bin/mocha test/lifecycle.test.js test/integration/**/*.test.js”





}





```
The * is a wildcard used to match any file inside the integration/ folder that ends in .test.js. If it suits you, you can modify it to search for *.spec.js instead. In the same way, you can use wildcards for your folders by using two * instead of one.

> As of Sails v1, Sails apps are generated with a test script already in their package.json file, but you’ll still want to make some modifications to it for this example. If you’re upgrading an existing app, you may have to add a test key by hand.

Continuous integration

If you’d like to have a system automatically run your tests every time you push to your source code repository, you’re in luck! Many different continuous integration systems support Sails/Node.js, so you can have your pick. Here are a few popular choices to get you started:

	[Circle CI](https://circleci.com/)

	[Travis CI](http://travis-ci.com)

	[Semaphore CI](https://semaphoreci.com/)

	[Appveyor](http://appveyor.com) _(useful if you’ll be deploying to a Windows server)_

> All of the options above charge a monthly fee for proprietary apps but are free for open source. Circle CI is free for proprietary apps as well, but throttled to two builds at a time. Semaphore is also free and and allows you 4x parallel CI/CD jobs.

Load testing

A [number of commercial options](http://www.bing.com/search?q=load+testing) exist for load testing web applications. You can also get a reasonable idea of how your app will perform using tools like [ab](http://httpd.apache.org/docs/2.4/programs/ab.html) or [JMeter](http://jmeter.apache.org/). Just remember, the goal is to simulate real traffic. For more help setting up your Sails app to be production-ready and scalable, see [Scalability](https://sailsjs.com/documentation/concepts/deployment/scaling). For additional help or more specific questions, click [here](https://sailsjs.com/support).

Optimizing performance

Usually, the scalability and overall performance of your app is more important than the performance and latency of any given individual request to a particular endpoint. So rather than focusing on one piece of code in isolation, we recommend starting with [the basics](https://sailsjs.com/documentation/concepts/deployment/scaling); for most apps, that’s good enough. For some use cases (e.g. serving ads, or apps with very computationally-intensive functionality), though, individual request latency may be important from the get-go.

For testing the performance of particular chunks of code, or for benchmarking the latency of individual requests to particular endpoints, a great option is [benchmark.js](https://www.npmjs.com/package/benchmark). Not only is it a robust library that supports high-resolution timers and returns statistically significant results, it also works great with Mocha out of the box.

<docmeta name=”displayName” value=”Testing”>

 # Layouts

When building an app with many different pages, it can be helpful to extrapolate markup shared by several HTML files into a layout. This [reduces the total amount of code](http://en.wikipedia.org/wiki/Don’t_repeat_yourself [http://en.wikipedia.org/wiki/Don't_repeat_yourself]) in your project and helps you avoid making the same changes in multiple files down the road.

In Sails and Express, layouts are implemented by the view engines themselves. For instance, jade has its own layout system, with its own syntax.

For convenience, Sails bundles special support for layouts when using the default view engine, EJS. If you’d like to use layouts with a different view engine, check out [that view engine’s documentation](https://sailsjs.com/documentation/concepts/views/view-engines) to find the appropriate syntax.

Creating layouts

Sails layouts are special .ejs files in your app’s views/ folder you can use to “wrap” or “sandwich” other views. Layouts usually contain the preamble (e.g. <!DOCTYPE html><html><head>….</head><body>) and conclusion (</body></html>). The original view file is included using <%- body %>. Layouts are never used without a view: that would be like serving someone a bread sandwich.

Layout support for your app can be configured or disabled in [config/views.js](https://sailsjs.com/documentation/anatomy/config/views.js), and it can be overridden for a particular route or action by setting a special [local](https://sailsjs.com/documentation/concepts/views/locals) called layout. By default, Sails will compile all views using the layout located at views/layouts/layout.ejs.

To specify what layout a view uses, see the example below. There is more information in the docs at [routes](https://sailsjs.com/documentation/concepts/routes).

The example route below will use the view located at ./views/users/privacy.ejs within the layout located at ./views/users.ejs

```javascript
‘get /privacy’: {



view: ‘users/privacy’,
locals: {


layout: ‘users’




}




},




```

The example controller action below will use the view located at ./views/users/privacy.ejs within the layout located at ./views/users.ejs

```javascript
privacy: function (req, res) {


res.view(‘users/privacy’, {layout: ‘users’})





}

### Notes

> #### Why do layouts only work for EJS?
> A couple of years ago, built-in support for layouts/partials was deprecated in Express. Instead, developers were expected to rely on the view engines themselves to implement this feature. (See https://github.com/balderdashy/sails/issues/494 for more information.)
>
> Sails supports the legacy layouts feature for convenience, backwards compatibility with Express 2.x and Sails 0.8.x apps, and in particular, familiarity for new community members coming from other MVC frameworks. As a result, layouts have only been tested with the default view engine (ejs).
>
> If layouts aren&rsquo;t your thing, or (for now) if you&rsquo;re using a server-side view engine other than ejs, (e.g. Jade, handlebars, haml, dust) you&rsquo;ll want to set layout:false in [sails.config.views](https://sailsjs.com/documentation/reference/configuration/sails-config-views) and rely on your view engine&rsquo;s custom layout/partial support.

<docmeta name=”displayName” value=”Layouts”>




            

          

      

      

    

  

    
      
          
            
  # Locals

The variables accessible in a particular view are called locals.  Locals represent server-side data that is _accessible_ to your view&mdash;locals are not actually _included_ in the compiled HTML unless you explicitly reference them using special syntax provided by your view engine.

`ejs
<div>Logged in as <a><%= user.fullName %></a>.</div>
`

### Using locals in your views

The notation for accessing locals varies between view engines.  In EJS, you use special template markup (e.g. <%= someValue %>) to include locals in your views.

There are three kinds of template tags in EJS:
+ <%= someValue %>



	HTML-escapes the someValue local, and then includes it as a string.








	<%- someRawHTML %>
+ Includes the someRawHTML local verbatim, without escaping it.
+ Be careful!  This tag can make you vulnerable to XSS attacks if you don’t know what you’re doing.


	<% if (!loggedIn) { %>  <a>Logout</a>  <% } %>
+ Runs the JavaScript inside the <% … %> when the view is compiled.
+ Useful for conditionals (if/else), and looping over data (for/each).




Here’s an example of a view (views/backOffice/profile.ejs) using two locals, user and corndogs:

```ejs
<div>

<h1><%= user.fullName %>’s first view</h1>
<h2>My corndog collection:</h2>

<% for (let corndog of corndogs) { %>
<%= _.capitalize(corndog.name) %>
<% } %>

</div>
```

> You might have noticed another local: _.  By default, Sails passes down a few locals to your views automatically, one of which is lodash (_).

If the data you wanted to pass down to this view was completely static, you wouldn’t necessarily need a controller. Instead, you could hard-code the view and its locals in your config/routes.js file, like so:


	```javascript
	// …
‘get /profile’: {

view: ‘backOffice/profile’,
locals: {

	user: {
	fullName: ‘Frank’,
emailAddress: ‘frank@enfurter.com’

},
corndogs: [

{ name: ‘beef corndog’ },
{ name: ‘chicken corndog’ },
{ name: ‘soy corndog’ }

]

}

},
// …


```

More likely, though, this data will be dynamic. In this scenario, we’d need to use a controller action to load the data from our models, then pass it to the view using the [res.view()](https://sailsjs.com/documentation/reference/response-res/res-view) method.

Assuming we hooked up our route to one of our controller’s actions (and our models were set up), we might send down our view like this:

```javascript
// in api/controllers/UserController.js…

	profile: function (req, res) {
	// …
return res.view(‘backOffice/profile’, {

user: theUser,
corndogs: theUser.corndogCollection

});

},
// …


```

### Escaping untrusted data using exposeLocalsToBrowser

It is often desirable to &ldquo;bootstrap&rdquo; data onto a page so that it&rsquo;s available via Javascript as soon as the page loads, rather than having to fetch the data in a separate AJAX or socket request.  Sites like [Twitter and GitHub](https://blog.twitter.com/2012/improving-performance-on-twittercom) rely heavily on this approach in order to optimize page load times and provide an improved user experience.

Historically, this problem was commonly solved using hidden form fields or by hand-rolling code that injected server-side locals directly into a client-side script tag.  While effective, these techniques can present challenges when some of the data to be bootstrapped is from an _untrusted_ source that might contain HTML tags and Javascript code meant to compromise your app with an <a href=”https://en.wikipedia.org/wiki/Cross-site_scripting” target=”_blank”>XSS attack</a>.  To prevent situations like this, Sails provides a built-in view partial called exposeLocalsToBrowser that you can use to securely inject data from your view locals for access from client-side JavaScript.

To use exposeLocalsToBrowser, simply call it from within your view using the _non-escaping syntax_ for your template language.  For example, using the default EJS view engine:

`ejs
<%- exposeLocalsToBrowser() %>
`

By default, this exposes _all_ of your view locals as the window.SAILS_LOCALS global variable.  For example, if your action code contained:

```javascript
res.view(‘myView’, {

someString: ‘hello’,
someNumber: 123,
someObject: { owl: ‘hoot’ },
someArray: [1, ‘boot’, true],
someBool: false
someXSS: ‘<script>alert(“all your credit cards belong to me!!”);</script>’

});

then using exposeLocalsToBrowser as shown above would cause the locals to be safely bootstrapped in such a way that window.SAILS_LOCALS.someArray would contain the array [1, ‘boot’, true], and window.SAILS_LOCALS.someXSS would contain the _string_ <script>alert(“all your credit cards belong to me!!”);</script> without causing that code to actually be executed on the page.

The exposeLocalsToBrowser function has a single options parameter that can be used to configure what data is outputted, and how. The options parameter is a dictionary that can contain the following properties:

| | Property | Type | Default| Details |
|---|:——————–|--|:———————————–|-----|
| 1 | _keys_ | ((array?)) | undefined | A “whitelist” of locals to expose. If left undefined, _all_ locals will be exposed. If specified, this should be an array of property names from the locals dictionary. For example, given the res.view() statement shown above, setting keys: [‘someString’, ‘someBool’] would cause windows.SAILS_LOCALS to be set to {someString: ‘hello’, someBool: false}.
| 2 | _namespace_ | ((string?)) | SAILS_LOCALS | The name of the global variable to which the bootstrapped data should be assigned.
| 3| _dontUnescapeOnClient_ | ((boolean?)) | false | Advanced. Not recommended for most apps. If set to true, any string values that were escaped to avoid XSS attacks will _still be escaped_ when accessed from client-side JS, instead of being transformed back into the original value. For example, given the res.view() statement from the example above, using exposeLocalsToBrowser({dontUnescapeOnClient: true}) would cause window.SAILS_LOCALS.someXSS to be set to <script>alert('hello!');.

<docmeta name=”displayName” value=”Locals”>

 # Partials

When using the default view engine (ejs), Sails supports the use of _partials_ (i.e. “view partials”). Partials are basically just views that are designed to be used from within other views.

They are particularly useful for reusing the same markup between different views, layouts, and even other partials.

`ejs
<%- partial('./partials/navbar.ejs') %>
`

This should render the partial located at views/partials/navbar.ejs, which might look something like this:

```ejs
<%
/**



	views/partials/navbar.ejs


	

	> Note: This EJS comment won’t show up in the ejs served to the browser.


	> So you can be as verbose as you like.  Just be careful not to inadvertently


	> type a percent sign followed by a greater-than sign (it’ll bust you out of


	> the EJS block).


	



*/%>





	<nav class=”navbar”>
	<a href=”/”>Dashboard</a>
<a href=”/inbox”>Inbox</a>





</nav>
```

The target path that you pass in as the first argument to partial() should be relative from the view, layout, or partial where you call it. So if you are calling partial() from within a view file located at views/pages/dashboard/user-profile.ejs, and want to load views/partials/widget.ejs then you would use:

`ejs
<%- partial('../../partials/navbar.ejs') %>
`

Partials and view locals

Partials automatically inherit the view locals that are available wherever they are used. For example, if you call partial() within a view where a variable named currentUser is available, then currentUser will also be available within the partial:

```ejs
<%
/**



	views/partials/navbar.ejs


	

	The navbar at the top of the page.


	

	@needs {Dictionary} currentUser


	@property {Boolean} isLoggedIn


	@property {String} username




*/%>





	<nav class=”navbar”>
	
	<div class=”links”>
	<a href=”/”>Dashboard</a>
<a href=”/inbox”>Inbox</a>





</div>
<span class=”login-or-signup”><%
// If the user accessing this page is logged in…
if (currentUser.isLoggedIn) {
%>


You are signed in as <a href=”/<%= currentUser.username %>”><%= currentUser.username %></a>.




<%
}
// Otherwise the user accessing this page must be a visitor:
else {
%>


<a href=”/login”>Log in</a>




<%
}
%>
</span>





</nav>
```

Overriding locals in a partial

Automatic inheritance of view locals takes care of most use cases for partials, but sometimes you might want to pass in additional, dynamic data. For example, imagine your app has duplicate copies of the following code in a few different views:

```ejs
<%
// A list representing the currently-logged in user’s inbox.
%><ul class=”message-list”><%



// Display each message, with a button to delete it.
_.each(messages, function (message) {
%><li class=”inbox-message” data-id=”<%= message.id %>”>


<a href=”/messages/<%= message.id %>”><%= message.subject %></a>
<button class=”fa fa-trash” is=”delete-btn”></button>




</li><% });




%></ul>




```

To refactor this, you might extrapolate the into a partial to avoid duplicating code. But if we do that, _we cannot rely on automatic inheritance_. Partials only inherit locals that are available to the view, partial, or layout where they’re called as a whole, but this relies on a variable called message, which comes from the call to [_.each()](https://lodash.com/docs/3.10.1#forEach).

Fortunately, Sails also allows you to pass in an optional dictionary (i.e. a plain JavaScript object) of overrides as the second argument to partial():

`
<%- partial(relPathToPartial, optionalOverrides) %>
`

These overrides will be accessible in the partial as local variables, where they will take precedence over any automatically inherited locals with the same variable name.

Here’s our example from above, refactored to take advantage of this:

```ejs
<%
// A list representing the currently-logged in user’s inbox.
%><ul class=”message-list”><%


// Display each message, with a button to delete it.
_.each(messages, function (message) { %>
<%- partial (‘../partials/inbox-message.ejs’, { message: message }) %>
<% });




%></ul>
```

And finally, here is our new partial representing an individual inbox message:

```ejs
/**



	views/partials/inbox-message.ejs


	

	An individual inbox message.


	

	@needs {Dictionary} message


	@property {Number} id


	@property {String} subject


	



*/%>





	<li class=”inbox-message” data-id=”<%= message.id %>”>
	<a href=”/messages/<%= message.id %>”><%= message.subject %></a>
<button class=”fa fa-trash” is=”delete-btn” aria-label=”Delete”></button>





</li>
```

Notes

> + Partials are rendered synchronously, so they will block Sails from serving more requests until they’re done loading. It’s something to keep in mind while developing your app, especially if you anticipate a large number of connections.
> + Built-in support for partials in Sails is only for the default view engine, ejs. If you decide to customize your Sails install and use a view engine other than ejs, then please be aware that support for partials (sometimes known as “blocks”, “includes”, etc.) may or may not be included, and that the usage will vary. Refer to the documentation for your view engine of choice for more information on its syntax and conventions.

<docmeta name=”displayName” value=”Partials”>

 # View engines

The default view engine in Sails is [EJS](https://github.com/mde/ejs).

Swapping out the view engine

To use a different view engine, you should use npm to install it in your project, then in [config/views.js](https://sailsjs.com/documentation/anatomy/config/views.js) set sails.config.views.extension to your desired file extension and sails.config.views.getRenderFn to a function that returns your view engine’s rendering function.

If your view engine is supported by [Consolidate](https://github.com/tj/consolidate.js/blob/master/Readme.md#api), you can use that in getRenderFn to easily access the rendering function. First, you’ll need to use npm to install consolidate into your project, if it is not already present:

`bash
npm install consolidate --save
`

After the install has completed and you have installed your view engine package, you can then set the view configuration. For example, to use [Swig](https://github.com/paularmstrong/swig) templates you would npm install swig –save and then add the following into [config/views.js](https://sailsjs.com/documentation/anatomy/config/views.js):

```javascript
extension: ‘swig’,
getRenderFn: ()=>{


// Import consolidate.
var cons = require(‘consolidate’);
// Return the rendering function for Swig.
return cons.swig;





}

The getRenderFn allows you to configure your view engine before plugging it into Sails:

```javascript
extension: ‘swig’,
getRenderFn: ()=>{

// Import consolidate.
var cons = require(‘consolidate’);
// Import swig.
var swig = require(‘swig’);
// Configure swig.
swig.setDefaults({tagControls: [‘{?’, ‘?}’]});
// Set the module that Consolidate uses for Swig.
cons.requires.swig = swig;
// Return the rendering function for Swig.
return cons.swig;

}

<docmeta name=”displayName” value=”View engines”>

 # Views
Overview

In Sails, views are markup templates that are compiled _on the server_ into HTML pages. In most cases, views are used as the response to an incoming HTTP request, e.g. to serve your home page.

> Much more rarely, you can also compile a view directly into an HTML string for use in your backend code (see [sails.renderView()](https://github.com/balderdashy/sails/blob/master/docs/PAGE_NEEDED.md)). For instance, you might use this approach to send HTML emails, or to build big XML strings for use with a legacy API.

Creating a view

By default, Sails is configured to use EJS ([Embedded Javascript](http://ejs.co/)) as its view engine. The syntax for EJS is highly conventional; if you’ve worked with php, asp, erb, gsp, jsp, etc., you’ll immediately know what you’re doing.

If you prefer to use a different view engine, there are a multitude of options. Sails supports all of the view engines compatible with [Express](http://expressjs.com/en/guide/using-template-engines.html) via [Consolidate](https://github.com/visionmedia/consolidate.js).

Views are defined in your app’s [views/](https://sailsjs.com/documentation/anatomy/views) folder by default, but like all of the default paths in Sails, they are [configurable](https://sailsjs.com/documentation/reference/configuration/sails-config-views). If you don’t need to serve dynamic HTML pages at all (say, if you’re building an API for a mobile app), you can remove the directory from your app.

Compiling a view

Anywhere you can access the res object (e.g. a controller action, custom response, or policy), you can use [res.view](https://sailsjs.com/documentation/reference/response-res/res-view) to compile one of your views, then send the resulting HTML down to the user.

You can also hook up a view directly to a route in your routes.js file. Just indicate the relative path to the view from your app’s views/ directory. For example:

```javascript
{



	‘get /’: {
	view: ‘pages/homepage’





},
‘get /signup’: {


view: ‘pages/signup/basic-info’




},
‘get /signup/password’: {


view: ‘pages/signup/choose-password’




},
// and so on.





}

##### What about single-page apps?

If you are building a web application for the browser, part (or all) of your navigation may take place on the client; i.e. instead of the browser fetching a new HTML page each time the user navigates around, the client-side code preloads some markup templates which are then rendered in the user’s browser without needing to hit the server again directly.

In this case, you have a couple of options for bootstrapping the single-page app:


	Use a single view, e.g. views/publicSite.ejs.  The advantage of this option is that you can use the view engine in Sails to pass data from the server directly into the HTML that will be rendered on the client.  This is an easy way to get stuff like user data to your client-side JavaScript, without having to send AJAX/WebSocket requests from the client.


	Use a single HTML page in your assets folder , e.g. assets/index.html.  Although you can’t pass server-side data directly to the client this way, the advantage of this approach is that it allows you to further decouple the client and server-side parts of your application.




Note that anything in your assets folder can be moved to a static CDN (like Cloudfront or CloudFlare), allowing you to take advantage of that provider’s geographically-distributed data centers to get your content closer to your users.

<docmeta name=”displayName” value=”Views”>
<docmeta name=”nextUpLink” value=”/documentation/concepts/assets”>
<docmeta name=”nextUpName” value=”Assets”>




            

          

      

      

    

  

    
      
          
            
  # Extending Sails

In keeping with the Node philosophy, Sails aims to keep its core as small as possible, delegating all but the most critical functions to separate modules.  There are currently three types of extensions that you can add to Sails:


	[Generators](https://sailsjs.com/documentation/concepts/extending-sails/Generators): for adding and overriding functionality in the Sails CLI.  Example: [sails-generate-model](https://www.npmjs.com/package/sails-generate-model), which allows you to create models on the command line with sails generate model foo.


	[Adapters](https://sailsjs.com/documentation/concepts/extending-sails/Adapters): for integrating Waterline (Sails’ ORM) with new data sources, including databases, APIs, or even hardware. Example: [sails-postgresql](https://www.npmjs.com/package/sails-postgresql), the official [PostgreSQL](http://www.postgresql.org/) adapter for Sails.


	[Hooks](https://sailsjs.com/documentation/concepts/extending-sails/Hooks): for overriding or injecting new functionality in the Sails runtime.  Example: [sails-hook-autoreload](https://www.npmjs.com/package/sails-hook-autoreload), which adds auto-refreshing for a Sails project’s API without having to manually restart the server.




If you&rsquo;re interested in developing a plugin for Sails, you will most often want to make a [hook](https://sailsjs.com/documentation/concepts/extending-sails/Hooks).

<sub><a name=”foot1”>*</a> _Core hooks_, like http, request, etc. are hooks which are bundled with Sails out of the box.  They can be disabled by specifying a hooks configuration in your .sailsrc file, or when lifting Sails programatically.</sub>

<docmeta name=”displayName” value=”Extending Sails”>



            

          

      

      

    

  

    
      
          
            
  # Adapters

### What is an adapter?

In Sails and Waterline, database adapters (often simply called “adapters”, for short) allow the models in your Sails app to communicate with your database(s). In other words, when your code in a controller action or helper calls a model method like User.find(), what happens next is determined by the [configured adapter](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores).

An adapter is defined as a dictionary (aka JavaScript object, like {}) with methods like find, create, etc.  Based on which methods it implements, and the completeness with which they are implemented, adapters are said to implement one or more interface layers.  Each interface layer implies a contract to implement certain functionality.  This allows Sails and Waterline to guarantee conventional usage patterns across multiple models, developers, apps, and even companies, making app code more maintainable, efficient, and reliable.

> In previous versions of Sails, adapters were sometimes used for other purposes, like communicating with certain kinds of RESTful web APIs, internal/proprietary web services, or even hardware.  But _truly_ RESTful APIs are very rare, and so, in most cases, writing a database adapter to integrate with a _non-database API_ can be limiting.  Luckily, there is now a [more straightforward way](https://sailsjs.com/documentation/concepts/helpers) to build these types of integrations.

### What kind of things can I do in an adapter?

Adapters are mainly focused on providing model-contextualized CRUD methods.  CRUD stands for create, read, update, and delete.  In Sails/Waterline, we call these methods create(), find(), update(), and destroy().

For example, a MySQLAdapter implements a create() method which, internally, calls out to a MySQL database using the specified table name and connection information and runs an INSERT … SQL query.

### Next steps

Read about [available adapters](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters), or how to make your own [custom adapter](https://sailsjs.com/documentation/concepts/extending-sails/adapters/custom-adapters).

<docmeta name=”displayName” value=”Adapters”>
<docmeta name=”stabilityIndex” value=”3”>



            

          

      

      

    

  

    
      
          
            
  # Available database adapters

This page is meant to be an up-to-date, comprehensive list of all of the core adapters available for the Sails.js framework, and a reference of a few of the most robust community adapters out there.

All supported adapters can be configured in roughly the same way: by passing in a Sails/Waterline adapter (adapter), as well as a connection URL (url).  For more information on configuring datastores, see [sails.config.datastores](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores).

> Having trouble connecting?  Be sure to check your connection URL for typos.  If that doesn’t work, review the documentation for your database provider, or [get help](https://sailsjs.com/support).

### Officially-supported database adapters

The following core adapters are maintained, tested, and used by the Sails.js core team.

> Want to help out with a core adapter?  Get started by reading [the Sails project contribution guide](https://sailsjs.com/contributing).


Database technology    | Adapter                                                        | Connection URL structure                      | For production?     |



|:------------------------|:—————————————————————|:----------------------------------------------|:——————–|
|  MySQL                  | [require(‘sails-mysql’)](http://npmjs.com/package/sails-mysql)            | mysql://user:password@host:port/database      | Yes
|  PostgreSQL             | [require(‘sails-postgresql’)](http://npmjs.com/package/sails-postgresql)  | postgresql://user:password@host:port/database | Yes
|  MongoDB                | [require(‘sails-mongo’)](http://npmjs.com/package/sails-mongo)            | mongodb://user:password@host:port/database      | Yes
|  Local disk / memory           | _(built-in, see [sails-disk](http://npmjs.com/package/sails-disk))_          | _n/a_                                         | No!

### sails-mysql

[MySQL](http://en.wikipedia.org/wiki/MySQL) is the world’s most popular relational database.

[![NPM package info for sails-mysql](https://img.shields.io/npm/dm/sails-mysql.svg?style=plastic)](http://npmjs.com/package/sails-mysql) &nbsp; [![License info](https://img.shields.io/npm/l/sails-mysql.svg?style=plastic)](http://npmjs.com/package/sails-mysql)

`bash
npm install sails-mysql --save
`

`javascript
adapter: 'sails-mysql',
url: 'mysql://user:password@host:port/database',
`

> + The default port for MySQL is 3306.
> + If you plan on saving special characters&mdash;like emojis&mdash;in your data, you may need to set the [charset](https://dev.mysql.com/doc/refman/5.7/en/charset-charsets.html) configuration option for your datastore.  To allow emojis, use charset: ‘utf8mb4’.  You may use the [columnType setting](https://sailsjs.com/documentation/concepts/models-and-orm/attributes#?columntype) in a model attribute to set the character set.
> + For relational database servers like MySQL and PostgreSQL, you may have to create a “database” first using a free tool like [SequelPro](https://www.sequelpro.com/) or in the MySQL REPL on the command-line (if you’re an experience SQL user). It’s customary to make a database specifically for your app to use.
> + The sails-mysql adapter is also 100% compatible with [Amazon Aurora](https://aws.amazon.com/rds/aurora/) databases.

##### Handshake inactivity timeout errors
If you find yourself encountering a “Handshake inactivity timeout” error when your Sails app interacts with MySQL, you can increase the timeout using the connectTimeout option.  This is [usually only necessary](https://github.com/mysqljs/mysql/issues/1434) when queries are running side-by-side with computationally expensive operations (for example, compiling client-side typescript files or running webpack during development).

For example, you might extend the timeout to 20 seconds:

`javascript
adapter: 'sails-mysql',
url: 'mysql://user:password@host:port/database',
connectTimeout: 20000
`

### sails-postgresql

[PostgreSQL](http://en.wikipedia.org/wiki/postgresql) is a modern relational database with powerful features.

[![NPM package info for sails-postgresql](https://img.shields.io/npm/dm/sails-postgresql.svg?style=plastic)](http://npmjs.com/package/sails-postgresql) &nbsp; [![License info](https://img.shields.io/npm/l/sails-postgresql.svg?style=plastic)](http://npmjs.com/package/sails-postgresql)

`bash
npm install sails-postgresql --save
`

`javascript
adapter: 'sails-postgresql',
url: 'postgresql://user:password@host:port/database',
`

> + The default port for PostgreSQL is 5432.
> + In addition to adapter and url, you might also need to set ssl: true.  This depends on where your PostgreSQL database server is hosted.  For example, ssl: true is required when connecting to Heroku’s hosted PostgreSQL service.
> + Note that in pg@8.0 the syntax was updated to ssl: { rejectUnauthorized: false }.
> + Compatible with most versions of Postgres. See [this issue](https://github.com/balderdashy/sails/issues/6957) to learn more about compatability with Postgres >12

### sails-mongo

[MongoDB](http://en.wikipedia.org/wiki/MongoDB) is the leading NoSQL database.

[![NPM package info for sails-mongo](https://img.shields.io/npm/dm/sails-mongo.svg?style=plastic)](http://npmjs.com/package/sails-mongo) &nbsp; [![License info](https://img.shields.io/npm/l/sails-mongo.svg?style=plastic)](http://npmjs.com/package/sails-mongo)

`bash
npm install sails-mongo --save
`

`javascript
adapter: 'sails-mongo',
url: 'mongodb://user:password@host:port/database',
`

> + The default port for MongoDB is 27017.
> + If your Mongo deployment keeps track of its internal credentials in a separate database, then you may need to name that database by tacking on [?authSource=theotherdb](https://stackoverflow.com/a/40608735/486547) to the end of the connection URL.

### sails-disk

Write to your computer’s hard disk, or a mounted network drive.  Not suitable for at-scale production deployments, but great for a small project, and essential for developing in environments where you may not always have a database set up.  This adapter is bundled with Sails and works out of the box with zero configuration.

You can also operate sails-disk in _memory-only mode_.  See the settings table below for details.

[![NPM package info for sails-disk](https://img.shields.io/npm/dm/sails-disk.svg?style=plastic)](http://npmjs.com/package/sails-disk) &nbsp; [![License info](https://img.shields.io/npm/l/sails-disk.svg?style=plastic)](http://npmjs.com/package/sails-disk)

_Available out of the box in every Sails app._

_Configured as the default database, by default._

##### Optional datastore settings for sails-disk


Setting | Description | Type  | Default |



|:--------|:————|:------|:——–|
| dir   | The directory to place database files in.  The adapter creates one file per model. | ((string)) | .tmp/localDiskDb |
| inMemoryOnly | If true, no database files will be written to disk.  Instead, all data will be stored in memory (and will be lost when the app stops running). | ((boolean)) | false |

> + You can configure the default sails-disk adapter by adding settings to the default datastore in config/datastores.js.

### Community-supported database adapters

Is your database not supported by one of the core adapters?  Good news!  There are many different community database adapters for Sails.js and Waterline [available on NPM](https://www.npmjs.com/search?q=sails+adapter).

Here are a few highlights:


Database technology             | Adapter                | Maintainer | Interfaces implemented | Stable release |



|:--------------------------------|:———————–|:-----------|:———————–|-----------------------|
| Redis                       | [sails-redis](https://npmjs.com/package/sails-redis) | [Ryan Clough / Solnet Solutions](https://github.com/Ryanc1256) | Semantic, Queryable                                               | [![NPM package info for sails-redis](https://img.shields.io/npm/dm/sails-redis.svg?style=plastic)](http://npmjs.com/package/sails-redis) |
| MS SQL Server               | [sails-MSSQLserver](https://github.com/misterGF/sails-mssqlserver) | [misterGF](https://github.com/misterGF) | Semantic, Queryable                  | [![NPM package info for sails-sqlserver](https://img.shields.io/npm/dm/sails-sqlserver.svg?style=plastic)](http://npmjs.com/package/sails-sqlserver)
| OrientDB                    | [sails-orientDB](https://github.com/appscot/sails-orientdb) | [appscot](https://github.com/appscot) | Semantic, Queryable, Associations, Migratable | [![NPM package info for sails-orientdb](https://img.shields.io/npm/dm/sails-orientdb.svg?style=plastic)](http://npmjs.com/package/sails-orientdb)
| Oracle                      | [sails-oracleDB](https://npmjs.com/package/sails-oracledb) | [atiertant](https://github.com/atiertant) | Semantic, Queryable | [![NPM package info for sails-oracledb](https://img.shields.io/npm/dm/sails-oracledb.svg?style=plastic)](http://npmjs.com/package/sails-oracledb) |
| Oracle (AnyPresence)        | [waterline-oracle-adapter](https://github.com/AnyPresence/waterline-oracle-adapter) | [AnyPresence](https://github.com/AnyPresence) | Semantic, Queryable     | [![Release info for AnyPresence/waterline-oracle-adapter](https://img.shields.io/github/tag/AnyPresence/waterline-oracle-adapter.svg?style=plastic)](https://github.com/AnyPresence/waterline-oracle-adapter)
| Oracle (stored procedures)  | [sails-oracle-SP](https://npmjs.com/sails-oracle-sp) | [Buto](http://github.com/buto) and [nethoncho](http://github.com/nethoncho) | Semantic, Queryable     | [![NPM package info for sails-oracle-sp](https://img.shields.io/npm/dm/sails-oracle-sp.svg?style=plastic)](http://npmjs.com/package/sails-oracle-sp)
| SAP HANA DB                 | [sails-HANA](https://npmjs.com/sails-hana) | [Enrico Battistella](https://github.com/battistaar) | Semantic, Queryable     | [![NPM package info for sails-hana](https://img.shields.io/npm/dm/sails-hana.svg?style=plastic)](http://npmjs.com/package/sails-hana)
| SAP HANA (AnyPresence)      | [waterline-SAP-HANA-adapter](https://github.com/AnyPresence/waterline-sap-hana-adapter) | [AnyPresence](https://github.com/AnyPresence) | Semantic, Queryable     | [![Release info for AnyPresence/waterline-sap-hana-adapter](https://img.shields.io/github/tag/AnyPresence/waterline-sap-hana-adapter.svg?style=plastic)](https://github.com/AnyPresence/waterline-sap-hana-adapter)
| IBM DB2                     | [sails-DB2](https://npmjs.com/sails-db2) | [ibuildings Italia](https://github.com/IbuildingsItaly) &amp; [Vincenzo Ferrari](https://github.com/wilk) | Semantic, Queryable     | [![NPM package info for sails-db2](https://img.shields.io/npm/dm/sails-db2.svg?style=plastic)](http://npmjs.com/package/sails-db2)
| ServiceNow SOAP             | [waterline-ServiceNow-SOAP](https://npmjs.com/waterline-servicenow-soap) | [Sungard Availability Services](http://www.sungardas.com/) | Semantic, Queryable     | [![NPM package info for waterline-servicenow-soap](https://img.shields.io/npm/dm/waterline-servicenow-soap.svg?style=plastic)](http://npmjs.com/package/waterline-servicenow-soap)
| Cassandra                   | [sails-cassandra](https://github.com/dtoubelis/sails-cassandra) | [dtoubelis](https://github.com/dtoubelis) | Semantic, Migratable, Iterable | [![NPM package info for sails-cassandra](https://img.shields.io/npm/dm/sails-cassandra.svg?style=plastic)](http://npmjs.com/package/sails-cassandra)
| Solr                        | [sails-solr](https://github.com/sajov/sails-solr) | [sajov](https://github.com/sajov) | Semantic, Migratable, Queryable | [![NPM package info for sails-solr](https://img.shields.io/npm/dm/sails-solr.svg?style=plastic)](http://npmjs.com/package/sails-solr)
| FileMaker Database          | [sails-FileMaker](https://github.com/geistinteractive/sails-filemaker) | [Geist Interactive](https://www.geistinteractive.com/) | Semantic | [![NPM package info for sails-filemaker](https://img.shields.io/npm/dm/sails-filemaker.svg?style=plastic)](http://npmjs.com/package/sails-filemaker)
| Apache Derby                | [sails-derby](https://github.com/dash-/node-sails-derby) | [dash-](https://github.com/dash-) | Semantic, Queryable, Associations, SQL | [![NPM package info for sails-derby](https://img.shields.io/npm/dm/sails-derby.svg?style=plastic)](http://npmjs.com/package/sails-derby)
| REST API (Generic)          | [sails-REST](https://github.com/zohararad/sails-rest) | [zohararad](https://github.com/zohararad) | Semantic                                        | [![NPM package info for sails-rest](https://img.shields.io/npm/dm/sails-rest.svg?style=plastic)](http://npmjs.com/package/sails-rest)

##### Add your custom adapter to this list

If you see out of date information on this page, or if you want to add an adapter you made, please submit a pull request to this file updating the table of community adapters above.

Note that, to be listed on this page, an adapter must:


	Be free and open source (_libre_ and _gratis_), preferably under the MIT license.


	Pass all of the Waterline adapter tests for the interface layers declared in its package.json file.


	Support configuration via a connection URL, as url (if applicable).




If you find that any of these conventions are not true for any of the community adapters above (i.e. for latest stable release published on NPM, not for the code on GitHub), then please reach out to the maintainer of the adapter.  If you can’t reach them or need further assistance, then please [get in touch](https://sailsjs.com/contact) with a member of the Sails core team.

<docmeta name=”displayName” value=”Available adapters”>



            

          

      

      

    

  

    
      
          
            
  # Custom adapters

Sails makes it fairly easy to write your own database adapter.  Custom adapters can be built directly in your app (api/adapters/) or published as NPM packages.  Check out [Intro to Custom Adapters](https://github.com/balderdashy/sails/blob/master/docs/contributing/intro-to-custom-adapters.md), the [Adapter Interface Reference](https://github.com/balderdashy/sails/blob/master/docs/contributing/adapter-specification.md), and [sails-adapter-boilerplate](https://github.com/balderdashy/sails-adapter-boilerplate) for more information about creating your own adapter.

### Where does my adapter go?

There are two different places you can build an adapter:

##### In your app’s api/adapters/ folder

If an adapter is only going to be used in one app (e.g. a short-term fork of an existing adapter) you can put it in api/adapters/.  This is what you get out of the box when you run sails generate adapter.  In this case, the name of the adapter is determined by the name of the folder inside api/adapters/ (by convention, the entry point for your adapter should be index.js).

##### In a separate repo

Go with this option if you plan to share your adapter between multiple Sails apps, whether that’s within your organization or as an open-source package for other members of the Sails/Node.js community at large.  To use an externalized adapter like this, you’ll need to do npm install your-adapter-package-name or npm link your-adapter-package-name.

> Before you start on an open-source adapter, we recommend you search GitHub for sails-databasename and waterline-databasename to check if a project already exists. If it does, it’s generally a good idea to approach the author of an existing adapter and offer to contribute instead of starting a new project. Most developers will welcome your help, and the combined efforts will likely result in a better quality adapter. If one doesn’t exist, we recommend you create a new project and name it following the convention: sails-databasename.

### What goes in a custom adapter?

In Sails, database adapters expose interfaces, which imply a contract to implement certain functionality.  This allows us to guarantee conventional usage patterns across multiple models, developers, apps, and even companies, making app code more maintainable, efficient, and reliable.  Adapters are primarily useful for integrating with databases, but they can also be used to support any open API or internal/proprietary web service that is _purely_ RESTful.

> Not everything fits perfectly into a RESTful/CRUD mold.  Sometimes the service you’re integrating with has an RPC-style interface with one-off methods.  For example, consider an API request to send an email, or to read a remote sensor on a piece of connected hardware.  For that, you’ll want to write or extend a machinepack.  [Learn more about machinepacks here](http://node-machine.org).

### What kind of things can I do in an adapter?

Adapters are mainly focused on providing model-contextualized CRUD methods.  CRUD stands for create, read, update, and delete.  In Sails/Waterline, we call these methods create(), find(), update(), and destroy().

For example, a MySQLAdapter implements a create() method which, internally, calls out to a MySQL database using the specified table name and connection information and runs an INSERT … SQL query.

In practice, your adapter can really do anything it likes&mdash;any method you write will be exposed on the raw datastore objects and any models which use them.

### Building a custom adapter

Check out the [Sails docs](https://sailsjs.com/documentation), or see [config/datastores.js](https://sailsjs.com/anatomy/config/datastores.js) in a new Sails project for information on setting up this adapter in a Sails app.

#### Running the tests

Configure the interfaces you plan to support (and the targeted version of Sails) in the adapter’s package.json file:

```javascript
{

//…
“sails”: {

	“adapter”: {
	
“sailsVersion”: “^1.0.0”,
“implements”: [

“semantic”,
“queryable”

]

}

}

}

In your adapter’s directory, run:

`sh
$ npm test
`

Publish your adapter

> You’re welcome to write proprietary adapters and use them any way you wish—
> these instructions are for releasing an open-source adapter.

	Create a [new public repo](https://github.com/new) and add it as a remote (`git remote add origin git@github.com:yourusername/sails-youradaptername.git).

	Make sure you attribute yourself as the author and set the license in the package.json to “MIT”.

	Run the tests one last time.

	Do a [pull request to the docs](https://github.com/balderdashy/sails/edit/master/docs/concepts/extending-sails/Adapters/adapterList.md), adding your adapter’s repo.

	We’ll update the documentation with information about your new adapter.

	Let the people of the world adore you with lavish praise.

	Run npm version patch.

	Run git push && git push –tags.

	Run npm publish.

Why would I need a custom adapter?

When building a Sails app, the sending or receiving of any asynchronous communication with another piece of hardware can _technically_ be normalized into an adapter (viz. API integrations).

> From Wikipedia:
> http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

> Although a relational database provides a common persistence layer in software applications, numerous other persistence layers exist. CRUD functionality can be implemented with an object database, an XML database, flat text files, custom file formats, tape, or card, for example.

In other words, Waterline is not _necessarily_ just an ORM for your database. It is a purpose-agnostic open standard and toolset for integrating with all kinds of RESTful services, datasources, and devices—whether it’s LDAP, Neo4J, or [a lamp](https://www.youtube.com/watch?v=OmcQZD_LIAE).

> But remember: only use Waterline adapters for communicating with databases and APIs that support a “create”, “read”, “update”, and “destroy” interface. Not everything fits into that mold, and there are [better, more generic ways](http://node-machine.org) to address those other use cases.

Why should I build a custom adapter?

To recap, writing your API integrations as adapters is easier, takes less time, and absorbs a considerable amount of risk, since you get the advantage of a standardized set of conventions, a documented API, and a built-in community of other developers who have gone through the same process. Best of all, you (and your team) can reuse the adapter in other projects, speeding up development and saving time and money.

Finally, if you choose to release your adapter as open source, you provide a tremendous boon to our little framework and our budding Sails.js ecosystem. Even if it’s not via Sails, I encourage you to give back to the OSS community, even if you’ve never forked a repo before—don’t be intimidated, it’s not that bad!

The more high-quality adapters the Sails community collectively releases as open source, the less repetitive work we all have to do when we integrate with various databases and services. Our vision is to make building server-side apps more fun and less repetitive for everyone, and that happens one community adapter (or machinepack/driver/generator/view engine/etc.) at a time.

What is an adapter interface?

The functionality of database adapters is as varied as the services they connect. That said, there is a standard library of methods, and a support matrix you should be aware of. Adapters may implement some, all, or none of the interfaces below, but rest assured that if an adapter implements one method in an interface, it should implement *all* of them. This is not always the case due to limitations and/or incomplete implementations, but at the very least, a descriptive error message should be used to keep developers informed of what’s supported and what’s not.

> For more information, check out the Sails docs, and specifically the [adapter interface reference](https://github.com/balderdashy/sails/blob/master/docs/contributing/adapter-specification.md).

Are there examples I can look at?

If you’re looking for some inspiration, a good place to start is with the core adapters. Take a look at [MySQL](https://github.com/balderdashy/sails-mysql), [PostgreSQL](https://github.com/balderdashy/sails-postgresql), [MongoDB](https://github.com/balderdashy/sails-mongo), [Redis](https://github.com/balderdashy/sails-redis), or local [disk](https://github.com/balderdashy/sails-disk).

Where do I get help?

An active community of Sails and Waterline users exists on GitHub, Stack Overflow, Google groups, IRC, Gitter, and more. See the [Support page](https://sailsjs.com/support) for a list of recommendations.

> If you have an unanswered question that isn’t covered here, and that you feel would add value for the community, please feel free to send a PR adding it to this section of the docs.

<docmeta name=”displayName” value=”Custom adapters”>

 # Adding a custom response

To add your own custom response method, simply add a file to /api/responses with the same name as the method you would like to create. The file should export a function, which can take any parameters you like.

```javascript
/**



	api/responses/myResponse.js


	

	This will be available in controllers as res.myResponse(‘foo’);




*/




module.exports = function(message) {


var req = this.req;
var res = this.res;

var viewFilePath = ‘mySpecialView’;
var statusCode = 200;


	var result = {
	status: statusCode





};

// Optional message
if (message) {


result.message = message;




}

// If the user-agent wants a JSON response, send json
if (req.wantsJSON) {


return res.json(result, result.status);




}

// Set status code and view locals
res.status(result.status);
for (var key in result) {


res.locals[key] = result[key];




}
// And render view
res.render(viewFilePath, result, function(err) {


// If the view doesn’t exist, or an error occured, send json
if (err) {


return res.json(result, result.status);




}

// Otherwise, serve the views/mySpecialView.* page
res.render(viewFilePath);




});





}

<docmeta name=”displayName” value=”Adding a custom response”>




            

          

      

      

    

  

    
      
          
            
  # Custom responses

### Overview

Sails apps come bundled with several pre-configured _responses_ that can be called from [action code](https://sailsjs.com/documentation/concepts/actions-and-controllers).  These default responses can handle situations like &ldquo;resource not found&rdquo; (the [notFound response](https://sailsjs.com/documentation/reference/response-res/res-not-found)) and &ldquo;internal server error&rdquo; (the [serverError response](https://sailsjs.com/documentation/reference/response-res/res-server-error)).  If your app needs to modify the way that the default responses work, or create new responses altogether, you can do so by adding files to the api/responses folder.

> Note: api/responses is not generated by default in new Sails apps, so you&rsquo;ll have to add it yourself if you want to add / customize responses.

### Using responses

As a quick example, consider the following action:

```javascript
getProfile: function(req, res) {

// Look up the currently logged-in user’s record from the database.
User.findOne({ id: req.session.userId }).exec(function(err, user) {

	if (err) {
	res.status(500);
return res.view(‘500’, {data: err});

}

return res.json(user);

});

}

This code handles a database error by sending a 500 error status and sending the error data to a view to be displayed. However, this code has several drawbacks, primarily:

	The response isn’t content-negotiated: if the client is expecting a JSON response, they’re out of luck

	The response reveals too much about the error: in production, it’d be best to just log the error to the terminal

	It isn’t normalized: even if we dealt with the other bullet points above, the code is specific to this action, and we’d have to work hard to keep the exact same format for error handling everywhere

	It isn’t abstracted: if we wanted to use a similar approach elsewhere, we’d have to copy / paste the code

Now, consider this replacement:

```javascript
getProfile: function(req, res) {


// Look up the currently logged-in user’s record from the database.
User.findOne({ id: req.session.userId }).exec(function(err, user) {


if (err) { return res.serverError(err); }
return res.json(user);




});






}

This approach has many advantages:



	More concise


	Error payloads are normalized


	Production vs. development logging is taken into account


	Error codes are consistent


	Content negotiation (JSON vs HTML) is taken care of


	API tweaks can be done in one quick edit to the appropriate generic response file







### Response methods and files

Any .js file saved in the api/responses/ folder can be executed by calling res.thatFileName().  For example, api/responses/insufficientFunds.js can be executed with a call to res.insufficientFunds().

##### Accessing req, res, and sails

The request and response objects are available inside of a custom response as this.req and this.res.  This allows the actual response function to take arbitrary parameters.  For example:

`javascript
return res.insufficientFunds(err, { happenedDuring: 'signup' });
`

And the implementation of the custom response might look something like this:

```javascript
module.exports = function insufficientFunds(err, extraInfo){

var req = this.req;
var res = this.res;
var sails = req._sails;

var newError = new Error(‘Insufficient funds’);
newError.raw = err;
_.extend(newError, extraInfo);

sails.log.verbose(‘Sent “Insufficient funds” response.’);

return res.badRequest(newError);

}

Built-in responses

All Sails apps have several pre-configured responses like [res.serverError()](https://sailsjs.com/documentation/reference/response-res/res-server-error) and [res.notFound()](https://sailsjs.com/documentation/reference/response-res/res-not-found) that can be used even if they don’t have corresponding files in api/responses/.

Any of the default responses may be overridden by adding a file with the same name to api/responses/ in your app (e.g. api/responses/serverError.js).

> You can use the [Sails command-line tool](https://sailsjs.com/documentation/reference/command-line-interface/sails-generate) as a shortcut for doing this.
>
> For example:
>
>```bash
>sails generate response serverError
>```
>

<docmeta name=”displayName” value=”Custom responses”>

 # Generators

A big part of Sails, like any framework, is automating repetitive tasks. Generators are no exception: they’re what power the Sails command-line interface any time it generates new files for your Sails projects. In fact, you or someone on your team probably used a _generator_ to create your latest Sails project.

When you type

`sh
sails new my-project
`

sails uses its built-in “new” generator to prompt you for your app template of choice, then spits out the initial folder structure for a Sails app:

```javascript
my-project


├── api/
│   ├─ controllers/
│   ├─ helpers/
│   └─ models/
├── assets/
│   └─ …
├── config/
│   └─ …
├── views/
│   └─ …
├── .gitignore
…
├── package.json
└── README.md




```

This conventional folder structure is one of the big advantages of using a framework. But it’s usually also one of the trade-offs (what if your team or organization has made firm commitments to a different set of conventions?).

Fortunately since Sails v0.11, generators are extensible and easy to check in to a project repository or publish on NPM for re-use.

Sails’ generators allow you to completely customize what happens when you run sails new and sails generate from the command-line. By augmenting new apps and newly-generated modules, custom generators can be used to do all sorts of cool things:
- to standardize conventions and boilerplate logic for all new apps across your organization
- to swap out rules in the default .eslintrc file
- to customize how the asset pipeline works in new projects
- to use a different asset pipeline altogether (like [Gulp](http://gulpjs.com/) or [webpack](https://webpack.github.io/))
- to use a [different default view engine](https://sailsjs.com/documentation/concepts/views/view-engines)
- to automate custom deployments (e.g. white label apps with one server per customer)
- to include a different set of dependencies in the package.json file
- to generate files in a transpiled language like TypeScript or CoffeeScript
- to start off with all documentation and comments in a language other than English
- to include ASCII pictures of cats at the top of every code file (or license headers, whatever)
- to standardize around a particular version of a front-end dependency (for example, sails generate jquery)
- to include a particular front-end framework in your new Sails apps
- to make it easy to include new Vue / React components or Angular modules from your favorite templates (for example, sails generate component or sails generate ng-module)

> If you are interested in making custom generators, the best place to start is by checking out the [introduction to custom generators](https://sailsjs.com/documentation/concepts/extending-sails/generators/custom-generators). You also might check out [open-source generators from the community](https://sailsjs.com/documentation/concepts/extending-sails/generators/available-generators), in case something already out there will save you some time.

<docmeta name=”displayName” value=”Generators”>

 # Custom generators

<!– TODO: update this tutorial to reflect how generator names are spat out. Also update it to explain that you can just delete the package.json file in the newly generated generator if you’re not planning on publishing it to npm. Also bring back in the information that was deleted because the examples were quite out of date (the other content is still good though- see commit history of this file on GitHub –>

Overview

Custom [generators](https://sailsjs.com/documentation/concepts/extending-sails/generators) are a type of plugin for the Sails command line. Through templates, they control which files get generated in your Sails projects when you run sails new or sails generate, and also what those files look like.

Creating a generator

To make this easier to play with, let’s first make a Sails project. If you haven’t already created one, go to your terminal and type:

`sh
sails new my-project
`

Then cd into my-project and ask Sails to spit out the template for a new generator:

`sh
sails generate generator awesome
`

Configuring a generator

To enable the generator you need to tell Sails about it via your test project’s [.sailsrc file](https://sailsjs.com/documentation/concepts/configuration/using-sailsrc-files).

If we were using an existing generator, we could just install it from NPM, then specify the name of the package in .sailsrc. But since we’re developing this generator locally, we’ll just connect it to the folder directly:

```javascript
{



	“generators”: {
	
	“modules”: {
	“awesome”: “./my-project/awesome”





}





}





}

> Note: For now, we’ll stick with “awesome”, but you can mount the generator under any name you want.  Whatever you choose for the name of the key in the .sailsrc file will be the name you’ll use to run this generator from the terminal (e.g. sails generate awesome).

### Running a custom generator

To run your generator, just tack its name on to sails generate, followed by any desired arguments or command-line options.  For example:

`js
sails generate awesome
`

### Publishing to NPM

If your generator is useful across different projects, you might consider publishing it as an NPM package (note that this doesn’t mean that your generator must be open-source: NPM also supports [private packages](https://docs.npmjs.com/private-modules/intro).

First, pop open the package.json file and verify the package name (e.g. “@my-npm-name/sails-generate-awesome”), author (“My Name”), license, and other information are correct.  If you’re unsure, a good open source license to use is “MIT”.  If you’re publishing a private generator and want it to remain proprietary to your organization, use “UNLICENSED”.

> Note:  If you don’t already have an NPM account, go to [npmjs.com](https://www.npmjs.com/) and create one.  Then use npm login to get set up.

When you’re ready to pull the trigger and publish your generator on NPM, cd into the generator’s folder in the terminal and type:

`sh
npm publish
`

### Installing a generator

To take your newly-published generator for a spin, cd back into your example Sails project (my-project), delete the inline generator, and run:

`js
npm install @my-npm-name/sails-generate-awesome
`

then change the .sailsrc in your example Sails project (my-project/.sailsrc):

```javascript
{

	“generators”: {
	
	“modules”: {
	“awesome”: “@my-npm-name/sails-generate-awesome”

}

}

}

And, last but not least:

`sh
sails generate awesome
`

<docmeta name=”displayName” value=”Custom generators”>

 # Available generators

The Sails framework’s built-in [generators](https://sailsjs.com/documentation/concepts/extending-sails/generators) can be customized using command-line options and overridden by [mounting custom generators in the .sailsrc file](https://sailsjs.com/documentation/concepts/extending-sails/generators/custom-generators). Other generators that add completely new sub-commands to [sails generate](https://sailsjs.com/documentation/reference/command-line-interface/sails-generate) can be mounted in the same way.

Core generators

Certain generators are built in to Sails by default.

Commands that generate a new Sails app

|:-----------------------------------|
| sails new _name_
| sails new _name_ –fast
| sails new _name_ –caviar
| sails new _name_ –without=grunt
| sails new _name_ –without=lodash,async,grunt,blueprints,i18n
| sails new _name_ –no-frontend –without=sockets,lodash
| sails new _name_ –minimal

Generators for spitting out new files in an existing Sails app

|:-----------------------------------|
| sails generate model _identity_
| sails generate action _name_
| sails generate action view-_name_
| sails generate action _some/path/_view-_name_
| sails generate page _name_
| sails generate helper _name_
| sails generate helper view-_name_
| sails generate script _name_
| sails generate script get-_name_
| sails generate controller _name_
| sails generate api _name_
| sails generate hook _name_
| sails generate response _name_

Commands for generating plugins

|:-----------------------------------|
| sails generate generator _name_
| sails generate adapter _name_

Commands for (re)generating client-side dependencies

|:-----------------------------------|
| sails generate sails.io.js
| sails generate parasails

Utils for building your own 3rd party packages

|:-----------------------------------|
| sails generate etc

Since Sails v1.0, built-in generators are now [bundled](https://npmjs.com/package/sails-generate) in Sails core, rather than in separate NPM packages. All generators can still be overridden the same way. For advice setting up overrides for core generators in your environment, [click here](https://sailsjs.com/support).

Community generators

There are over 100 community-supported generators [available on NPM](https://www.npmjs.com/search?q=sails+generate):

	[sails-inverse-model](https://github.com/juliandavidmr/sails-inverse-model)

	[sails-generate-new-gulp](https://github.com/Karnith/sails-generate-new-gulp)

	[sails-generate-archive](https://github.com/jaumard/sails-generate-archive)

	[sails-generate-scaffold](https://github.com/irlnathan/sails-generate-scaffold)

	[sails-generate-directive](https://github.com/balderdashy/sails-generate-directive)

	[sails-generate-bower](https://github.com/smies/sails-generate-bower)

	[sails-generate-angular-gulp](https://github.com/Karnith/sails-generate-angular-gulp)

	[sails-generate-ember-blueprints](https://github.com/mphasize/sails-generate-ember-blueprints)

	And [many more](https://www.npmjs.com/search?q=sails+generate)…

<docmeta name=”displayName” value=”Available generators”>

 # Hooks

What is a hook?

A hook is a Node module that adds functionality to the Sails core. The [hook specification](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification) defines the requirements a module must meet for Sails to be able to import its code and make the new functionality available. Because they can be saved separately from the core, hooks allow Sails code to be shared between apps and developers without having to modify the framework.

Types of hooks

There are three types of hooks available in Sails:

	Core hooks are built in and provide many of the common features essential to a Sails app, such as request handling, blueprint route creation, and database integration via [Waterline](https://sailsjs.com/documentation/concepts/models-and-orm). Core hooks are bundled with the Sails core and are thus available to every app. You will rarely need to call core hook methods in your code.

	App-level hooks live in the api/hooks/ folder of a Sails app. Project hooks let you take advantage of the features of the hook system for code that doesn’t need to be shared between apps.

	Installable hooks are plugins, installed into an app’s node_modules folder using npm install. Installable hooks allow developers in the Sails community to create “plug-in”-like modules for use in Sails apps.

Read more

	[Using hooks in your app](https://sailsjs.com/documentation/concepts/extending-sails/Hooks/using-hooks)

	[The hook specification](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification)

	[Creating a project hook](https://sailsjs.com/documentation/concepts/extending-sails/hooks/project-hooks)

	[Creating an installable hook](https://sailsjs.com/documentation/concepts/extending-sails/Hooks/installable-hooks)

<docmeta name=”displayName” value=”Hooks”>
<docmeta name=”stabilityIndex” value=”3”>

 # Available hooks

This page is meant to be an up to date, comprehensive list of all of the core hooks in the Sails.js framework, and a reference of a few of the most popular community-made hooks.

Core hooks

The following hooks are maintained by the Sails.js core team and are included in your Sails app by default. You can override or disable them using your [sailsrc file](https://sailsjs.com/documentation/concepts/configuration/using-sailsrc-files) or [environment variables](https://sailsjs.com/documentation/concepts/configuration#?setting-sailsconfig-values-directly-using-environment-variables).

Hook | Package | Latest stable release | Purpose |

|:---------------|—————|-------------------------|:————|
| grunt | [sails-hook-grunt](https://npmjs.com/package/sails-hook-grunt) | [![NPM version](https://badge.fury.io/js/sails-hook-grunt.png)](http://badge.fury.io/js/sails-hook-grunt) | Governs the built-in asset pipeline in Sails.
| orm | [sails-hook-orm](https://npmjs.com/package/sails-hook-orm) | [![NPM version](https://badge.fury.io/js/sails-hook-orm.png)](http://badge.fury.io/js/sails-hook-orm) | Implements support for Waterline ORM in Sails.
| sockets | [sails-hook-sockets](https://npmjs.com/package/sails-hook-sockets) | [![NPM version](https://badge.fury.io/js/sails-hook-sockets.png)](http://badge.fury.io/js/sails-hook-sockets) | Implements Socket.io support in Sails.

sails-hook-orm

Implements support for the Waterline ORM in Sails.

[![Release info for sails-hook-orm](https://img.shields.io/npm/dm/sails-hook-orm.svg?style=plastic)](http://npmjs.com/package/sails-hook-orm) [![License info](https://img.shields.io/npm/l/sails-hook-orm.svg?style=plastic)](http://npmjs.com/package/sails-hook-orm)

> + The default configuration set by this hook can be found [here](https://www.npmjs.com/package/sails-hook-orm#implicit-defaults).
> + You can find futher details about this hook’s purpose [here](https://www.npmjs.com/package/sails-hook-orm#purpose).
> + You can disable this hook by following [these instructions](https://www.npmjs.com/package/sails-hook-orm#can-i-disable-this-hook).

sails-hook-sockets

Implements socket.io support in Sails.

[![Release info for sails-hook-sockets](https://img.shields.io/npm/dm/sails-hook-sockets.svg?style=plastic)](http://npmjs.com/package/sails-hook-sockets) [![License info](https://img.shields.io/npm/l/sails-hook-sockets.svg?style=plastic)](http://npmjs.com/package/sails-hook-sockets)

> + You can find futher details about this hook’s purpose [here](https://www.npmjs.com/package/sails-hook-sockets#purpose).

sails-hook-grunt

Implements support for the built-in asset pipeline and task runner in Sails.

[![Release info for sails-hook-grunt](https://img.shields.io/npm/dm/sails-hook-grunt.svg?style=plastic)](http://npmjs.com/package/sails-hook-grunt) [![License info](https://img.shields.io/npm/l/sails-hook-grunt.svg?style=plastic)](http://npmjs.com/package/sails-hook-grunt)

> + You can find futher details about this hook’s purpose [here](https://www.npmjs.com/package/sails-hook-grunt#purpose).
> + You can disable this hook by following [these instructions](https://www.npmjs.com/package/sails-hook-grunt#can-i-disable-this-hook).

Community-made hooks

There are more than 200 community hooks for Sails.js [available on NPM](https://www.npmjs.com/search?q=sails+hook). Here are a few highlights:

Hook | Maintainer | Purpose | Stable release |

|-------------|————-|:---------------|—————-|
| [sails-hook-webpack](https://www.npmjs.com/package/sails-hook-webpack) | [Michael Diarmid](https://github.com/Salakar) | Use Webpack for your Sails app’s asset pipeline instead of Grunt. | [![Release info for sails-hook-webpack](https://img.shields.io/npm/dm/sails-hook-webpack.svg?style=plastic)](http://npmjs.com/package/sails-hook-webpack)
| [sails-hook-postcss](https://www.npmjs.com/package/sails-hook-postcss) | [Jeff Jewiss](https://github.com/jeffjewiss)| Process your Sails application’s CSS with Postcss. | [![Release info for sails-hook-postcss](https://img.shields.io/npm/dm/sails-hook-postcss.svg?style=plastic)](http://npmjs.com/package/sails-hook-postcss)
| [sails-hook-babel](https://www.npmjs.com/package/sails-hook-babel) | [Onoshko Dan](https://github.com/dangreen), [Markus Padourek](https://github.com/globegitter) & [SANE](http://sanestack.com/) | Process your Sails application’s CSS with Postcss. | [![Release info for sails-hook-babel](https://img.shields.io/npm/dm/sails-hook-babel.svg?style=plastic)](http://npmjs.com/package/sails-hook-babel)
| [sails-hook-responsetime](https://www.npmjs.com/package/sails-hook-responsetime) | [Luis Lobo Borobia](https://github.com/luislobo)| Add X-Response-Time to both HTTP and Socket request headers. | [![Release info for sails-hook-responsetime](https://img.shields.io/npm/dm/sails-hook-responsetime.svg?style=plastic)](http://npmjs.com/package/sails-hook-responsetime)
| [sails-hook-winston](https://www.npmjs.com/package/sails-hook-winston) | [Kikobeats](https://github.com/Kikobeats) | Integrate the Winston logging system with your Sails application. | [![Release info for sails-hook-winston](https://img.shields.io/npm/dm/sails-hook-winston.svg?style=plastic)](http://npmjs.com/package/sails-hook-winston)
| [sails-hook-allowed-hosts](https://www.npmjs.com/package/sails-hook-allowed-hosts) | [Akshay Bist](https://github.com/elssar) | Ensure that only requests made from authorized hosts/IP addresses are allowed. | [![Release info for sails-hook-allowed-hosts](https://img.shields.io/npm/dm/sails-hook-allowed-hosts.svg?style=plastic)](http://npmjs.com/package/sails-hook-allowed-hosts)
| [sails-hook-cron](https://www.npmjs.com/package/sails-hook-cron) | [Eugene Obrezkov](https://github.com/ghaiklor) | Run cron tasks for your Sails app. | [![Release info for sails-hook-cron](https://img.shields.io/npm/dm/sails-hook-cron.svg?style=plastic)](http://npmjs.com/package/sails-hook-cron)
| [sails-hook-organics](https://www.npmjs.com/package/sails-hook-organics) | [Mike McNeil](https://github.com/mikermcneil) | Exposes a set of commonly-used functions (“organics”) as built-in helpers in your Sails app. | [![Release info for sails-hook-organics](https://img.shields.io/npm/dm/sails-hook-organics.svg?style=plastic)](http://npmjs.com/package/sails-hook-organics)

Add your hook to this list

If you see out of date information on this page, or if you want to add a hook you made, please submit a pull request to this file updating the table of community hooks above.

Note: to be listed on this page, an adapter must be free and open-source (_libre_ and _gratis_), preferably under the MIT license.

<docmeta name=”displayName” value=”Available hooks”>

 # Application Events

Overview

Sails app instances inherit Node’s [EventEmitter interface](https://nodejs.org/api/events.html#events_class_eventemitter), meaning that they can both emit and listen for custom events. While it is not recommended that you utilize Sails events directly in app code (since your apps should strive to be as stateless as possible to facilitate scalability), events can be very useful when extending Sails (via [hooks](https://sailsjs.com/documentation/concepts/extending-sails/hooks) or [adapters](https://sailsjs.com/documentation/concepts/extending-sails/adapters)) and in a testing environment.

Should I use events?

Most Sails developers never have a use case for working with application events. Events emitted by the Sails app instance are designed to be used when building your own custom hooks, and while you _could_ technically use them anywhere, in most cases you _should not_. Never use events in your controllers, models, services, configuration, or anywhere else in the userland code in your Sails app (unless you are building a custom app-level hook in api/hooks/).

Events emitted by Sails

The following are the most commonly used built-in events emitted by Sails instances. Like any EventEmitter in Node, you can listen for these events with sails.on():

`javascript
sails.on(eventName, eventHandlerFn);
`

None of the events are emitted with extra information, so your eventHandlerFn should not have any arguments.

Event name | Emitted when… |

|:-----------|:—————-|
| ready | The app has been loaded and the bootstrap has run, but it is not yet listening for requests |
| lifted | The app has been lifted and is listening for requests. |
| lower | The app has is lowering and will stop listening for requests. |
| hook:<hook identity>:loaded | The hook with the specified identity loaded and ran its initialize() method successfully. |

> In addition to .on(), Sails also exposes a useful utility function called sails.after(). See the [inline documentation](https://github.com/balderdashy/sails/blob/fd2f9b6866637143eda8e908775365ca52fab27c/lib/EVENTS.md#usage) in Sails core for more information.

<docmeta name=”displayName” value=”Events”>

 # Creating an installable hook

Installable hooks are custom Sails hooks that reside in an application’s node_modules folder. They are useful when you want to share functionality between Sails apps, or publish your hook to [NPM](http://npmjs.org) to share it with the Sails community. If you wish to create a hook for use in just one Sails app, see [creating a project hook](https://sailsjs.com/documentation/concepts/extending-sails/hooks/project-hooks) instead.

To create a new installable hook:

1. Choose a name for your new hook. It must not conflict with any of the [core hook names](https://github.com/balderdashy/sails/blob/master/lib/app/configuration/default-hooks.js).
1. Create a new folder on your system with the name sails-hook-<your hook name>. The sails-hook- prefix is optional but recommended for consistency; it is stripped off by Sails when the hook is loaded.
1. Create a package.json file in the folder. If you have npm installed on your system, you can do this easily by running npm init and following the prompts. Otherwise, you can create the file manually, and ensure that it contains at minimum the following:
```json
{


“name”: “sails-hook-your-hook-name”,
“version”: “0.0.0”,
“description”: “a brief description of your hook”,
“main”: “index.js”,
“sails”: {


“isHook”: true




}





}

If you use npm init to create your package.json, be sure to open the file afterwards and manually insert the sails key containing isHook: true.
1. Write your hook code in index.js in accordance with the [hook specification](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification).

Your new folder may contain other files as well, which can be loaded in your hook via require; only index.js will be read automatically by Sails.  Use the dependencies key of your package.json to refer to any dependencies that need to be installed in order for your hook to work (you may also use npm install <dependency> –save to easily save dependency information to package.json).

### Specifying the internal name Sails uses for your hook (advanced)

In certain cases, especially when using a [scoped NPM package](https://docs.npmjs.com/misc/scope) to override a core Sails hook, you will want to change the name that Sails uses internally when it loads your hook.  You can use the sails.hookName configuration option in your package.json file for this.  The value should be the name you want to be loaded into the sails.hooks dictionary, so you generally will _not_ want a sails-hooks- prefix.  For example, if you have a module @mycoolhooks/sails-hook-sockets that you wish to use to override the core sails-hook-sockets module, the package.json might look like:

```json
{

“name”: “@mycoolhooks/sails-hook-sockets”,
“version”: “0.0.0”,
“description”: “my own sockets hook”,
“main”: “index.js”,
“sails”: {

“isHook”: true,
“hookName”: “sockets”

}

}

Testing your new hook

Before you distribute your installable hook to others, you’ll want to write some tests for it. This will help ensure compatibility with future Sails versions and significantly reduce hair-pulling and destruction of nearby objects in fits of rage. While a full guide to writing tests is outside the scope of this doc, the following steps should help get you started:

1. Add Sails as a devDependency in your hook’s package.json file:
```json
“devDependencies”: {


“sails”: “~0.11.0”






}

1. Install Sails as a dependency of your hook with npm install sails or npm link sails (if you have Sails installed globally on your system).
1. Install [Mocha](http://mochajs.org/) on your system with npm install -g mocha, if you haven&rsquo;t already.
1. Add a test folder inside your hook&rsquo;s main folder.
2. Add a basic.js file with the following basic test:
```javascript


var Sails = require(‘sails’).Sails;

describe(‘Basic tests ::’, function() {

// Var to hold a running sails app instance
var sails;

// Before running any tests, attempt to lift Sails
before(function (done) {

// Hook will timeout in 10 seconds
this.timeout(11000);

// Attempt to lift sails
Sails().lift({

	hooks: {
	// Load the hook
“your-hook-name”: require(‘../’),
// Skip grunt (unless your hook uses it)
“grunt”: false

},
log: {level: “error”}

	},function (err, _sails) {
	if (err) return done(err);
sails = _sails;
return done();

});

});

// After tests are complete, lower Sails
after(function (done) {

// Lower Sails (if it successfully lifted)
if (sails) {

return sails.lower(done);

}
// Otherwise just return
return done();

});

// Test that Sails can lift with the hook in place
it (‘sails does not crash’, function() {

return true;

});

});


```
1. Run the test with mocha -R spec to see full results.
1. See the [Mocha](http://mochajs.org/) docs for a full reference.

### Publishing your hook

Assuming your hook is tested and looks good, and assuming that the hook name isn&rsquo;t already in use by another [NPM](http://npmjs.org) module, you can share it with world by running npm publish.  Go you!


	[Hooks overview](https://sailsjs.com/documentation/concepts/extending-sails/hooks)


	[Using hooks in your app](https://sailsjs.com/documentation/concepts/extending-sails/hooks/using-hooks)


	[The hook specification](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification)


	[Creating a project hook](https://sailsjs.com/documentation/concepts/extending-sails/hooks/project-hooks)




<docmeta name=”displayName” value=”Installable hooks”>
<docmeta name=”stabilityIndex” value=”3”>




            

          

      

      

    

  

    
      
          
            
  # Creating a project hook

Project hooks are custom Sails hooks that reside in an application&rsquo;s api/hooks folder.  They are most useful when you want to take advantage of hook features like [defaults](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/defaults) and [routes](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/routes) for code that is used by multiple components in a single app.  If you wish to re-use a hook in more than one Sails app, see [creating an installable hook](https://sailsjs.com/documentation/concepts/extending-sails/hooks/installable-hooks) instead.

To create a new project hook:


	Choose a name for your new hook.  It must not conflict with any of the [core hook names](https://github.com/balderdashy/sails/blob/master/lib/app/configuration/default-hooks.js).


	Create a folder with that name in your app&rsquo;s api/hooks folder.


	Add an index.js file to that folder.


	Write your hook code in index.js in accordance with the [hook specification](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification).




Your new folder may contain other files as well, which can be loaded in your hook via require; only index.js will be read automatically by Sails.

As an alternative to a folder, you may create a file in your app&rsquo;s api/hooks folder like api/hooks/myProjectHook.js.

#### Testing that your hook loads properly

To test that your hook is being loaded by Sails, lift your app with sails lift –verbose.  If your hook is loaded, you will see a message like:

verbose: your-hook-name hook loaded successfully.

in the logs.


	[Hooks overview](https://sailsjs.com/documentation/concepts/extending-sails/hooks)


	[Using hooks in your app](https://sailsjs.com/documentation/concepts/extending-sails/hooks/using-hooks)


	[The hook specification](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification)


	[Creating an installable hook](https://sailsjs.com/documentation/concepts/extending-sails/hooks/installable-hooks)




<docmeta name=”displayName” value=”Project hooks”>
<docmeta name=”stabilityIndex” value=”3”>



            

          

      

      

    

  

    
      
          
            
  # Using hooks in a Sails app

## Using a project hook
To use a project hook in your app, first create the api/hooks folder if it doesn&rsquo;t already exist.  Then [create the project hook](https://sailsjs.com/documentation/concepts/extending-sails/hooks/project-hooks) or copy the folder for the hook you want to use into api/hooks.

## Using an installable hook
To use an installable hook in your app, simply run npm install with the package name of the hook you wish to install (e.g. npm install sails-hook-autoreload).  You may also manually copy or link an [installable hook folder that you’ve created](https://sailsjs.com/documentation/concepts/extending-sails/hooks/installable-hooks) directly into your app&rsquo;s node_modules folder.

## Calling hook methods
Any methods that a hook exposes are available in the sails.hooks[<hook-name>] object.  For example, the sails-hook-email hook provides a sails.hooks.email.send() method (note that the sails-hook- prefix is stripped off).  Consult a hook&rsquo;s documentation to determine which methods it provides.

## Configuring a hook
Once you&rsquo;ve added an installable hook to your app, you can configure it using the regular Sails config files like config/local.js, config/env/development.js, or a custom config file you create yourself.  Hook settings are typically namespaced under the hook&rsquo;s name, with any sails-hook- prefix stripped off.  For example, the from setting for sails-hook-email is available as sails.config.email.from.  The documentation for the installable hook should describe the available configuration options.

## Changing the way Sails loads an installable hook
On rare occassions, you may need to change the name that Sails uses for an installable hook, or change the configuration key that the hook uses.  This may be the case if you already have a project hook with the same name as an installable hook, or if you&rsquo;re already using a configuration key for something else.  To avoid these conflicts, Sails provides the sails.config.installedHooks.<hook-identity> configuration option.  The hook identity is always the name of the folder that the hook is installed in.

```javascript
// config/installedHooks.js
module.exports.installedHooks = {

	“sails-hook-email”: {
	// load the hook into sails.hooks.emailHook instead of sails.hooks.email
“name”: “emailHook”,
// configure the hook using sails.config.emailSettings instead of sails.config.email
“configKey”: “emailSettings”

}

};

> Note: you may have to create the config/installedHooks.js file yourself.

	[Hooks overview](https://sailsjs.com/documentation/concepts/extending-sails/hooks)

	[The hook specification](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification)

	[Creating a project hook](https://sailsjs.com/documentation/concepts/extending-sails/hooks/project-hooks)

	[Creating an installable hook](https://sailsjs.com/documentation/concepts/extending-sails/hooks/installable-hooks)

<docmeta name=”displayName” value=”Using hooks”>
<docmeta name=”stabilityIndex” value=”3”>

 # .configure

The configure feature provides a way to configure a hook after the [defaults objects](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/defaults) have been applied to all hooks. By the time a custom hook’s configure() function runs, all user-level configuration and core hook settings will have been merged into sails.config. However, you should not depend on the configuration of other custom hooks at this point, as the load order of custom hooks is not guaranteed.

configure should be implemented as a function with no arguments, and should not return any value. For example, the following configure function could be used for a hook that communicates with a remote API, to change the API endpoint based on whether the user set the hook’s ssl property to true. Note that the hook’s configuration key is available in configure as this.configKey:

```
configure: function() {


// If SSL is on, use the HTTPS endpoint
if (sails.config[this.configKey].ssl == true) {


sails.config[this.configKey].url = “https://” + sails.config[this.configKey].domain;




}
// Otherwise use HTTP
else {


sails.config[this.configKey].url = “http://” + sails.config[this.configKey].domain;




}





}

The main benefit of configure is that all hook configure functions are guaranteed to run before any [initialize functions](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/initialize) run; therefore, a hook&rsquo;s initialize function can examine the configuration settings of other hooks.

<docmeta name=”displayName” value=”.configure”>
<docmeta name=”stabilityIndex” value=”3”>




            

          

      

      

    

  

    
      
          
            
  # .defaults

The defaults feature can be implemented either as an object or a function which takes a single argument (see &ldquo;using defaults as a function&rdquo; below) and returns an object.  The object you specify will be used to provide default configuration values for Sails.  You should use this feature to specify default settings for your hook.  For example, if you were creating a hook that communicates with a remote service, you may want to provide a default domain and timeout length:

```
{

	myapihook: {
	timeout: 5000,
domain: “www.myapi.com”

}

}

If a myapihook.timeout value is provided via a Sails configuration file, that value will be used; otherwise it will default to 5000.

Namespacing your hook configuration
For [project hooks](https://sailsjs.com/documentation/concepts/extending-sails/Hooks?q=types-of-hooks), you should namespace your hook’s configuration under a key that uniquely identifies that hook (e.g. myapihook above). For [installable hooks](https://sailsjs.com/documentation/concepts/extending-sails/Hooks?q=types-of-hooks), you should use the special __configKey__ key to allow end-users of your hook to [change the configuration key](https://sailsjs.com/documentation/concepts/extending-sails/hooks/using-hooks?q=changing-the-way-sails-loads-an-installable-hook) if necessary. The default key for a hook using __configKey__ is the hook name. For example, if you create a hook called sails-hooks-myawesomehook which includes the following defaults object:

```
{



	__configKey__: {
	name: “Super Bob”





}






}

then it will, by default, provide default settings for the sails.config.myawesomehook.name value.  If the end-user of the hook overrides the hook name to be foo, then the defaults object will provide a default value for sails.config.foo.name.

##### Using defaults as a function

If you specify a function for the defaults feature instead of a plain object, it takes a single argument (config) which receives any Sails configuration overrides.  Configuration overrides can be made by passing settings to the command line when lifting Sails (e.g. sails lift –prod), by passing an object as the first argument when programmatically lifting or loading Sails (e.g. Sails.lift({port: 1338}, …)) or by using a [.sailsrc](https://sailsjs.com/documentation/anatomy/.sailsrc) file.  The defaults function should return a plain object representing configuration defaults for your hook.

<docmeta name=”displayName” value=”.defaults”>
<docmeta name=”stabilityIndex” value=”3”>




            

          

      

      

    

  

    
      
          
            
  # The hook specification

### Overview

Each Sails hook is implemeted as a Javascript function that takes a single argument&mdash;a reference to the running sails instance&mdash;and returns an object with one or more of the keys described later in this document.  The most basic hook would look like this:

```javascript
module.exports = function myBasicHook(sails) {

return {};

}

It wouldn’t do much, but it would work!

Each hook should be saved in its own folder with the filename index.js. The folder name should uniquely identify the hook, and the folder can contain any number of additional files and subfolders. Extending the previous example, if you saved the file containing myBasicHook in a Sails project as index.js in the folder api/hooks/my-basic-hook and then lifted your app with sails lift –verbose, you would see the following in the output:

verbose: my-basic-hook hook loaded successfully.

Hook features
The following features are available to implement in your hook. All features are optional, and can be implemented by adding them to the object returned by your hook function.

	[.defaults](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/defaults)

	[.configure()](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/configure)

	[.initialize()](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/initialize)

	[.routes](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/routes)

	[.registerActions()](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/register-actions)

Custom hook data and functions

Any other keys added to the object returned from the main hook function will be provided in the sails.hooks[<hook name>] object. This is how custom hook functionality is provided to end-users. Any data and functions that you wish to remain private to the hook can be added outside the returned object:

```javascript
// File api/hooks/myhook/index.js
module.exports = function (sails) {


// This var will be private
var foo = ‘bar’;

return {


// This var will be public
abc: 123,

// This function will be public
sayHi: function (name) {


console.log(greet(name));




}




};

// This function will be private
function greet (name) {


return ‘Hi, ‘ + name + ‘!’;




}






};

The public var and function above would be available as sails.hooks.myhook.abc and sails.hooks.myhook.sayHi, respectively.

<docmeta name=”displayName” value=”Hook specification”>
<docmeta name=”stabilityIndex” value=”3”>




            

          

      

      

    

  

    
      
          
            
  # .initialize

The initialize feature allows a hook to perform startup tasks that may be asynchronous or rely on other hooks.  All Sails configuration is guaranteed to be completed before a hook&rsquo;s initialize function runs.  Examples of tasks that you may want to put in initialize include:


	logging in to a remote API


	reading from a database that will be used by hook methods


	loading support files from a user-configured directory


	waiting for another hook to load first




Like all hook features, initialize is optional and can be left out of your hook definition.  If implemented, initialize should be an async function which must be resolved (i.e. not throw or hang forever) in order for Sails to finish loading:

```javascript
initialize: async function() {

// Do some stuff here to initialize hook

}

Hook timeout settings

By default, hooks have ten seconds to complete their initialize function and resolve before Sails throws an error. That timeout can be configured by setting the _hookTimeout key to the number of milliseconds that Sails should wait. This can be done in the hook’s [defaults](https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/defaults):

```
defaults: {



	__configKey__: {
	_hookTimeout: 20000 // wait 20 seconds before timing out





}






}

##### Hook events and dependencies

When a hook successfully initializes, it emits an event with the following name:

hook:<hook name>:loaded

For example:


	the core orm hook emits hook:orm:loaded after its initialization is complete


	a hook installed into node_modules/sails-hook-foo emits hook:foo:loaded by default


	the same sails-hook-foo hook, with sails.config.installedHooks[‘sails-hook-foo’].name set to bar would emit hook:bar:loaded


	a hook installed into node_modules/mygreathook would emit hook:mygreathook:loaded


	a hook installed into api/hooks/mygreathook would also emit hook:mygreathook:loaded




You can use the “hook loaded” events to make one hook dependent on another.  To do so, simply wrap your hook&rsquo;s initialize logic in a call to sails.on().  For example, to make your hook wait for the orm hook to load, you could make your initialize similar to the following:

```javascript
initialize: async function() {

	return new Promise((resolve)=>{
	
	sails.on(‘hook:orm:loaded’, ()=>{
	// Finish initializing custom hook
// Then resolve.
resolve();

});

});

}

To make a hook dependent on several others, gather the event names to wait for into an array and call sails.after:

```javascript
initialize: async function() {



	return new Promise((resolve)=>{
	var eventsToWaitFor = [‘hook:orm:loaded’, ‘hook:mygreathook:loaded’];
sails.after(eventsToWaitFor, ()=>{


resolve();




});





});






}

<docmeta name=”displayName” value=”.initialize()”>
<docmeta name=”stabilityIndex” value=”3”>




            

          

      

      

    

  

    
      
          
            
  # .registerActions()

If your hook adds new actions to an app, and you want to guarantee that those actions will be maintained even after a call to [sails.reloadActions()](https://sailsjs.com/documentation/reference/application/sails-reload-actions), you should register the actions from within a registerActions method.

For example, the core Sails security hook registers the [grant-csrf-token action](https://sailsjs.com/documentation/concepts/security/csrf#?using-ajax-websockets) from within a registerActions() method.

registerActions should be implemented as a function with a single argument (a callback) to be called after the hook is done adding actions.  In the interest of avoiding duplicate code, you may want to call this method yourself from within the hook&rsquo;s [initialize() method]((https://sailsjs.com/documentation/concepts/extending-sails/hooks/hook-specification/initialize)).

```
registerActions: function(cb) {

// Register an action as myhook/greet that an app can bind to any route they like.
sails.registerAction(function greet(req, res) {

var name = req.param(‘name’) || ‘stranger’;
return res.status(200).send(‘Hey there, ‘ + name + ‘!’);

}, ‘myhook/greet’);

return cb();

}

<docmeta name=”displayName” value=”.registerActions()”>
<docmeta name=”stabilityIndex” value=”3”>

 # .routes

The routes feature allows a custom hook to easily bind new routes to a Sails app at load time. If implemented, routes should be an object with either a before key, an after key, or both. The values of those keys should in turn be objects whose keys are [route addresses](https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-address), and whose values are route-handling functions with the standard (req, res, next) parameters. Any routes specified in the before object will be bound before custom user routes (as defined in [sails.config.routes](https://sailsjs.com/documentation/reference/configuration/sails-config-routes)) and [blueprint routes](https://next.sailsjs.com/documentation/reference/blueprint-api#?restful-shortcut-routes-and-actions). Conversely, routes specified in the after object will be bound after custom and blueprint routes. For example, consider the following count-requests hook:

```javascript
module.exports = function (sails) {


// Declare a var that will act as a reference to this hook.
var hook;

return {



	initialize: function(cb) {
	// Assign this hook object to the hook var.
// This allows us to add/modify values that users of the hook can retrieve.
hook = this;
// Initialize a couple of values on the hook.
hook.numRequestsSeen = 0;
hook.numUnhandledRequestsSeen = 0;
// Signal that initialization of this hook is complete
// by calling the callback.
return cb();





},


	routes: {
	
	before: {
	
	‘GET /*’: function (req, res, next) {
	hook.numRequestsSeen++;
return next();





}





},
after: {



	‘GET /*’: function (req, res, next) {
	hook.numUnhandledRequestsSeen++;
return next();





}




}





}




};





};

This hook will process all requests via the function provided in the before object, and increment its numRequestsSeen variable.  It will also process any unhandled requests via the function provided in the after object&mdash;that is, any routes that aren’t bound in the app via a custom route configuration or a blueprint.

> The two variables set up in the hook will be available to other modules in the Sails app as sails.hooks[“count-requests”].numRequestsSeen and sails.hooks[“count-requests”].numUnhandledRequestsSeen

<docmeta name=”displayName” value=”.routes”>
<docmeta name=”stabilityIndex” value=”3”>




            

          

      

      

    

  

    
      
          
            
  # Shell scripts

Sails comes bundled with [Whelk](https://github.com/sailshq/whelk), which lets you run JavaScript functions as shell scripts. This can be useful for running scheduled jobs (cron, Heroku scheduler), worker processes, and any other custom, one-off scripts that need access to your Sails app’s models, configuration, and helpers.

### Your first script

To add a new script, just create a file in the scripts/ folder of your app.

`bash
sails generate script hello
`

Then, to run it, use:

`bash
sails run hello
`

> If you need to run a script without global access to the sails command-line interface (in a Procfile, for example), use node ./node_modules/sails/bin/sails run hello.

### Example

Here’s a more complex example that you might see in a real-world app:

```js
// scripts/send-email-proof-reminders.js
module.exports = {

description: ‘Send a reminder to any recent users who haven't confirmed their email address yet.’,

	inputs: {
	
	template: {
	description: ‘The name of another email template to use as an optional override.’,
type: ‘string’,
defaultsTo: ‘reminder-to-confirm-email’

}

},

fn: async function (inputs, exits) {

	await User.stream({
	emailStatus: ‘pending’,
emailConfirmationReminderAlreadySent: false,
createdAt: { ‘>’: Date.now() - 1000*60*60*24*3 }

})
.eachRecord(async (user, proceed)=>{

	await sails.helpers.sendTemplateEmail.with({
	template: inputs.template,
templateData: {

user: user

},
to: user.emailAddress

});
return proceed();

});//∞

return exits.success();

}

};

Then you can run:

`bash
sails run send-email-proof-reminders
`

For more detailed information on usage, see the [whelk README](https://github.com/sailshq/whelk/blob/master/README.md).

<docmeta name=”displayName” value=”Shell scripts”>
<docmeta name=”nextUpLink” value=”/documentation/concepts/models-and-orm”>
<docmeta name=”nextUpName” value=”Models and ORM”>

 # Adapter interface reference

> The adapter interface specification is currently under active development and may change.

Semantic (interface)
> e.g. RestAPI or MySQL

> ##### Stability: [3](http://nodejs.org/api/documentation.html#documentation_stability_index) - Stable

Implementing the basic semantic interface (CRUD) is really a step towards a complete implementation of the Queryable interface, but with some services/datasources, about as far as you’ll be able to get using native methods.

By supporting the Semantic interface, you also get the following:
+ if you write a find() function, developers can also use all of its synonyms, including dynamic finders and findOne(). When they’re called, they’ll automatically be converted into the appropriate criteria object for the basic find() definition in your adapter.
+ as long as you implement basic where functionality (see Queryable below), Waterline can derive a simplistic version of associations support for you. To optimize the default assumptions with native methods, override the appropriate methods in your adapter.

<!–

Deprecated– should be moved to the pubsub hook docs:

	When a socket subscribes to one or more “instance room(s)” (e.g. Foo.subscribe(req, [3,2]), it will receive Foo.publishUpdate() and Foo.publishDestroy() notifications for the relevant instances.

	If a socket is subscribed to an “instance room”, it will also be subscribed for “updates” and “destroys” to all instances of other models with a 1:* association with Foo. The socket will also be notified of and subscribed to new matching instances of the associated model.

	automatic socket.io pubsub support is provided by Sails– it manages “rooms” for every class (collection) and each instance (model)
+ As soon as a socket subscribes to the “class room” using Foo.subscribe(), it starts receiving Foo.publishCreate() notifications any time they’re fired for Foo.

–>

> All officially supported Sails.js database adapters implement the Semantic interface.

Class methods
+ Model.create()
+ Model.find()
+ Model.update()
+ Model.destroy()
+ Optimizations:

	findOrCreate()

	createEach()

	Not yet available:
+ destroyEach()
+ updateEach()
+ findOrCreateEach()
+ findAndUpdateOrCreate()
+ findAndUpdateOrCreateEach()

<!–
+ henry.destroy()
–>

Queryable (interface)

> ##### Stability: [3](http://nodejs.org/api/documentation.html#documentation_stability_index) - Stable

Query building features are common in traditional ORMs, but not at all a guarantee when working with Waterline. Since Waterline adapters can support services as varied as Twitter, SMTP, and Skype, traditional assumptions around structured data don’t always apply.

If query modifiers are enabled, the adapter must support Model.find(), as well as the complete query interface, or, where it is impossible to do so, at least provide good error messages. If coverage of the interface is unfinished, it’s still not a bad idea to make the adapter available, but it’s important to clearly state the unifinished parts, and consequent limitations, up front. This helps prevent the creation of off-topic issues in Sails/Waterline core, protects developers from unexpected consequences, and perhaps most importantly, helps focus contributors on high-value tasks.

> All officially supported Sails.js database adapters implement this interface.

Query modifiers
Query modifiers include normalized syntax:
+ where
+ limit
+ skip
+ sort
+ select

And WHERE supports:

Boolean logic:
+ and
+ or
+ not

IN queries:
Adapters which implement where should recognize a list of values (e.g. name: [‘Gandalf’, ‘Merlin’]) as an IN query. In other words, if name is either of those values, a match occured.

Sub-attribute modifiers:
You are also responsible for sub-attribute modifiers, (e.g. { age: { ‘>=’ : 65 } }) with the notable exception of contains, startsWith, and endsWith, since support for those modifiers can be derived programatically by leveraging your definition of like.
+ like (SQL-style, with % wildcards)
+ ‘>’ ` (you can also opt to use the more verbose `.greaterThan(), etc.)
+ ‘<’ `
+ `’>=’
+ ‘<=’

Migratable (interface)

> ##### Stability: [1](http://nodejs.org/api/documentation.html#documentation_stability_index) - Experimental

Adapters which implement the Migratable interface are usually interacting with SQL databases. This interface enables the migrate configuration option on a per-model or adapter-global basis, as well as access to the prototypal/class-level CRUD operations for working with tables.

Adapter methods

> This is not how it actually works, but how it could work soon:

	Adapter.define()

	Adapter.describe()

	Adapter.drop()

	Adapter.alter() (change table name, other table metadata)

	Adapter.addAttribute() (add column)

	Adapter.removeAttribute() (remove column)

	Adapter.alterAttribute() (rename column, add or remove uniquness constraint to column)

	Adapter.addIndex()

	Adapter.removeIndex()

Auto-migration strategies
+ “safe” (default in production env)

	do nothing

	“drop” (default in development env)
+ drop all tables and recreate them each time the server starts– useful for development

	“alter”
+ experimental automigrations

	“create”
+ create all missing tables/columns without modifying existing data

SQL (interface)

> ##### Stability: [1](http://nodejs.org/api/documentation.html#documentation_stability_index) - Experimental

Adapters which implement the SQL interface interact with databases supporting the SQL language. This interface exposes the method .query() allowing the user to run raw SQL queries against the database.

Adapter methods

	Adapter.query(query,[data,] cb)

<!–
Iterable (interface)

> ##### Stability: [1](http://nodejs.org/api/documentation.html#documentation_stability_index) - Experimental

Background

> Communicating with another server via messages/packets is the gold standard of performance–
> network latency is the slowest I/O operation computers deal with, yet ironically, the standard methodology
> used by most developers/frameworks/libraries outside of Node.js is detrimental to performance.
>
> In the Node community, you might say we’re in the midst of a bit of an I/O renaissance.
>
> The standard approach to communicating with another server (or a disk) involves loading a message into memory
> from the source, and then sending the entire object to the destination at once.
>
> This is like trying to transport a heavy bag of gold over a river by wading across with it on your back.
> Even if you’re very strong, with enough gold, you will drown. This is analogous to your server
> running out of RAM as it buffers data in memory, and the resulting scalability problem.
>
> Using Node streams is a different ball game. It’s like splitting up the big bag into smaller containers, then
> floating them across one by one. This way, no matter how much gold you end up with, you never drown.

A huge advantage of using Node.js is the ease with which you can parse and manipulate streams of data. Instead of pulling an entire dataset into RAM, you can inspect it a little at a time. This unlocks a level of performance that is unachievable using conventional approaches.

The most common use case is taking advantage of the available HTTP response stream to pipe the output byte stream from the database directly back to the user. i.e. to generate a dynamic sitemap, you might need to respond with a huge set of data (far too large to fit in memory on a commodity server) and simultaneously transform it into XML.

Implementation

Implementing the Streaming CRUD interface is actually pretty simple– you just need to get comfortable with Node.js streams. You can mutate streams as they come in– you just need to find or design a mapping function designed for streams, where you don’t have all the data at once.

Blob / Readable / Writable (interface)

> ##### Stability: [1](http://nodejs.org/api/documentation.html#documentation_stability_index) - Experimental

e.g. sails-local-fs, sails-s3

Implementing the Blob interface allows you to upload and download binary data (aka files) to the service/database. These “blobs” might be MP3 music files (~5MB) but they could also be data-center backups (~50TB). Because of this, it’s crucial that adapters which implement this interface use streams for uploads (incoming, into data source from Sails) and downloads (outgoing, from data source to Sails).

Class methods
+ write(id, options) or upload()
+ read(id, options) or download()

Mesageable (interface)

> ##### Stability: [1](http://nodejs.org/api/documentation.html#documentation_stability_index) - Experimental

Adapters which implement one-way messages. This lets user know two important facts about your adapter:

	that it’s not safe to assume that its operations are reversible or atomic.

	that it has a send or one or more send*() methods with a custom suffix.

An example of one such adapter is SMTP, for sending email, or APNS for sending Apple push notifications.

If send is passed an array of target ids, it will broadcast its data to each of them.

Class methods
+ send(targetId, data, onComplete)
+ Optimizations:

	broadcast(targetIds, data, onComplete)

Subscribable (interface)

> ##### Stability: [1](http://nodejs.org/api/documentation.html#documentation_stability_index) - Experimental

Adapters implementing the pubsub interface report changes from the service/database back up to the app.

When a subscriber needs to be informed of an incoming notifiation, the subscribable adapters currently do one of the following:

	emit a declaratively configurable event on the sails object.

	send an HTTP request to a declaratively configurable endpoint.

	call a function which is part of their declarative config, leveraging the generic req/res interpreter in Sails

(#3 is where I’d like this head in the future, since it provides the most normalized, extensible interface)

–>

<!–
deprecated:

They should call Sails’ Model.publishUpdate(), Model.publishCreate(), and Model.publishDestroy() to publish changes and take advantage of automatic room management functionality.
Model.subscribe() should still be called at the app layer, not in our adapter.
We don’t want to force users to handle realtime events– we don’t know the specific goals and requiements of their app, and since the broadcasts are volatile, pubsub notifications is a feature that should be opt-in anyway.
–>
<!–
Examples:
+ Twitter streaming API (see new tweets as they come in)
+ IRC (see new chats as they come in)
+ Stock prices (visualize the latest market data as soon as it is available)
+ Hardware scanners (see new data as it comes in)

–>

<docmeta name=”notShownOnWebsite” value=”true”>

 # Code of conduct

> The Code of Conduct explains the bare minimum behavior expectations the Sails project requires of its contributors. This Code of Conduct is adapted from the version used by the [Node.js core team](https://github.com/nodejs/node/blob/master/CODE_OF_CONDUCT.md). Their version was originally borrowed from [Rust lang’s excellent CoC](http://www.rust-lang.org/conduct.html).

	We are committed to providing a friendly, safe and welcoming environment for all, regardless of gender, sexual orientation, disability, ethnicity, religion, or similar personal characteristic.

	Please avoid using overtly sexual, racial, or political nicknames, or any other nicknames that might detract from a friendly, safe and welcoming environment for all.

	Please be kind and courteous. There’s no need to be mean or rude.

	Avoid the use of personal pronouns in any code comments or documentation where such use could be perceived in a negative light. There is no need to address persons when explaining code (e.g. “When the developer”).

	Respect that some individuals and cultures consider the casual use of profanity offensive and off-putting.

	Respect that people have differences of opinion and that every design or implementation choice carries a trade-off and numerous costs. There is seldom a right answer.

	Please keep unstructured critique to a minimum. If you have ideas you want to experiment with, make a fork and see how it works.

	We will exclude you from interaction if you insult, demean or harass
anyone. That is not welcome behavior. We interpret the term
“harassment” as including the definition in the [Citizen Code of
Conduct](http://citizencodeofconduct.org/); if you have any lack of
clarity about what might be included in that concept, please read
their definition, or ask one of the project maintainers first.
In particular, we don’t tolerate defamatory remarks or behavior that
excludes people in socially marginalized groups, or for whom English
is not a native language.

	Private harassment is also unacceptable. No matter who you are, if
you feel you have been or are being harassed or made uncomfortable
by a community member, please contact one of the core maintainers immediately
via private message on Twitter or by emailing inquiries@sailsjs.com.
In either case, include a capture (screenshot, log, photo, email) of
the harassment if possible. Whether you’re a regular contributor or
a newcomer, we care about making this community a safe, comfortable
place for you and we’ve got your back.

	Likewise any spamming, trolling, flaming, baiting or other attention-stealing behavior is not welcome,
and will result in your exclusion.

<docmeta name=”displayName” value=”Code of conduct”>

 # Contributing to the documentation
The official documentation on the Sails website is compiled from markdown files in the [sails](https://github.com/balderdashy/sails/sails-docs) repo. Please send a pull request to the master branch with amendments and they’ll be double-checked and merged as soon as possible.

We are open to suggestions about the process we’re using to manage our documentation, and to working with the community in general. Please post to the [Gitter](https://gitter.im/balderdashy/sails) with your ideas; or, if you’re interested in helping directly, contact @fancydoilies or @mikermcneil on Twitter.

What branch should I edit?

That depends on what kind of edit you are making. Most often, you’ll be making an edit that is relevant for the latest stable version of Sails (i.e. the version on [NPM](npmjs.org/package/sails)) and so you’ll want to edit the master branch of _this_ repo (what you see in the sails repo by default). The docs team merges master into the appropriate branch for the latest stable release of Sails, and then deploys that to sailsjs.com about once per week.

On the other hand, if you are making an edit related to an unreleased feature in an upcoming version—usually as an accompaniment a feature proposal or open pull request to Sails or a related project—then you will want to edit the branch for the next, unreleased version of Sails (sometimes called “edge”).

Branch (in sails or sails-docs) | Documentation for Sails Version… | Preview At… |

|---|————————|:-------------------|
| [master](https://github.com/balderdashy/sails/tree/master/docs) | [![NPM version](https://badge.fury.io/js/sails.png)](http://badge.fury.io/js/sails) | preview.sailsjs.com
| [0.12](https://github.com/balderdashy/sails-docs/tree/0.12) | Sails v0.12.x | sailsjs.com
| [0.11](https://github.com/balderdashy/sails-docs/tree/0.11) | Sails v0.11.x | 0.11.sailsjs.com

How are these docs compiled and pushed to the website?

We use a module called doc-templater to convert the .md files to the HTML for the website. You can learn more about how it works in [the doc-templater repo](https://github.com/uncletammy/doc-templater).

Each .md file has its own page on the website (e.g. all reference, concepts, and anatomy files), and should include a special <docmeta name=”displayName”> tag with a value property specifying the title for the page. This will impact how the doc page appears in search engine results, and it will also be used as its display name in the navigation menu on sailsjs.com. For example:

`markdown
<docmeta name="displayName" value="Building Custom Homemade Puddings">
`

When will my change appear on the Sails website?

Documentation changes go live when they are merged onto a special branch corresponding with the current stable version of Sails (e.g. 0.12). We cannot merge pull requests sent directly to this branch—its sole purpose is to reflect the content currently hosted on sailsjs.com, and content is only merged just before redeploying the Sails website.

If you want to see how documentation changes will appear on sailsjs.com, you can visit preview.sailsjs.com. The preview site updates itself automatically as changes are merged into the master branch of sails.

How can I help translate the documentation?

A great way to help the Sails project, especially if you’re a native speaker of a language other than English, is to volunteer to translate the Sails documentation.

If you are interested in beginning a translation project, follow these steps:

	Bring the documentation folder from the [sails repo](https://github.com/balderdashy/sails/tree/master/docs) (balderdashy/sails/docs) into a new repo named sails-docs-{{IETF}} where {{IETF}} is the [IETF language tag](https://en.wikipedia.org/wiki/IETF_language_tag) for your language.

	Edit [the documentation README](https://github.com/balderdashy/sails/tree/master/docs) to summarize your progress so far, provide any other information you think would be helpful for others reading your translation, and let interested contributors know how to contact you.

	When you are satisfied with the first complete version of your translation, open an issue and someone from our docs team will be happy to help you preview it in the context of the Sails website, get it live on a domain (yours, or a subdomain of sailsjs.com, whichever makes the most sense), and share it with the rest of the Sails community.

<docmeta name=”displayName” value=”Contributing to the docs”>

 # Contributor’s pledge

By making a contribution to this project, I certify that:

	(a) The contribution was created in whole or in part by me and I
have the right to submit it under the MIT license; or

	(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source license
and I have the right under that license to submit that work with
modifications, whether created in whole or in part by me, under the
same open source license (unless I am permitted to submit under a
different license), as indicated in the file; or

	(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified it.

> The certificate of origin above is based on the “[Developer’s Certificate of Origin 1.0](https://github.com/nodejs/node/blob/master/CONTRIBUTING.md#developers-certificate-of-origin-10)” used by Node.js core.

<docmeta name=”displayName” value=”Contributor’s pledge”>

 # Core maintainers

The Sails.js core maintainers constitute a small team of individuals located in Austin, TX who are passionate about making it easier for everyone to develop scalable, secure, custom web applications. We fell in love with Node.js at first sight and are firm believers in the continued, unprecedented dominance of JavaScript as a unifying force for good. We see Node.js as the logical continuation of the web standards movement into the world of server-side development.

The Sails core team maintains the framework and its related sub-projects, including the Waterline ORM, the Node-Machine project, the Skipper body parser, and all officially-supported generators, adapters, and hooks. We rely heavily on the help of a network of contributors and users all over the world, but we make all final decisions about our releases and roadmap.

History

Sails.js was originally developed by [Mike McNeil](http://twitter.com/mikermcneil) with the help of his company [Balderdash](http://www.bizjournals.com/sanantonio/blog/socialmadness/2013/03/sxsw-2013-Balderdash-startup-web-app.html), a small development and design studio in Austin, TX. The first stable version of Sails was released as open source in 2012. Today, it is still actively maintained by the same [core team members](https://sailsjs.com/about), along with the help of many amazing [contributors](https://github.com/balderdashy/sails/network/members).

Financial Support

Today, Sails.js is financially supported by [The Sails Company](https://sailsjs.com/about) ([YC W15](http://techcrunch.com/2015/03/11/treeline-wants-to-take-the-coding-out-of-building-a-backend/)). Please feel free to [contact us directly](https://sailsjs.com/contact) with questions about the company, our [team](https://sailsjs.com/about), or our mission.

<docmeta name=”displayName” value=”Core maintainers”>

 # Introduction to custom adapters for Sails/Waterline

> ##### Stability: Varies

Reference

Please see the [adapter interface specification](https://github.com/balderdashy/sails/blob/master/docs/contributing/adapter-specification.md).

What is an adapter?

Adapters expose interfaces, which imply a conract to implemnt certain functionality. This allows us to guarantee conventional usage patterns across multiple models, developers, apps, and even companies, making app code more maintainable, efficient, and reliable. Adapters are useful for integrating with databases, open APIs, internal/proprietary web services, or even hardware.

What kind of things can I do in an adapter?

Adapters are mainly focused on providing model-contextualized CRUD methods. CRUD stands for create, read, update, and delete. In Sails/Waterline, we call these methods create(), find(), update(), and destroy().

For example, a MySQLAdapter implements a create() method which, internally, calls out to a MySQL database using the specified table name and connection information and runs an INSERT … SQL query.

In practice, your adapter can really do anything it likes– any method you write will be exposed on the raw datastore objects and any models which use them.

Why would I need a custom adapter?

When building a Sails app, the sending or receiving of any asynchronous communication with another piece of hardware can be normalized into an adapter. (viz. API integrations)

> From Wikipedia:
> http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

> Although a relational database provides a common persistence layer in software applications, numerous other persistence layers exist. CRUD functionality can be implemented with an object database, an XML database, flat text files, custom file formats, tape, or card, for example.

In other words, Waterline is not just an ORM for your database. It is a purpose-agnostic, open standard and toolset for integrating with all kinds of RESTful services, datasources, and devices, whether it’s LDAP, Neo4J, or [a lamp](https://www.youtube.com/watch?v=OmcQZD_LIAE).
I know, I know… Not everything fits perfectly into a RESTful/CRUD mold! Sometimes the service you’re integrating with has more of an RPC-style interface, with one-off method names. That’s ok– you can define any adapter methods you like! You still get all of the trickle-down config and connection-management goodness of Waterline core.

Why should I build a custom adapter?

To recap, writing your API integrations as adapters is easier, takes less time, and absorbs a considerable amount of risk, since you get the advantage of a standardized set of conventions, a documented API, and a built-in community of other developers who have gone through the same process. Best of all, you (and your team) can reuse the adapter in other projects, speeding up development and saving time and money.

Finally, if you choose to release your adapter as open-source, you provide a tremendous boon to our little framework and our budding Sails.js ecosystem. Even if it’s not via Sails, I encourage you to give back to the OSS community, even if you’ve never forked a repo before– don’t be intimidated, it’s not that bad!

The more high-quality adapters we collectively release as open-source, the less repetitive work we all have to do when we integrate with various databases and services. My vision is to make building server-side apps more fun and less repetitive for everyone, and that happens one community adapter at a time.

I tip my hat to you in advance :)

What is an Adapter Interface?

The functionality of adapters is as varied as the services they connect. That said, there is a standard library of methods, and a support matrix you should be aware of. Adapters may implement some, all, or none of the interfaces below, but rest assured that if an adapter implements one method in an interface, it should implement *all* of them. This is not always the case due to limitations and/or incomplete implementations, but at the very least, a descriptive error message should be used to keep developers informed of what’s supported and what’s not.

Class methods
Below, class methods refer to the static, or collection-oriented, functions available on the model itself, e.g. User.create() or Menu.update(). To add custom class methods to your model (beyond what is provided in the adapters it implements), define them as top-level key/function pairs in the model object.

Instance methods
instance methods on the other hand, (also known as object, or model, methods) refer to methods available on the individual result models themselves, e.g. User.findOne(7).done(function (err, user) { user.someInstanceMethod(); });. To add custom instance methods to your model (beyond what is provided in the adapters it implements), define them as key/function pairs in the attributes object of the model’s definition.

DDL and auto-migrations
DDL stands for data-definition language, and is a common fixture of schema-oriented databases. In Sails, auto-migrations are supported out of the box. Since adapters for the most common SQL databases support alter(), they also support automatic schema migration! In your own adapter, if you write the alter() method, the same behavior will take effect. The feature is configurable using the migrate property, which can be set to safe (don’t touch the schema, period), drop (recreate the tables every time the app starts), or alter (the default– merge the schema in the apps’ models with what is currently in the database).

Offcially supported adapters

Cody, Mike, and the team behind Sails.js at Balderdash support a handful of commonly used adapters.

Disk

Write to your computer’s hard disk, or a mounted network drive. Not suitable for at-scale production deployments, but great for a small project, and essential for developing in environments where you may not always have a database set up. This adapter is bundled with Sails and works out of the box with zero configuration.

Interfaces implemented:
+ Semantic
+ Queryable
+ Streaming

Memory

Pretty much like Disk, but doesn’t actually write to disk, so it’s not persistent. Not suitable for at-scale production deployments, but useful when developing on systems with little or no disk space.

Interfaces implemented:
+ Semantic
+ Queryable
+ Streaming

MySQL

MySQL is the world’s most popular relational database.
http://en.wikipedia.org/wiki/MySQL

Interfaces implemented:
+ Semantic
+ Queryable
+ Streaming
+ Migratable

PostgreSQL

[PostgreSQL](http://en.wikipedia.org/wiki/PostgreSQL) is another popular relational database.

Interfaces implemented:
+ Semantic
+ Queryable
+ Streaming
+ Migratable

MongoDB

[MongoDB](http://en.wikipedia.org/wiki/MongoDB) is the leading NoSQL database.

Interfaces implemented:
+ Semantic
+ Queryable
+ Streaming

Redis

[Redis](http://redis.io/) is an open source, BSD licensed, advanced key-value store.

Interfaces implemented:
+ Semantic
+ Queryable

> Under active development:
>
> + sails-s3
> + sails-local-fs

Notable Community Adapters

> ##### Stability: Varies
> in various states of completion

Community adapters are crucial to the success and central to the philosophy of an open ecosystem for API integrations. The more high-quality adapters you release as open-source, the less repetitive work we all have to do when we integrate with various databases and services. My vision is to make building server-side apps more fun and less repetitive for everyone, and that happens one community adapter at a time. We welcome your support!

[Mandrill (email-sending service by MailChimp)](https://github.com/mikermcneil/sails-mandrill)
+ One-Way

Heroku
> Not currently available as open-source.

Git
> Not currently available.

[CouchDB](https://github.com/craveprogramminginc/sails-couchdb)
+ Semantic

[Riak](https://npmjs.org/package/sails-riak)
+ Semantic

[REST](https://github.com/zohararad/sails-rest)
+ Semantic

[IRC](https://github.com/balderdashy/sails-irc)
+ Pubsub

[Twitter](https://github.com/balderdashy/sails-twitter)

[ElasticSearch](https://github.com/UsabilityDynamics/waterline-elasticsearch)
+ Semantic

[JSDom](https://github.com/mikermcneil/sails-jsdom)

[Yelp](https://github.com/balderdashy/sails-adapter-boilerplate/pull/2)

[OrientDB](https://github.com/appscot/sails-orientdb)

[OrientDB](http://en.wikipedia.org/wiki/OrientDB) is an Open Source NoSQL DBMS with the features of both Document and Graph DBMSs.

Interfaces implemented:
+ Semantic
+ Queryable
+ Associations
+ Migratable

> Search google and NPM for more– there are new adapters being written all the time.

> Check out the docs to learn how to write your own custom adapter (whether it’s a private, internal project for a proprietary API or something you can share as open-source)

> Want to see your adapter listed here? Send a pull request with a link and we’ll merge it!
<docmeta name=”notShownOnWebsite” value=”true”>

 # Issue contributions

When opening new issues or commenting on existing issues in any of the repositories in this GitHub organization, please make sure discussions are related to concrete technical issues of the Sails.js software. Feature requests and ideas are always welcome, but they should not be submitted as GitHub issues. See [Requesting Features](https://sailsjs.com/documentation/contributing/proposing-features-enhancements) below for submission guidelines.

For general help using Sails, please refer to the [official Sails documentation](https://sailsjs.com/documentation). For additional help, ask a question on [StackOverflow](http://stackoverflow.com/questions/ask) or refer to any of the [other recommended avenues of support](https://sailsjs.com/support).

If you have found a security vulnerability in Sails or any of its dependencies, _do not report it in a public issue_. Instead, alert the core maintainers immediately using the instructions detailed in the [Sails Security Policy](https://sailsjs.com/security). Please observe this request _even for external dependencies not directly maintained by the core Sails.js team_ (e.g. Socket.io, Express, Node.js, or openssl). Whether or not you believe the core team can do anything to fix an issue, please follow the instructions in our security policy to privately disclose the vulnerability as quickly as possible.

Finally, discussion of a non-technical nature, including subjects like team membership, trademark, code of conduct, and high-level questions or concerns about the project should be sent directly to the core maintainers by emailing inquiries@sailsjs.com.

Opening an issue

> Sails is composed of a number of different sub-projects, many of which have their [own dedicated repository](https://sailsjs.com/architecture). Even so, the best place to submit a suspected issue with a module maintained by the Sails core team is in the main Sails repo. This helps us stay on top of issues and keep organized.

Before submitting an issue, please follow these simple instructions:

	First, search for issues similar to yours in [GitHub search](https://github.com/balderdashy/sails/search?type=Issues) within the main Sails repo.
	
	If your original bug report is covered by an existing open issue, then add a comment to that issue instead of opening a new one.

	If all clearly related issues are closed, then open a new issue and paste links to the URLs of the already closed issue(s) at the bottom.

	If you cannot find any related issues, try using different search keywords, if appropriate (in case this affects how you search, at the time of this writing, GitHub uses ElasticSearch, which is based on Lucene, to index content). If you still cannot find any relevant existing issues, then create a new one.

	Please consider the importance of backlinks. A contributor responding to your issue will almost always need to search for similar existing issues theirself, so having the URLs all in one place is a huge time-saver. Also keep in mind that backlinking from new issues causes GitHub to insert a link to the URL of the new issue in referenced original issues automatically. This is very helpful, since many visitors to our GitHub issues arrive from search engines.

Once you’ve determined that a new issue should be created,
+ Make sure your new issue does not report multiple unrelated problems.

	If you are experiencing more than one problem—and the problems are clearly distinct—create a separate issue for each one, but start with the most urgent.

	If you are experiencing multiple related problems (problems that you have only been able to reproduce in tandem), then please create only a single issue. Be sure to describe both problems thoroughly, though, as well as the steps necessary to cause them both to appear.

	Check that your issue has a concise, on-topic title that uses polite, neutral language to explain the problem as best you can in the available space. The ideal title for your issue is one that communicates the problem at a glance.
- For example, _”jst.js being removed from layout.ejs on lift”_ is a very helpful title for an issue.
- Here are some non-examples**—that is, examples of issue titles which are **not helpful:

	”templates dont work” : This title is too vague. Even if more information cannot be gleaned, wording like _”unexpected behavior with templates”_ is a little more specific and would likely generate a quicker response.

	”app broken cannot access templates on filesystem because it is broken in the asset pipeline please help” : This title is repetative and contains unnecessary content (“_please help_”). Remember that a useful title is both desciptive and concise.

	”jst.js is being REMOVED!!!!!!!!!”: This title contains unnecessary capitalization and punctuation, which is distracting at best, and may be perceived as impolite. In either case, it’s unlikely to speed the response to your issue.

	”How does this dumb, useless framework remove jst.js from my app?”: This title contains unnecessary negativity, which doesn’t encourage participant review. Try keeping titles as objective as possible for the best possible issue resolution experience.

	”Thousands of files being corrupted in our currently deployed production app every time the server crashes.”: Language like this might be perceived as hyperbolic and could lessen the credibility of your claim. In this instance, it may even confuse the issue (e.g. “Is this only happening when NODE_ENV===production?”).

	Before putting together steps to reproduce your issue, normalize as many of the variables on your personal development environment as possible:
- Make sure you have the right app lifted.
- Make sure you’ve killed the Sails server with CTRL+C and started it again.
- Make sure you do not have any open browser tabs pointed at localhost.
- Make sure you do not have any other Sails apps running in other terminal windows.
- Make sure the app you are using to reproduce the issue has a clean node_modules/ directory, meaning:

	no dependencies are linked (e.g. you haven’t run npm link foo)

	you haven’t made any inline changes to files in the node_modules/ folder

	you don’t have any weird global dependency loops

The easiest way to double-check any of the above, if you aren’t sure, is to run: rm -rf node_modules && npm cache clear && npm install.

	Remember to provide the version of Sails that your app is using (sails -v).
- Note that this could be different than the version of Sails you have globally installed.

	Provide your currently-installed version of Node.js (node -v), your version of NPM (npm -v), and the operating system that you are running (OS X, Windows, Ubuntu, etc.)
- If you are using nvm or another Node version manager like n, please be sure to mention that in the issue.

	Provide detailed steps to reproduce the problem from a clean Sails app (i.e. an app created with sails new on a computer with no special environment variables or .sailsrc files)

	Finally, take a moment to think about what you are about to post and how it will be interpreted by the rest of the Sails userbase. Make sure it is aligned with our Code of Conduct, and make sure you are not endangering other Sails users by posting a [security vulnerability](https://sailsjs.com/security) publicly.

Issues which do not meet these guidelines will usually be closed without being read, with a response asking that the submitter review this contribution guide. If this happens to you, _realize that it’s nothing personal_, and that it may even happen again. Please understand that Sails is a large project that receives hundreds of new issue submissions every month, and that we truly appreciate the time you donate to post detailed issues. The more familiar you become with the conventions and ground rules laid out in this contribution guide, the more helpful your future contributions will be for the community. You will also earn the respect of core team members and set a good example for future contributors.

> You might think of these rules as guardrails on a beautiful mountain road: they may not always be pretty, and if you run into them you may get banged up a little bit, but, collectively, they keep us all from sliding off a turn and into the abyss.

<docmeta name=”displayName” value=”Issue contributions”>

 # Contributing to Sails

This guide is designed to help you get off the ground quickly contributing to Sails. Reading it thoroughly will help you write useful issues, make eloquent proposals, and submit top-notch code that can be merged quickly. Respecting the guidelines laid out here helps make the core maintainers of Sails more productive, and makes the experience of working with Sails positive and enjoyable for the community at large.

If you are working on a pull request, please carefully read the this guide in its entirety. In case of doubt, [open an issue on GitHub](https://github.com/balderdashy/sails/issues/new) or contact someone from our [core team](https://sailsjs.com/about) on Twitter. Especially do so if you plan to work on something big. Nothing is more frustrating than seeing your hard work go to waste because your vision does not align with planned or ongoing development efforts of the project’s maintainers.

> Note that unless otherwise specified, the content in this section is either straight from the hearts of the Sails.js core team, or based on the [Node.js contribution guide](https://github.com/joyent/node/blob/master/CONTRIBUTING.md#contributing).

<docmeta name=”displayName” value=”Contributing to Sails”>
<docmeta name=”isOverviewPage” value=”true”>

 # Stability index

Throughout the documentation and in README files in Sails, you will see indications of a section’s stability. The Sails framework is still somewhat changing, and as it matures, certain parts are more reliable than others. Some are so proven, and so relied upon, that they are unlikely to ever change at all. Others are brand new and experimental, or known to be hazardous and in the process of being redesigned.

Stability indices are used to describe individual methods, events, and configuration settings _as well_ as sub-modules of Sails core such as core hooks. The latter affordance is a soft science– the core team labels hooks with stability indices in order to provide a better experience for developers building plugins for Sails and/or contributing to Sails core.

When a stability index refers to a module like a core hook, note that that index refers to the features of that hook which are _explicitly public_. For example, if the documentation for a hook mentions that it “exposes” a property called foo on the sails app object, then you can _only rely on that property_ to respect the hook’s the stability level if it is also clearly marked as “public” elsewhere in the hook documentation. If in doubt, submit a pull request to the relevant hook’s README file in the [GitHub repository for Sails core](https://github.com/balderdashy/sails) and add a question to the FAQ section.

The stability indices are as follows:

Stability: 0 - Deprecated
This feature is known to be problematic, and changes are planned. Do not rely on it in new code, and be sure to change existing code before upgrading. Use of the feature may cause warnings. Backwards compatibility should not be expected.

Stability: 1 - Experimental
This feature is subject to change or removal in future major releases of Sails.

Stability: 2 - Stable
This feature has proven satisfactory. Compatibility with existing Sails apps and the plugin ecosystem is a high priority, and so stable hooks/features/etc. will not be broken or removed in future major releases unless absolutely necessary.

Stability: 3 - Locked
This hook/feature/etc. will not undergo any future API changes, except as demanded by critical fixes related to security or performance. Please do not propose usage/philosophical changes for features/hooks/etc. at this stability index; they will be refused.

Notes
> - Sails’ stability index, and much of the verbiage of this file, is based on [the Stability Index used by Node.js core](https://nodejs.org/api/documentation.html#documentation_stability_index).

<docmeta name=”notShownOnWebsite” value=”true”>

 # Best practices

There are many undocumented best practices and workflow improvements for developing in Sails that contributors have established over the years. This section is an attempt to document some of the basics, but be sure and pop into [Gitter](https://gitter.im/balderdashy/sails) if you ever have a question about how to set things up or want to share your own tool chain.

The best way to work with Sails core is to fork the repository, git clone it to your filesystem, and then run npm link. In addition to writing tests, you’ll often want to use a sample project as a harness; to do that, cd into the sample app and run npm link sails. This will create a symbolic link in the node_modules directory of your sample app that points to your local cloned version of Sails. This keeps you from having to copy the framework over every time you make a change. You can force your sample app to use the local Sails dependency by running node app instead of sails lift (although sails lift should use the local dependency, if one exists). If you need to test the command line tool this way, you can access it from your sample app as node node_modules/sails/bin/sails. For example, if you were working on sails new, and you wanted to test it manually, you could run node node_modules/sails/bin/sails new testProj.

Installing different versions of Sails

Release | Install Command | Build Status |

|-----------------------|————————–|-------------------|
| [latest](https://npmjs.com/package/sails) | npm install sails | Stable |
| [edge](https://github.com/balderdashy/sails/tree/master) | npm install sails@git://github.com/balderdashy/sails.git | [![Build Status](https://travis-ci.org/balderdashy/sails.png?branch=master)](https://travis-ci.org/balderdashy/sails/branches) |

<!– | [beta](https://github.com/balderdashy/sails/tree/beta) | npm install sails@beta | [![Build Status](https://travis-ci.org/balderdashy/sails.png?branch=beta)](https://travis-ci.org/balderdashy/sails/branches) | –>

Installing an unreleased branch for testing

In general, you can npm install Sails directly from Github as follows:

`sh
Install an unreleased branch of Sails in the current directory's `node_modules`
$ npm install sails@git://github.com/balderdashy/sails.git#nameOfDesiredBranch
`

This is useful for testing/installing hot-fixes and just a good thing to know how to do in general.

Submitting Pull Requests

	If this is your first time forking and submitting a PR, [follow our instructions here](https://sailsjs.com/documentation/contributing/code-submission-guidelines/sending-pull-requests).

	Fork the repo.

2. Add a test for your change. Only refactoring and documentation changes require no new tests. If you are adding functionality or fixing a bug, we need a test!
4. Make the tests pass and make sure you follow [our syntax guidelines](https://github.com/balderdashy/sails/blob/master/.jshintrc).
5. Add a line of what you did to CHANGELOG.md (right under master).
6. Push to your fork and submit a pull request to the appropriate branch:

	[Master](https://github.com/balderdashy/sails/tree/master)
+ Corresponds with the “edge” version—the latest, not-yet-released version of Sails. Most pull requests should be sent here.

	[Latest (or “stable”)](https://npmjs.com/package/sails)
+ Corresponds with the latest stable release on npm (if you have a high-priority hotfix, send the PR explaining that).

<docmeta name=”displayName” value=”Best Practices”>

 # Code submission guidelines

There are two types of code contributions we can accept in Sails core: patches and new features.

Patches are small fixes and represent everything from typos to timing issues. Removing an unused require() from the top of a file, or fixing a typo that is crashing the master branch tests on Travis are two great examples of patches. Major refactoring projects that change whitespace and variable names across multiple files are not patches. Also, keep in mind that even a seemingly trivial change is not a patch if it affects the usage of a documented feature of Sails, or if it adds an undocumented public function.

New features are TODOs summarized in the [Sails Roadmap](https://github.com/balderdashy/sails/blob/master/ROADMAP.md) file, with more information in an accompanying pull request. Anything that is not specifically in the ROADMAP.md file should not be submitted as a new feature.

If in doubt about whether a change you would like to make would be considered a “patch”, please open an issue in the [issue tracker](https://github.com/balderdashy/sails/issues/new) or contact someone from our [core team](https://sailsjs.com/about) on Twitter _before_ you begin work on the pull request. Especially do so if you plan to work on something big. Nothing is more frustrating than seeing your hard work go to waste because your vision does not align with planned or ongoing development efforts of the project’s maintainers.

General rules

	Javascript supported by [maintained LTS](https://github.com/nodejs/Release/blob/0e0b592273104d1cca9154588092654b932659b1/README.md) only, please. For consistency, all imperative code in Sails core, including core hooks and core generators, must be written in JavaScript—not CoffeeScript, TypeScript, or any other pre-compiled or transpiled language. Don’t get us wrong: we think it’s great to use ES6, TypeScript, and/or CoffeeScript syntax in userland code if it boosts your productivity! But for compatibility and consistency reasons, we cannot merge a pull request unless it is written in maintained LTS-supported JavaScript.

	Do not auto-format code or attempt to fix perceived style problems in existing files in core.

	Keep each pull request narrowly focused on a single goal, and change as few LoC/files as possible.

	Do not submit pull requests that implement new features or enhance existing features unless you are working from a very clearly-defined proposal. As stated above, nothing is more frustrating than seeing your hard work go unmerged because your vision does not align with a project’s maintainers.

	Before beginning work on a feature, be sure to leave a comment telling other contributors that you are working on that feature. Note that if you do not actively keep other contributors informed about your progress, your silence may be taken as inactivity, and someone else may start their own work on that feature.

Contributing to core

Sub-modules within the Sails core are at varying levels of API stability. Bug fixes (patches) are always welcome, but API or behavioral changes cannot be merged without serious planning, as documented in the process for feature proposals above.

Sails has several dependencies referenced in the package.json file that are not part of the project proper. Any proposed changes to those dependencies or _their_ dependencies should be sent to their respective projects (e.g. Express, Socket.io, etc.) Please do not send your patch or feature request to the Sails repository—we cannot accept or fulfill it. (Though if you reach out via chat, we’ll try to help if we can.)

Contributing to an adapter

If the adapter is part of core (code base located in the Sails repo), please follow the general best practices for contributing to Sails core. If it is located in a different repo, please send feature requests and patches there.

Authoring a new adapter

Sails adapters translate Waterline query syntax into the lower-level language of the integrated database, and they take the results from the database and map them to the response expected by Waterline, the Sails framework’s ORM. While creating a new adapter should not be taken lightly, in many cases, writing an adapter is not as hard as it sounds (since you usually end up wrapping around an existing npm package), and it’s a great way to get your feet wet with contributing to the ORM hook in Sails and to the Waterline code base.

Before starting work on a new adapter, just make sure and do a thorough search on npm, Google and Github to check that someone else hasn’t already started working on the same thing. Read more about adapters in [Concepts > Extending Sails > Adapters](https://sailsjs.com/documentation/concepts/extending-sails/adapters).

Contributing to a hook

If the hook is part of core (code base is located in the Sails repo), please follow the general best practices for contributing to Sails core. If the hook is located in a different repo, please send feature requests, patches, and issues there. Many core hooks have README.md files with extensive documentation of their purpose, the methods they attach, the events they trigger, and any other relevant information about their implementation.

Authoring a new hook

Creating a hook is a great way to accomplish _almost anything_ in Sails core. Before starting work on a new custom hook, just make sure and do a thorough search on npm, Google, and Github to make sure someone else hasn’t already started working on the same thing. Read more about custom hooks in [Concepts > Extending Sails > Hooks](https://sailsjs.com/documentation/concepts/extending-sails/hooks).

Contributing to a generator

If the generator is part of core (code base is located in the Sails repo), please follow the general best practices for contributing to Sails core. If it is located in a different repo, please send feature requests, patches, and issues there.

Authoring a new generator

The custom generator API is not 100% stable yet, but it is settling. Feel free to start work on a new custom generator, but first make sure and do a thorough search on npm, Google and Github to make sure someone else hasn’t already started working on the same thing. A custom generator is a great way to get your feet wet with contributing to the Sails code base.

<docmeta name=”displayName” value=”Code submission guidelines”>

 # Sending pull requests

<!–
> NOTE
> This is really just a support document for the official contribution guide [here](https://github.com/balderdashy/sails/blob/master/CONTRIBUTING.md) and is mainly focused on helping guide you through the mechanics of submiting a pull request. If this document contradicts the official contribution guide in any way, particularly re: rules/guidelines, or if you’re otherwise in doubt, go w/ the offical guide :)
>
> Thanks!
> ~mm
–>

This guide is designed to get you started contributing to the Sails framework. It assumes basic familiarity with Github, but it should be useful for contributors of all levels.

Contribution guidelines
Like any open-source project, we must have guidelines for contributions—it helps protect the quality of the code and ensures that our framework stays robust and dependable.
For these reasons, it’s important that contribution protocols are followed for all contributions to Sails, whether they be bug fixes or whole sets of new features.

	Before submitting a pull request, please make sure:
	
	Any bug fixes have accompanying tests where possible. We use [Mocha](http://visionmedia.github.io/mocha/) for testing.

	Code follows our style guide, to maintain consistency (see .jshint and/or .editorconfig files in repo).

If you have a high-priority hot-fix for the currently deployed version, please [post an issue on Github](https://github.com/balderdashy/sails/issues?milestone=none&state=open) and mention @mikermcneil. Also, for emergencies, please feel free to tweet @sailsjs.

Now that we are all on the same page, lets get to coding some awesomeness of our own :D

Fork
Start by forking the repository:

![Screen Shot 2013-02-12 at 2.37.04 PM.png](http://i.imgur.com/h0CCcAu.png)

Clone
Then clone your fork into your local filesystem:
git clone git@github.com:YOUR_USER_NAME/sails.git

Update
To merge recent changes into your fork, inside your project dir:
`
git remote add core https://github.com/balderdashy/sails.git
git fetch core
git merge core/master
`
For additional details, see [Github](https://help.github.com/articles/fork-a-repo).

Code
Make your enhancements, fix bugs, do your thang.

Test
Please write a test for your addition/fix. I know it kind of sucks if you’re not used to it, but it’s how we maintain great code.
For our test suite, we use [Mocha](http://visionmedia.github.com/mocha/). You can run the tests with npm test. See the “Testing” section in the contribution guide for more information.

![Screen Shot 2013-02-12 at 2.56.59 PM.png](http://i.imgur.com/dalbOdZ.png)

Pull request
When you’re done, you can commit your fix, push up your changes, and then go into Github and submit a pull request. We’ll look it over and get back to you ASAP.

![Screen Shot 2013-02-12 at 2.55.40 PM.png](http://i.imgur.com/GBg0AOi.png)

Running your fork with your application
If you forked Sails and you want to test your Sails app against your fork, here’s how you do it:

In your local copy of your fork of Sails:
sudo npm link

In your Sails app’s repo:
npm link sails

This creates a symbolic link as a local dependency (in your app’s node_modules folder). This has the effect of letting you run your app with the version Sails you linked.
`bash
$ sails lift
`

Thanks for your contributions!

<docmeta name=”displayName” value=”Sending pull requests”>

 # Writing tests

What to test
In an ideal world, any possible action you could perform as a Sails user—whether programatically or via the command-line tool—would have a test. However, the number of configuration variations in Sails, along with the fact that userland code can override just about any key piece of core, means we’ll never _quite_ get to this point. And that’s okay.

Instead, the Sails project’s goal is for any _feature of Sails_ you might use—programatically or via the command-line tool—to have a test. In cases where these features are implemented within a dependency, the only tests for that feature exist within that dependency (e.g. [Waterline](https://github.com/balderdashy/waterline/tree/master/test), [Skipper](https://github.com/balderdashy/skipper/tree/master/test), and [Captains Log](https://github.com/balderdashy/captains-log/tree/master/test)). Even in these cases, though, tests in Sails inevitably end up retesting certain features that are already verified by Sails’ dependencies, and there’s nothing wrong with that.

What _not_ to test
We should strive to avoid tests which verify exclusivity: it cripples our ability to develop quickly. In other words, tests should not fail with the introduction of additive features.

For instance, if you’re writing a test to check that the appropriate files have been created with sails new, it would make sense to check for those files, but it would _not_ make sense to ensure that ONLY those files were created (i.e. adding a new file should not break the tests).

Another example is a test which verifies the correctness of blueprint configuration, e.g. sails.config.blueprints.rest. The test should check that blueprints behave properly with the rest config enabled and disabled. We could change the configuration, add more controller-specific options, etc., and we’d only need to write new tests.

If, on the other hand, our strategy for testing the behavior of the blueprints involved evaluating the behavior and then making a judgement on what the config “_should_” look like, we’d have to modify the tests when we added new options. This may not sound like a big deal, but it can grow out of proportion quickly!

<!–
Structural Conventions

Sails’s tests are broken up into three distinct types- unit, integration, and benchmark tests. See the README.md file in each directory for more information about the distinction and purpose of each type of test, as well as a shortlist of ways you can get involved.

The following conventions are true for all three types of tests:

	Instead of partitioning tests for various components into subdirectories, the test files are located in the top level of the directory for their test type (i.e. /test/TEST_TYPE/*.test.js).

	All test filenames have the *.test.js suffix.

	Each test file for a particular component is namespaced with a prefix describing the relevant component (e.g. router.specifiedRoutes.test.js, router.APIScaffold.test.js, etc.).

	Tests for core hooks are namespaced according to the hook that they test, e.g. hook.policies.test.js.

	If tests for a core hook need to span multiple files, maintain the namespacing, e.g. hook.policies.load.test.js and hook.policies.teardown.test.js.

> Reasoning
>
> Filenames like these make it easy to differentiate tests from core files when performing a flat search on the repository (i.e. CMD/CTRL+P in Sublime). Likewise, this makes the process easier to automate– you can quickly grab all the test files with a simple recursive find on the command-line, for instance.

fixtures directory
Contains sample data/files/templates used for testing (e.g. a dummy Sails app or simple middleware functions)

helpers directory
Logic to help setup or teardown Sails, read fixtures, and otherwise simplify the logic in our tests.
–>

<docmeta name=”displayName” value=”Writing tests”>

 # Proposing features and enhancements

Sails contributors have learned over the years that keeping track of feature requests in the same bucket as potentially-critical issues leads to a dizzying number of open issues on GitHub, and makes it harder for the community as a whole to respond to bug reports. It also introduces a categorization burden: Imagine a GitHub issue that is 2 parts feature request, 3 parts question, but also has a _teensie pinch_ of immediately-relevant-and-critical-issue-with-the-latest-stable-version-of-Sails-that-needs-immediate-attention.

If suggestions, requests, or pleas for features or enhancements are submitted as GitHub issues, they will be closed by [sailsbot](http://asksailsbot.tumblr.com/) or one of her lackeys in the Sails core team. This doesn’t mean the core team does not appreciate your willingness to share your experience and ideas with us; we just ask that you use our new process. Instead of creating a GitHub issue, please submit your proposal for a new feature or an extension to an existing feature using the process outlined under [Submitting a Proposal](https://sailsjs.com/documentation/contributing/proposing-features-enhancements/submitting-a-proposal).

Please do not propose _changes to the established conventions or default settings_ of Sails. These types of discussions tend to start “religious wars” about topics like EJS vs. Jade, Grunt vs. Gulp, Express vs. Hapi, etc., and managing those arguments creates rifts and consumes an inordinate amount of contributors’ time. Instead, if you have concerns about the opinions, conventions or default configuration in Sails, please [contact the core maintainers directly](mailto:inquiries@sailsjs.com).

<docmeta name=”displayName” value=”Proposing features/enhancements”>

 # Submitting a proposal

Before submitting a new proposal, please consider the following:

Many individuals and companies (large and small) are happily using Sails in production projects (both greenfield and mature) with the currently-released feature set today, as-is. A lot of the reason for this is that Sails was built while the core team was running a development shop, where it was used to take many different kinds of applications from concept to production, and then to serve as the backend for those applications as they were maintained over the next few years.

Much like the canonical case of Ruby on Rails, this means that Sails was designed from the beginning to be both developer-friendly and enterprise-friendly using a convention over configuration methodology. Conventions make it quick and easy to build new Sails apps and switch between different existing Sails apps, while configurability allows Sails developers to be flexible and customize those apps as they mature using the full power of the underlying tool chain (configuration, plugins/overrides, Express, Socket.io, Node.js, and JavaScript).

Over the first year of Sails’s life, the configurability requirement became even more important. As the user base grew and Sails started to be used on all sorts of different projects, and by developers with all sorts of different preferences, the number of feature requests skyrocketed. Sails solved this in 2013 by rewriting its core and becoming innately interoperable:

	Since Sails apps are just Node apps, you can take advantage of any of the [millions](bit.ly/npm-numbers) of NPM packages on http://npmjs.org. (And more recently, you can also take advantage of any of the hundreds of automatically-documented machine functions curated from NPM at http://node-machine.org)

	Since Sails uses the same req/res/next pattern as Express and Connect, you can take advantage of any middleware written for those middleware frameworks in your app, such as Lusca (security middleware from Paypal) or morgan (HTTP logging util).

	Since Sails uses [Consolidate](https://github.com/tj/consolidate.js/), you can use any of the view engines compatible with Express such as Jade, Dust or Handlebars.

	Since Sails uses a familiar MVC project structure, you and/or other developers on your team can quickly get up to speed with how the app works, the database schema, and even have a general notion of where common configuration options live.

	Since Sails uses Grunt, you can install and use any of the thousands of available Grunt plugins on http://gruntjs.com/plugins in your app.

	Sails’s hook system allows you to disable, replace, or customize large swaths of functionality in your app, including pieces of Sails core, such as replacing Grunt with Gulp.

	Waterline’s adapter interface allows you to plug your models into any database such as Oracle, MSSQL, or Orient DB.

	Skipper’s adapter interface allows you to plug your incoming streaming file uploads into any blob storage container such as S3, GridFS, or Azure.

	Sails’s generator system allow you to completely control all files and folders that the Sails command-line tool generates when you run sails new or sails generate *.

It is important to realize that today, most (but certainly not all) new features in Sails can be implemented using one or more of the existing plugin interfaces, rather than making a change to core. If the feature you are requesting is an exception to that rule, then please proceed– but realize that perhaps the most important part of your proposal is a clear explanation of why what you’re suggesting is not possible today.

The core maintainers of Sails review all feature proposals, and we do our best to participate in the discussion in these PRs. However, many of these proposals can sometimes involve back and forth discussion that could require them to be open for months at a time. So it is important to understand going in that if you are proposing a feature, the onus is on you to fully specify how that feature would work; i.e. how it would be used, how it would be configured, and in particular its implementation– that is, which modules would need to change to make it a reality, how it would be tested, whether it would be a major or minor-version breaking change, and the additions and/or modifications that would be necessary to the official Sails documentation.

With that in mind, to submit a proposal for a new feature, or an extension to an existing feature, please take the following steps:

	First, look at the backlog table in [ROADMAP.MD](https://github.com/balderdashy/sails/blob/master/ROADMAP.md) and also search open pull requests in that file to make sure your change hasn’t already been proposed.

	If the PR (pull request) has been merged, it means that a core maintainer has (A) looked over the proposal and discussion in the pull request, (B) personally agreed to him or herself that the feature would be a good fit for Sails core, and (C) confirmed the decision with [@mikermcneil](https://github.com/mikermcneil). It also means that the proposal is now in the backlog in ROADMAP.md, which means that the core team would be willing to merge a pull request with code changes adding the feature to Sails core (assuming that pull request follows our coding style conventions and the guidelines in this section).

	If the PR has been closed without being merged, it means that the core team has decided that the feature request should not be a part of Sails core. Just because the proposal is closed does not mean the feature will never be achievable in Sails, it just means that (A) it would need to be specced differently to be merged or (B) it would need to be implemented as a plugin (i.e. a hook, adapter, generator, view engine, grunt/gulp task, etc.)

	If the PR is _open_, it means that either (A) it was recently posted, (B) there is still an active discussion in progress, (C) that a core maintainer has not had time to look into it yet, or most commonly (D) that one or more core maintainers have looked at and potentially even responded to the proposal, but the team decided there wasn’t enough information to make a firm “yes” or “no” judgement call. This fourth scenario is quite common, since it sometimes takes a great deal of time to develop a specification that is thorough enough to merge into the backlog. The core maintainers review and contribute to proposals as much as time allows, but ultimately it is the responsibility of the developers requesting a feature to do the work of fully speccing it out.

	While some of Sails’s core maintainers carefully filter email from GitHub (because they also like to get other email sometimes), many contributors receive GitHub notifications every time a new comment is posted. Out of respect for them, please do not *bump* or :+1: feature proposals. Instead, write a concise (3-5 sentences) explanation of your real-world use case for the feature.

	If it doesn’t already exist, create a pull request editing [ROADMAP.MD](https://github.com/balderdashy/sails/blob/master/ROADMAP.md) (the easiest way to do this is opening ROADMAP.md while logged in to GitHub and clicking the “Edit” button).

	Add a new row to the Backlog table with a very short description of the feature, then submit the change as a pull request (the easiest way to do this is to use the GitHub UI as discussed above, make your changes, then follow the on-screen instructions).

	In the description for your pull request:

	First, write out a high-level summary of the feature you are proposing as a concise description (3-5 sentences) focused around a convincing real-world use case where the Sails app you are building or maintaining for your job, your clients, your company, your non-profit work, or your independent hobby project would be made easier by this feature or change.

	Next, describe in clear prose with relevant links to code files exactly why it would be difficult or impossible to implement the feature without changing Sails core (i.e. using one or more of the existing plugin mechanisms). If this is not the case, and this feature could be implemented as a plugin, then please reconsider writing your proposal (it is unlikely the core team will be able to accept it). If you are the author of one or more plugins, and feel that you or other users would benefit from having your work in Sails core, please contact the core team directly (see the instructions for submitting “high-level questions or concerns about the project” above).

	Finally, if you have time, take a first pass at proposing a spec for this feature (its configuration, usage, and how it would be implemented). If you do not have time to write out a first draft of a thorough specification, please make that point in your feature request, and clarify that it would be up to other contributors with the same or a similar use case to finish this proposal.

Proposals which do not meet these guidelines will be closed with a response asking that the submitter review this contribution guide. If this happens to you, _realize it is nothing personal_ and that it may even happen again. Please consider that a tremendous amount of effort has been put into the existing plugin systems in Sails, and so any proposed change to core must be carefully considered in relation to how it would affect existing plugins, existing apps, and future development of the framework. Many Sails contributors have become intimately familiar with how the various systems in Sails interact and will be willing to help you out; but in order for that process to be efficient, it is important that all new features and enhancements follow a common set of ground rules.

> ###### If your feature proposal is merged…
> Having your proposal merged does not necessarily mean that you are responsible for _implementing_ the feature; and you certainly won’t be responsible for _maintaining_ future changes which might affect that feature for all eternity. _That_ privilege is reserved for Mike and the rest of the core team; which is why it is so important to spec out the vision for the usage, configuration, and implementation of your proposed feature from day 1. Working out this sort of a detailed proposal is not an easy task, and often involves more effort than the actual implementation. But if a proposal is accepted, it becomes part of the project’s mission: which means once it is implemented and merged, the core team is committed to maintaining it as a part of Sails.

<docmeta name=”displayName” value=”Submitting a proposal”>

 # docs/faq

This section contains the contents that will live on sailsjs.com/faq.

Notes
> - This README file is not compiled to HTML for the website. It is just here to explain what you’re looking at.

 # Frequently Asked Questions

Table of Contents
1. [I’m having trouble installing Sails. What should I do?](https://sailsjs.com/faq#?im-having-trouble-installing-sails-what-should-i-do)
2. [What are the dependencies of Sails?](https://sailsjs.com/faq#?what-are-the-dependencies-of-sails)
3. [Who else is using Sails.js?](https://sailsjs.com/faq#?who-else-is-using-sailsjs)
4. [Are there professional support options?](https://sailsjs.com/faq#?are-there-professional-support-options)
5. [Where do I get help?](https://sailsjs.com/faq#?where-do-i-get-help)
6. [What are some good community tutorials?](https://sailsjs.com/faq#?what-are-some-good-community-tutorials)
7. [How can I convince the other girls/guys on my team?](https://sailsjs.com/faq#?how-can-i-convince-the-other-girls-guys-on-my-team)
8. [Where do I submit ideas? Report bugs?](https://sailsjs.com/faq#?where-do-i-submit-ideas-report-bugs)
9. [What version of Sails should I use?](https://sailsjs.com/faq#?what-version-of-sails-should-i-use)
10. [How do I get involved?](https://sailsjs.com/faq#?how-do-i-get-involved)
11. [How does the documentation end up on the Sails website?](https://sailsjs.com/faq#?how-does-the-documentation-end-up-on-the-sails-website)
12. [Where is the documentation for the different releases of Sails?](https://sailsjs.com/faq#?where-is-the-documentation-for-the-different-releases-of-sails)

I’m having trouble installing Sails. What should I do?

Start with NPM’s helpful [troubleshooting guide](https://github.com/npm/npm/wiki/Troubleshooting). If you continue to have problems, and you’ve tried Google searching but you’re still stumped, please carefully review the updated Sails [contribution guide](https://sailsjs.com/documentation/contributing) and then create a GitHub issue in the Sails repo.

What are the dependencies of Sails?

[![Dependency Status](https://david-dm.org/balderdashy/sails.png)](https://david-dm.org/balderdashy/sails)

We have learned again and again over the years to take versioning of dependencies very seriously. We lock Sails’s dependency versions and only bump those versions if the associated updates fix a security issue or present other substantive advantages to Sails users (improved compatibility, performance, etc.) In addition, the core maintainers of Sails are committed to fixing any major security, performance, or stability bugs that arise in any of our core dependencies– regardless of whether those modules are [officially maintained by another entity or not](https://github.com/balderdashy/sails/pull/3235#issuecomment-170417122).

Sails is tested with [node](http://nodejs.org/) versions 0.10.x and up, though, we recommend using The latest LTS version of Node. The framework is built on the rock-solid foundations of [Express](https://github.com/expressjs/) and [Socket.io](http://socket.io/). Out of the box, it also depends on other great modules, like grunt, waterline, and fs-extra. Click the badge above for the full list of dependencies in the latest stable release of Sails core.

> Sails Flagship users: We manually verify every dependency of Sails and other officially-maintained modules by hand, every single week. This includes core hooks, adapters, generators, client SDKs, and Flagship packages. We regularly send security/compatibility reports about dependencies to the primary email address associated with your account. If you’d like additional people on your team to receive these reports, no problem! Just [let us know](https://flagship.sailsjs.com/ask) their email addresses and we’ll get them set up. _(These email addresses will also receive communications about patches, shrinkwrap updates, and compatibility notices.)_

If you have questions or concerns about our dependencies, [talk to a core team member](https://sailsjs.com/contact). _Please do not submit a pull request changing the version of a dependency without first (1) checking that dependency’s changelog, (2) verifying compatibility, and (3) [submitting an accompanying PR to update roadstead](https://github.com/treelinehq/roadstead/edit/master/constants/verified-releases.type.js), our dependency wallah._

Who else is using Sails.js?

Sails is used in production by individuals and companies, non-profits, and government entities all over the world, for all sorts of projects (greenfield and mature). You can see some examples [here](https://sailsjs.com/#?using-sails) of companies that have used Sails for their projects. (This small list is definitely not authoritative, so if you’re using Sails in your app/product/service, [we’d love to hear about it](https://sailsjs.com/contact)!

Are there professional support options?

[The Sails Company](https://sailsjs.com/about) offers custom development, services, training, enterprise-class products, and support for teams building applications on Sails.

Partner with us
Our studio provides development services for startups, SMBs, and the Fortune 500. As you might expect, the Sails core team has done a lot of custom Sails/Node.js development, but we also have experience across the full stack, including: advanced interaction design, practical/scalable JavaScript development practices for huge applications, and building rich user experiences across many different devices and screen resolutions.

We can build your app and API from scratch, modernize your legacy web platform, or catalyze the development efforts of your established team. If you’re interested in working with us on your next project, [drop us a line](https://sailsjs.com/studio#?contact).

Sails Flagship for Enterprise
Sails Flagship is a platform on top of Sails which provides a suite of additional services, production-quality accoutrements, and support for enterprise use cases. This includes early access to new features and enhancements, a license for our internal tools, as well as exclusive reports and best-practice guides created by core maintainers. To learn more, [set up a call](https://sailsjs.com/contact) _(or [purchase online now](https://sailsjs.com/flagship/plans))_.

> We are actively expanding this product offering with new additions and official re-releases of some formerly-experimental modules. If you have specific suggestions/requests for new Flagship packages, please [let us know](http://flagship.sailsjs.com/contact).

Professional support / SLAs
The Sails Company also provides a lifeline for organizations using Sails to build their products. If you need guaranteed support in the event of a critical production issue, or just want an extra pair of eyes looking out for your code base during development, take a look at our [basic subscriptions](https://sailsjs.com/flagship/plans), or [contact us](https://flagship.sailsjs.com/contact) and we’ll give you a call.

Where do I get help?

Aside from the [official documentation](https://sailsjs.com/documentation), be sure and check out the [recommended support options on the Sails website](https://sailsjs.com/support), and pop in to our [Gitter chat room](https://gitter.im/balderdashy/sails). If you’re stumped, make sure and [ask a question on StackOverflow](http://stackoverflow.com/questions/ask), where there’s an [active Sails community](http://stackoverflow.com/questions/tagged/sailsjs?sort=newest&days=30). Members of our core team recently taught a [free video course](https://courses.platzi.com/courses/develop-apps-sails-js/) on [Platzi](http://platzi.com) and wrote [a book](https://www.manning.com/books/sails-js-in-action).

> If you’re using [Sails Flagship](https://sailsjs.com/faq#?are-there-professional-support-options), you can contact the core team [here](http://flagship.sailsjs.com/ask).

What are some good community tutorials?

> If you are the author of a tutorial or guide about Sails, please send us a pull request [here](https://github.com/balderdashy/sails/edit/master/docs/faq/faq.md) and we’ll check it out. (Be sure to add your tutorial to the top of the applicable list, as we try to order these from newest to oldest.)

<!–
A quick note for anyone contributing to this file:

First of all, thanks for making a tutorial! That was pretty cool of you.

Secondly, when you add the tutorial to one of the lists below, please follow it with a comment that has the date your tutorial was last updated. (We try to keep the most recent ones toward the top of the list.) If you are linking to an ongoing series that you continually update, just add the date of your most recent post + the phrase ‘(ongoing series)’ so we know to keep checking back.

Thanks!
-@rachaelshaw
–>

Multi-part guides:
+ [The busy JavaScript developer’s guide to Sails.js](https://www.ibm.com/developerworks/library/wa-build-deploy-web-app-sailsjs-1-bluemix/index.html) – 4-part series from IBM developerWorks. (Also available in [Chinese](http://www.ibm.com/developerworks/cn/web/wa-build-deploy-web-app-sailsjs-1-bluemix/) and [Japanese](http://www.ibm.com/developerworks/jp/web/library/wa-build-deploy-web-app-sailsjs-1-bluemix/).)
<!– 7-12-2016 –>
+ [SailsCasts](http://irlnathan.github.io/sailscasts/) - Short screencasts that take you through the basics of building traditional websites, single-page/mobile apps, and APIs using Sails. Perfect for both novice and tenured developers, but does assume some background on MVC.
<!– 4-4-2015 –>
+ [Sails.js Development channel on Medium](https://medium.com/sails-js-development/)
<!– 3-19-2015 –>
+ [Sails.js Course on Pluralsight](https://www.pluralsight.com/courses/two-tier-enterprise-app-api-development-angular-sails)
<!– 2-10-2015 –>
+ Sails API Development

	[Datalayer -models, connections, waterline](http://www.codeproject.com/Articles/898221/Sails-API-development-Datalayer-models-connections)

	[Custom methods, overriding default actions, and related](http://www.codeproject.com/Articles/985730/Sails-API-development-2-2-Custom-methods-overriding-default)

<!– 5-5-2015 –>
+ Desarrollar Webapps Realtime:

	[Creación](http://jorgecasar.github.io/blog/desarrollar-webapps-realtime-creacion/)

	[Usuarios](http://jorgecasar.github.io/blog/desarrollar-webapps-realtime-usuarios/)

	[Auth](http://jorgecasar.github.io/blog/desarrollar-webapps-realtime-auth/)

	[Auth con Passport](http://jorgecasar.github.io/blog/desarrollar-webapps-realtime-auth-con-passport/)

<!– 1-19-2014 –>

Articles & blog posts:
+ [Nanobox Blog: Getting Started - A Simple Sails.js App](https://content.nanobox.io/a-simple-sails-js-example-app/)
<!– 6-13-2017 –>
+ [Twitter Dev Blog: Guest Post: Twitter Sign-In with Sails.js](https://blog.twitter.com/2015/guest-post-twitter-sign-in-with-treelineio)
<!– 3-25-2015 –>
+ [Guest Post on Segment.io Blog: Webhooks with Slack, Segment, and Sails.js/Treeline](https://segment.com/blog/segment-webhooks-slack/)
<!– 3-15-2015 –>
+ [Postman Blog: Manage your Sails.js server bootstrap code](http://blog.getpostman.com/2015/08/28/manage-your-sailsjs-server-bootstrap-code/)
<!– 8-28-2015 –>
+ [Sails.js on Heroku](https://vort3x.me/sailsjs-heroku/)
<!– 5-19-2015 –>
+ [Angular + Sails.js (0.10.0-rc5) with angular-sails socket.io](https://github.com/maartendb/angular-sails-scrum-tutorial/blob/master/README.md)
<!– 4-14-2014 –>
+ [Angular + Sails! Help!](https://github.com/xdissent/spinnaker) - Sails Resources Service for AngularJS
<!– 8-19-2013 –>
+ [How to Create a Node.js App using Sails.js on an Ubuntu VPS](https://www.digitalocean.com/community/articles/how-to-create-an-node-js-app-using-sails-js-on-an-ubuntu-vps)
<!– 7-16-2013 –>
+ [Working With Data in Sails.js](http://net.tutsplus.com/tutorials/javascript-ajax/working-with-data-in-sails-js/) tutorial on NetTuts
<!– 6-12-2013 –>

Video tutorials:
+ [Develop Web Apps in Node.js and Sails.js](https://courses.platzi.com/courses/sails-js/)
+ [Jorge Casar: Introduccion a Sails.js](https://www.youtube.com/watch?v=7_zUNTtXtcg)
<!– 12-17-2014 –>
+ [Sails.js - How to render node views via Ajax, single page application, SPA](http://www.youtube.com/watch?v=Di50_eHqI7I&feature=youtu.be)
<!– 8-29-2013 –>
+ [Intro to Sails.js](https://www.youtube.com/watch?v=GK-tFvpIR7c) [@mikermcneil](https://github.com/mikermcneil)’s [https://github.com/mikermcneil)'s] original screencast
<!– 2-25-2013 –>

How can I convince the other girls/guys on my team?

Articles / interviews / press releases / whitepapers / talks

> + If you are the author of an article about Sails, please send us a pull request [here](https://github.com/balderdashy/sails/edit/master/docs/faq/faq.md). We’ll check it out!
> + If you are a company interested in doing a press release about Sails, please contact [@mikermcneil](https://twitter.com/mikermcneil) on Twitter. We’ll do what we can to help.

	[InfoWorld: Why Node.js beats Java and .Net for web, mobile, and IoT apps](http://www.infoworld.com/article/2975233/javascript/why-node-js-beats-java-net-for-web-mobile-iot-apps.html) _(Speed, scalability, productivity, and developer politics all played a role in [AnyPresence](http://anypresence.com)’s selection of Sails.js/Node.js for its enterprise development platform)_

	[TechRepublic: Build Robust Applications with the Node.js MVC framework](http://www.techrepublic.com/article/build-robust-node-applications-with-the-sails-js-mvc-framework/)

	[Microsoft Case Study: Deploying Sails.js to Azure Web Apps](https://blogs.msdn.microsoft.com/partnercatalystteam/2015/07/16/y-combinator-collaboration-deploying-sailsjs-to-azure-web-apps/)

	[Mike’s interview w/ @freddier and @cvander from Platzi](https://www.youtube.com/watch?v=WN0YgPdPbRE)

	[Smashing Magazine: Sailing with Sails.js](https://www.smashingmagazine.com/2015/11/sailing-sails-js-mvc-style-framework-node-js/)

	[Presentation at Smart City Conference & Expo 2015](http://www.goodxense.com/blog/post/our-presentation-at-smart-city-conference-expo-2015/) (George Lu & YJ Yang)

	[Radio interview with Mike McNeil w/ ComputerAmerica’s Craig Crossman](https://www.youtube.com/watch?v=ERIvf2iUj5U&feature=youtu.be)

	Sails.js, Treeline and the future of programming ([Article](https://courses.platzi.com/blog/sails-js-creator-mike-mcneil-on-treeline-and-frameworks/) | [Video](https://www.youtube.com/watch?v=nZKG7hLhbRs) | [Deck](https://speakerdeck.com/mikermcneil/what-even-is-software))

	[UI-First API Design & Development: Apigee’s I ♥ APIs, San Francisco, 2015](https://speakerdeck.com/mikermcneil/i-love-apis)

	[Choosing the right framework for Node.js development](https://jaxenter.com/choosing-the-right-framework-for-node-js-development-126432.html)

	[TechCrunch: Our 10 Favorite Companies From Y Combinator Demo Day](https://techcrunch.com/gallery/our-10-favorite-companies-from-y-combinator-demo-day-day-1/slide/11/)

	[Sails.js used on the website for the city of Paris](https://twitter.com/parisnumerique/status/617999231182176256)

	[18f Open Source Hack Series: Midas](https://18f.gsa.gov/2014/10/01/open-source-hack-series-midas/)

	[From Rags to Open Source](https://speakerdeck.com/mikermcneil/all-things-open) (All Things Open, Raleigh, 2014)

	SxSW Conference, Austin, TX: ([2014](https://speakerdeck.com/mikermcneil/2014-intro-to-sails-v0-dot-10-dot-x) | [2015](https://speakerdeck.com/mikermcneil/sxsw-2015))

	[More talks by Mike and the Sails.js core team](http://lanyrd.com/profile/mikermcneil/)

	[Dessarolo Web: Interview w/ Mike McNeil](https://www.youtube.com/watch?v=XMpf44oV2Og) (Spanish & English–English starts at 1:30)

	[CapitalOne blog: Contrasting Enterprise Node.js Frameworks](http://www.capitalone.io/blog/contrasting-enterprise-nodejs-frameworks/) (by [Azat Mardan](https://www.linkedin.com/in/azatm), author of the book “Pro Express.js”)

	[Alternatives to MongoDB (Chinese article)](http://www.infoq.com/cn/news/2015/07/never-ever-mongodb)

	[Introducción a Sails.js, un framework para crear aplicaciones realtime](https://abalozz.es/introduccion-a-sails-js-un-framework-para-crear-aplicaciones-realtime/)

	[Austin startup finds success in responsive design](http://www.bizjournals.com/sanantonio/blog/socialmadness/2013/03/sxsw-2013-Balderdash-startup-web-app.html?ana=twt)

	[Interact ATX](http://www.siliconhillsnews.com/2013/03/10/flying-high-with-interact-atx-adventures-in-austin-part-3-2-1/)

	[Intro to Sails.js :: Node.js Conf: Italy, 2014](http://2014.nodejsconf.it/)

	[Startup America](http://www.prlog.org/12038372-engine-pitches-startup-america-board-of-directors.html)

	[Recent tweets about Sails.js](https://twitter.com/search?q=treelinehq%20OR%20%40treelinehq%20OR%20%23treelinehq%20OR%20%40waterlineorm%20OR%20treeline.io%20OR%20sailsjs.com%20OR%20github.com%2Fbalderdashy%2Fsails%20OR%20sailsjs%20OR%20sails.js%20OR%20%23sailsjs%20OR%20%40sailsjs&src=typd)

	[How to use more open source](https://18f.gsa.gov/2014/11/26/how-to-use-more-open-source/) _(18F is an office inside the U.s. General Services Administration that helps other federal agencies build, buy, and share efficient and easy-to-use digital services.)_

	[Express Web Server Advances in Node.js Ecosystem](https://adtmag.com/articles/2016/02/11/express-joins-node.aspx) ([auch auf Deutsch](http://www.heise.de/developer/meldung/IBM-uebergibt-JavaScript-Webframework-Express-an-Node-js-Foundation-3099223.html))

	Interview w/ Tim Heckel [on InfoQ](http://www.infoq.com/news/2013/04/Sails-0.8.9-Released)

	[Sails.js - Une Architecture MVC pour applications real-time Node.js](http://www.lafermeduweb.net/billet/sails-js-une-architecture-mvc-pour-applications-real-time-node-js-1528.html)

	[Hacker News](https://news.ycombinator.com/item?id=5373342)

	[Pulling the Plug: dotJS (Paris, 2014)](http://www.thedotpost.com/2014/11/mike-mcneil-pulling-the-plug)

	[Intro to Sails.js :: Node PDX, Portland, 2013 (Slides)](http://www.slideshare.net/michaelrmcneil/node-pdx))

	[Sail.js : un framework MVC pour Node.js](http://javascript.developpez.com/actu/52729/Sail-js-un-framework-MVC-pour-Node-js/)

	[Build Custom & Enterprise Node.js Apps with Sails.js](http://www.webappers.com/2013/03/29/build-custom-enterprise-node-js-apps-with-sails-js/)

	[New tools for web design and development: March 2013](http://www.creativebloq.com/design-tools/new-tools-web-design-and-development-march-2013-4132972)

	[Sails 0.8.9: A Rails-Inspired Real-Time Node MVC Framework](http://www.infoq.com/news/2013/04/Sails-0.8.9-Released)

	[Node.js の MVCフレームワーク Sails.js が良さげなので少し試してみた](http://nantokaworks.com/?p=1101)

	[InfoWorld: 13 fabulous frameworks for Node.js](http://www.infoworld.com/article/3064653/application-development/13-fabulous-frameworks-for-nodejs.html#slide9)

	[New web design tools that you need to check out](http://www.designyourway.net/blog/resources/new-web-design-tools-that-you-need-to-check-out/)

	[Live code Sails.js avec Mike McNeil](http://www.weezevent.com/live-code-sailsjs-avec-mike-mcneil)

	[#hack4good adds cities and welcomes Sails.js creator to speak and hack in Paris!](http://us2.campaign-archive1.com/?u=cf9af451f2674767755b02b35&id=fb98713f48&e=b2d87b15fe)

	[TechCrunch: Sails.js Funded by Y-Combinator](http://techcrunch.com/2015/03/11/treeline-wants-to-take-the-coding-out-of-building-a-backend/)

Where do I submit ideas? Report bugs?

The Sails project tracks bug reports in GitHub issues and uses pull requests for feature proposals. Please read the [contribution guide](https://sailsjs.com/documentation/contributing) before you create an issue, submit a proposal, or begin working on pull request.

What version of Sails should I use?

[![NPM version](https://badge.fury.io/js/sails.png)](http://badge.fury.io/js/sails)

Unless you are a contributor running a pre-release version of the framework in order to do some testing or work on core, you should use the latest stable version of Sails from NPM (click the badge above). Installing is easy- just follow [these instructions](https://sailsjs.com/get-started).

> Note: to install/upgrade to the latest version of Sails locally in an existing project, run npm install sails@latest –save. If you are having trouble and are looking for a bazooka, you might also want to run rm -rf node_modules && npm cache clear && npm install sails@latest –force –save && npm install.

If you are looking to install a pre-release version of Sails, you can install from the beta tag on npm (i.e. npm install sails@beta). This is a great way to try out a coming release ahead of time and start upgrading before the release becomes official. The beta npm release candidate corresponds with the beta branch in the Sails repo. (Just be sure to also use the right version of your favorite adapters and other plugins. If in doubt, [feel free to ask](https://sailsjs.com/support).)

Finally, if you like living on the edge, or you’re working on adding a feature or fixing a bug in Sails, install the edge version from the master branch on github. The edge version is not published on the registry since it’s constantly under development, but you can _still use npm to install it_ (e.g. npm install sails@git://github.com/balderdashy/sails.git)

For more instructions on installing the beta and edge versions of Sails, check out the [contribution guide](https://sailsjs.com/documentation/contributing).

How do I get involved?

There are many different ways to contribute to Sails; for example you could help us improve the [official documentation](https://github.com/balderdashy/sails/tree/master/docs), write a [plugin](https://sailsjs.com/documentation/concepts/extending-sails), answer [StackOverflow questions](http://stackoverflow.com/questions/tagged/sails.js), start a Sails meetup, help troubleshoot GitHub issues, write some tests, or submit a patch to Sails core or one of its dependencies. Please look through the [contribution guide](https://sailsjs.com/documentation/contributing) before you get started. It’s a short read that covers guidelines and best practices that ensure your hard work will have the maximum impact.

How does the documentation end up on the Sails website?

The documentation is compiled from the markdown files in the [sails repo on github](https://github.com/balderdashy/sails/tree/master/docs). A number of Sails users have expressed interest in emulating the process we use to generate the pages on the Sails website. Good news is it’s pretty simple: The compilation process for the Sails docs involves generating HTML from Markdown files in the sails repo, then performing some additional transformations such as adding data type bubbles, tagging permalinks for individual sections of pages, building JSON data to power the side navigation menu and setting HTML <title> attributes for better search engine discoverability of individual doc pages. See the [doc-templater](https://github.com/uncletammy/doc-templater) module for more information.

Where is the documentation for the different releases of Sails?
The [documentation on the main website](https://sailsjs.com/documentation) is for the latest stable npm release of Sails, and is mirrored by the docs in the [master branch of the sails repo on github](https://github.com/balderdashy/sails/tree/master/docs) (Master is sometimes a few commits ahead, but any critical documentation updates make it onto the website within a day or two.)

For older releases of Sails that are still widely used, the documentation is compiled from the relevant sails-docs branches and hosted on the following subdomains:
+ 0.12.sailsjs.com
+ 0.11.sailsjs.com

 ## Grab An IRC Client
Below you’ll find some of the more popular IRC Clients.

	### Linux
	
	[xChat](http://xchat.org)

	[irssi](http://irssi.org)

	[weeChat](http://www.weechat.org)

Using apt package manager for Ubuntu/Debian
```
sudo apt-get install weechat

```

OSX
- [irssi](http://irssi.org)

```
sudo steveJobsPM –prettyPlease install -m ‘is this okay?’ irssi

```
Windows

	[xChat](http://xchat.org)

	[hydra IRC](http://www.hydrairc.com/content/downloads)

Setting Up Your Client
Registering On Freenode
Our chat room is on the Freenode network. Freenode does not require that you register your nick name. You do have the option to though. If you want to do this, read about how to do it [on the freenode website](https://freenode.net/faq.shtml#registering)

Getting on Freenode

Each IRC Client is a little different to configure. All of the ones we have recommended have very straight forward configuration process. If your client provides a list of available servers, look for the one called Freenode.

Make sure to put in a nick to go by.

Upon connecting to the Freenode network, join us by typing /join #sailsjs.

If you registered a nick, you can identify yourself with /msg nickserv identify <password>

Getting help on IRC

#sailsjs on irc.freenode.net
If you are looking for a quick answer and you can’t find what you’re looking for in the docs, come ask in our IRC chat room. While there is typically somebody there who can answer your question, please remember that #sailsjs is 100% community maintained. That means that help is given at the discretion of the community. For best results, be polite and to the point.

If you’ve never been on IRC, now is the perfect time. Getting started is easy.

Sails Troll
Sails Troll is our resident IRC Bot. His job is to write down what people say in case someone wants to find it later.

He also informs the room whenever someone pushes up a change to any of the repos in the Sails.js ecosystem.

<docmeta name=”displayName” value=”#sailsjs on IRC”>

 # docs/reference

This section contains the official reference documentation for Sails. It is made available at https://sailsjs.com/documentation/reference.

Notes
> - This README file is not compiled to HTML for the website. It is just here to explain what you’re looking at.
> - Depending on what branch of sails you are currently viewing, the domain may vary. See the top-level documentation README file for information about working with the markdown files in this repo, and to understand the branching/versioning strategy.

<docmeta name=”notShownOnWebsite” value=”true”>

 # Sails.js Documentation > API Reference

> The contents of this file are overridden automatically during compilation (please do not edit manually!)

<docmeta name=”displayName” value=”API Reference: Table of Contents”>
<docmeta name=”isTableOfContents” value=”true”>

 # Application (sails)

The Sails application object contains all relevant runtime state for a Sails application.
By default, it is exposed globally as sails and accessible almost anywhere in your code.

> Most users of the framework will only need to know about the sails application object in order to access a few basic methods and their custom configuration. Less commonly used methods can be found in the [advanced usage](https://sailsjs.com/documentation/reference/application/advanced-usage) section.

Properties

The application object has a number of useful methods and properties.
The officially supported methods on the sails object are covered by the other
pages in this section. Here are a few of its most useful properties:

sails.models

A dictionary of all loaded [Sails models](https://sailsjs.com/documentation/concepts/models-and-orm/models), indexed by their _identity_.

By default, a model’s identity is the lowercased version of its filename, without the .js extension. For example, the default identity for a model loaded from api/models/PowerPuff.js would be powerpuff, and the model would be accessible via sails.models.powerpuff. A model’s identity can be customized by setting an identity property in its module file.

sails.helpers

A dictionary of all accessible [helpers](https://sailsjs.com/documentation/concepts/helpers), including organics.

sails.config

The full set of configuration options for the Sails instance, loaded from a combination of environment variables, .sailsrc files, user-configuration files, and defaults. See the [configuration concepts section](https://sailsjs.com/documentation/concepts/configuration) for a full overview of configuring Sails, and the [configuration reference](https://sailsjs.com/documentation/reference/configuration) for details on individual options.

sails.sockets

A set of convenience methods for low-level interaction with connected websockets. See the [sails.sockets.* reference section](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) for details.

Advanced usage

For more options and implementation details (including instructions for programmatic usage) see [Advanced usage](https://sailsjs.com/documentation/reference/application/advanced-usage).

<docmeta name=”displayName” value=”Application”>

 # sails.config.custom

The runtime values of your app’s [custom configuration settings](https://sailsjs.com/documentation/reference/configuration/sails-config-custom).

Usage

`usage
sails.config.custom;
`

Example

In an action or helper:

`javascript
sails.config.custom.mailgunApiKey;
// -> "key-testkeyb183848139913858e8abd9a3"
`

Notes

> + For information on how to set custom configuration in the first place, see [Reference > Config > sails.config.custom](https://sailsjs.com/documentation/reference/configuration/sails-config-custom).

<docmeta name=”displayName” value=”sails.config.custom”>
<docmeta name=”pageType” value=”property”>

 # sails.getDatastore()
Access a particular [datastore](https://sailsjs.com/documentation/concepts/models-and-orm#?datastores), or the default datastore.

`usage
sails.getDatastore(datastoreName);
`

Usage

| Argument | Type | Details

|---|—————————- | ——————- |:———–
| 1 | datastoreName | ((string?)) | If specified, this is the name of the datastore to look up. Otherwise, if you leave this blank, this getDatastore() will return the default datastore for your app.

Returns

Type: ((Dictionary))

A [datastore instance](https://sailsjs.com/documentation/reference/waterline-orm/datastores).

<docmeta name=”displayName” value=”sails.getDatastore()”>
<docmeta name=”pageType” value=”method”>

 # sails.getUrlFor()

Look up the first route pointing at the specified target (e.g. entrance/view-login) and return its URL.

`usage
sails.getUrlFor(target);
`

Usage

| Argument | Type | Details

|---|—————————- | ——————- |:———–
| 1 | target | ((string)) | The route target string; e.g. entrance/view-login or PageController.login

Returns

Type: ((string))

`javascript
'/login'
`

Example

In a view…

`ejs
<a href="<%= sails.getUrlFor('entrance/view-login') %>">Login
<a href="<%= sails.getUrlFor('entrance/view-signup') %>">Signup
`

Or, if you’re using traditional controllers:

`ejs
<a href="<%= sails.getUrlFor('PageController.login') %>">Login
<a href="<%= sails.getUrlFor('PageController.signup') %>">Signup
`

Notes
> - This function searches the Sails app’s explicitly configured routes, [sails.config.routes](https://sailsjs.com/documentation/reference/configuration/sails-config-routes). Shadow routes bound by hooks (including [blueprint routes](https://sailsjs.com/documentation/reference/blueprint-api#?blueprint-routes)) will not be matched.
> - If a matching target cannot be found, this function throws an E_NOT_FOUND error (i.e. if you catch the error and check its code property, it will be the string E_NOT_FOUND).
> - If more than one route matches the specified target, the first match is returned.
> - The HTTP method (or “verb”) from the route address is ignored, if relevant.

<docmeta name=”displayName” value=”sails.getUrlFor()”>
<docmeta name=”pageType” value=”method”>

 # sails.log()

Log a message or some data at the “debug” [log level](https://sailsjs.com/documentation/reference/configuration/sails-config-log) using Sails’ [built-in logger](https://sailsjs.com/documentation/concepts/logging).

`usage
sails.log(...);
`

Usage

This function’s usage is purposely very similar to Node’s [console.log()](https://nodejs.org/api/console.html#console_console_log_data), but with a handful of extra features—namely support for multiple log levels with colorized, prefixed console output.

	Note that standard console.log() conventions from Node.js apply:
	
	takes an [unlimited number](https://en.wikipedia.org/wiki/Variadic_function) of arguments, separated by commas

	printf-style parameterization (à la [util.format()](https://nodejs.org/api/util.html#util_util_format_format))

	objects, dates, arrays, and most other data types are pretty-printed using the built-in logic in [util.inspect()](https://nodejs.org/api/util.html#util_util_inspect_object_options) (e.g. you see { pet: { name: ‘Hamlet’ } } instead of [object Object].)

	if you log an object with a custom inspect() method, that method will run automatically, and the string that it returns will be written to the console.

Example

`javascript
var sum = +req.param('x') + +req.param('y');
sails.log();
sails.log('Hey %s, did you know that the sum of %d and %d is %d?', req.param('name'), +req.param('x'), +req.param('y'), sum);
sails.log('Bet you didn\'t know robots could do math, huh?');
sails.log();
sails.log('Anyways, here is a dictionary containing all the parameters I received in this request:', req.allParams());
sails.log('Until next time!');
return res.ok();
`

Notes
> - For a deeper conceptual exploration of logging in Sails, see [concepts/logging](https://sailsjs.com/documentation/concepts/logging).
> - Remember that, in addition to being exposed as an alternative to calling console.log directly, the built-in logger in Sails is called internally by the framework. The Sails logger can be configured, or completely overridden, using built-in log configuration settings ([sails.config.log](https://sailsjs.com/documentation/reference/configuration/sails-config-log)).
> - Keep in mind that, like any part of Sails, sails.log is completely optional. Most—but not all—Sails apps take advantage of the built-in logger: some users prefer to stick with console.log(), while others require() more feature-rich libraries like [Winston](https://www.npmjs.com/package/winston). If you aren’t sure what your app needs yet, start with the built-in logger and go from there.

<docmeta name=”displayName” value=”sails.log()”>
<docmeta name=”pageType” value=”method”>

 # Advanced usage

Most users of the Sails framework will never need to access more than a few basic methods of the sails application object. However, if you have an advanced use case or are considering [contributing to Sails](https://sailsjs.com/documentation/contributing), you may need to delve into some of these lesser-used methods or reference the [loading order of Sails core](https://sailsjs.com/documentation/reference/application/advanced-usage/lifecycle).

Disabling the sails global

We recommended using the sails global with Sails.

However, the auto-globalization of sails [can be disabled](https://sailsjs.com/documentation/reference/configuration/sails-config-globals). Disabling the sails global might be a good idea for use cases where multiple Sails app instances need to exist at once, or where globals are not an option.

If the sails global is disabled, then you’ll need another way to reference the application instance. Luckily, this is possible from almost anywhere in your app:

	in the fn of an [action](https://sailsjs.com/documentation/concepts/actions-and-controllers) (this.sails)

	in the fn of a [helper](https://sailsjs.com/documentation/concepts/helpers) (this.sails).

	on an incoming request (req._sails)

Properties (advanced)

sails.hooks

A dictionary of all loaded [Sails hooks](https://sailsjs.com/documentation/concepts/extending-sails/hooks), indexed by their _identity_. Use sails.hooks to access properties and methods of hooks you’ve installed to extend Sails—for example, by calling sails.hooks.email.send(). You can also use this dictionary to access the Sails [core hooks](https://sailsjs.com/documentation/concepts/extending-sails/hooks#?types-of-hooks), for advanced usage.

By default, a hook’s identity is the lowercased version of its folder name, with any sails-hook- prefix removed. For example, the default identity for a hook loaded from node_modules/sails-hook-email would be email, and the hook would be accessible via sails.hooks.email. An installed hook’s identity can be changed via the [installedHooks config property](https://sailsjs.com/documentation/concepts/extending-sails/hooks/using-hooks#?changing-the-way-sails-loads-an-installable-hook).

See the [hooks concept documentation](https://sailsjs.com/documentation/concepts/extending-sails/hooks) for more information about hooks.

sails.io

The API exposed by the [sails.sockets.* methods](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) is flexible enough out of the box to cover the requirements of most applications, and using them will future-proof your app against possible changes in the underlying implementation. However, if you are working on bringing some legacy code from a vanilla Socket.io app into your Sails app, it can be useful to talk to Socket.io directly. To accomplish this, Sails provides raw access to the underlying socket.io server instance (io) as sails.io. See the [Socket.io docs](http://socket.io/docs/) for more information. If you decide to use Socket.io directly, please proceed with care.

> Sails bundles socket.io as a dependency of [sails-hook-sockets](github.com/balderdashy/sails-hook-sockets), a core hook.

Where does the application object come from?

An application instance automatically created _the first time_ you require(‘sails’).

This is what is happening in the generated app.js file:

`javascript
var sails = require('sails');
`

Note that any subsequent calls to require(‘sails’) return the same app instance. (This is why you might sometimes hear the Sails app instance referred to as a “singleton”.)

Creating a new application object (advanced)

If you are implementing something unconventional (e.g. writing tests for Sails core)
where you need to create more than one Sails application instance in a process, you _should not_ use
the instance returned by require(‘sails’), as this can cause unexpected behavior. Instead, you should
obtain application instances by using the Sails constructor:

`javascript
var Sails = require('sails').constructor;
var sails0 = new Sails();
var sails1 = new Sails();
var sails2 = new Sails();
`

Each app instance (sails0, sails1, sails2) can be loaded/lifted separately,
using different configuration.

For more on using Sails programatically, see the conceptual overview on [programmatic usage in Sails](https://sailsjs.com/documentation/concepts/programmatic-usage).

<docmeta name=”displayName” value=”Advanced usage”>

 # The Sails app lifecycle

The Sails core has been iterated upon several times to make it easier to maintain and extend. As a result, it has a very particular loading order, which its hooks depend on heavily. This process is summarized below.

(1) Load configuration “overrides”

Gather the set of configuration values passed in on the command line, in environment variables, and in programmatic configuration (i.e. options passed to [sails.load](https://sailsjs.com/documentation/reference/application/sails-load) or [sails.lift](https://sailsjs.com/documentation/reference/application/sails-lift)). When an app is started via the command-line interface (by typing sails lift or sails console), the values of any .sailsrc files will also be merged into the config overrides. These override values will take precedence over any user configuration encountered in the next step.

(2) Load user configuration

Unless the userconfiguration hook is explicitly disabled, Sails will next load the configuration files in the config folder (and subfolders) underneath the current working directory. See [Concepts > Configuration](https://sailsjs.com/documentation/concepts/configuration) for more details about user configuration. Configuration settings from step 1 will be merged on top of these values to form the sails.config object.

(3) Load hooks

Next, Sails will load the other hooks. [Core hooks](https://sailsjs.com/documentation/concepts/extending-sails/hooks#?types-of-hooks) will load first, followed by user hooks and installable hooks. Note that hooks typically include configuration of their own which will be used as _default values_ in sails.config. For example, if no port setting is configured by this point, the http hook’s default value of 1337 will be used.

(4) Assemble router

Sails prepares the core Router, then emits multiple events on the sails object informing hooks that they can safely bind routes.

(5) Expose global variables
After all hooks have initialized, Sails exposes global variables (by default: sails object, models, services, _, and async).

(6) Initialize app runtime

> This step does not run when sails.load() is used programmatically.
> To run the initialization step, use sails.lift() instead.

	Run the bootstrap function (sails.config.bootstrap)

	Start attached servers (by default, Express and Socket.io)

FAQ

	What is the difference between sails.lift() and sails.load()?
+ lift() === load() + initialize(). It does everything load() does, plus it starts any attached servers (e.g. HTTP) and logs a picture of a boat.

<docmeta name=”displayName” value=”Lifecycle”>

 # sails.LOOKS_LIKE_ASSET_RX

A regular expression designed for use in identifying URL paths that seem like they are _probably_ for a static asset of some kind (e.g. image, stylesheet, favicon.ico, robots.txt, etc.).

Usage
`usage
sails.LOOKS_LIKE_ASSET_RX;
`

Type: ((RegExp))

> This regex is by no means foolproof, and may match URLs too aggressively for some applications. It is just a reasonable approximation made available for convenience.

Example

To avoid disabling built-in session support for any request to a URL path that ends in .json, but still disable sessions for other requests for static assets, you might use the following configuration:

``javascript
// In `config/session.js
isSessionDisabled: function (req){

	if (req.path.match(/.json$/)) {
	// Don’t disable sessions.
return;

}

var seemsToWantSomeOtherStaticAsset = !!req.path.match(sails.LOOKS_LIKE_ASSET_RX);
if (seemsToWantSomeOtherStaticAsset) {

// Disable sessions.
return true;

}

// Otherwise, don’t disable sessions.
return;

}

<docmeta name=”displayName” value=”sails.LOOKS_LIKE_ASSET_RX”>
<docmeta name=”pageType” value=”constant”>

 # sails.getActions()

Return a dictionary of Sails [actions](https://sailsjs.com/documentation/concepts/actions-and-controllers).

`usage
sails.getActions();
`

The result is a flat (i.e. one-level) dictionary where the keys are the kebab-cased, dash-delimited action identities, and the values are the action functions. All actions in the dictionary will have been converted to req, res functions at this point, even if they were defined using [actions2 syntax](https://sailsjs.com/documentation/concepts/actions-and-controllers#?actions-2).

<docmeta name=”displayName” value=”sails.getActions()”>
<docmeta name=”pageType” value=”method”>

 # sails.getBaseUrl()

> ##### _**This method is deprecated and will likely be removed or changed in an upcoming release.**_
> There is no reliable, cross-platform way to automatically detect the external URL of a running Sails app (or any other Node app). Instead, configure your base URL explicitly and save it in [custom configuration](https://sailsjs.com/documentation/reference/configuration/sails-config-custom) (e.g. sails.config.custom.baseUrl) that you can reference throughout the app. (This can then be overridden in production, staging, etc. as needed using [environment-dependent configuration](https://sailsjs.com/documentation/concepts/configuration#?environmentspecific-files-config-env).)

Return a (possibly incorrect) best guess of the base URL for this app, based on a combination of user-supplied and default configuration values.

`usage
sails.getBaseUrl();
`

getBaseUrl() constructs a URL string by inspecting various configuration values and defaults. For example, if sails.config.ssl.key and sails.config.ssl.cert both have values, the URL will start with https:// instead of http://. If sails.config.explicitHost is not undefined, its value will be used as the domain name, otherwise it will be localhost. If sails.config.port is not 80 or 443, its value will be appended to the URL as well.

Usage

This function does not accept any arguments.

Returns

Type: ((string))

`javascript
http://localhost:1337
`

Example

In an email template…
`html
For more information, visit <a href="<%=sails.getBaseUrl()%>">our web site.
`

<docmeta name=”displayName” value=”sails.getBaseUrl()”>
<docmeta name=”pageType” value=”method”>
<docmeta name=”isDeprecated” value=”true”>

 # sails.getRouteFor()

Look up the first route pointing at the specified target (e.g. MeController.login) and return a dictionary containing its method and URL.

`usage
sails.getRouteFor(target);
`

Usage

| Argument | Type | Details

|---|————————— | ——————- |:———–
| 1 | target | ((string)) | The route target string; e.g. MeController.login

Returns

Type: ((dictionary))

```javascript
{


method: ‘post’,
url: ‘/auth/login’





}

### Example

In a controller action…
```javascript
return res.view(‘pages/some-page-with-a-form-on-it’, {

formEndpoint: sails.getRouteFor(‘SomeotherController.someAction’),
// …

});

So that in the rendered view…
```ejs
<form action=”<%=formEndpoint.url%>” method=”<%=formEndpoint.method%>”>


<!– … –>




</form>
```

Notes
> - This function searches the Sails app’s explicitly configured routes; [sails.config.routes](https://sailsjs.com/documentation/reference/configuration/sails-config-routes). Shadow routes bound by hooks (including [blueprint routes](https://sailsjs.com/documentation/reference/blueprint-api#?blueprint-routes)) will not be matched.
> - If a matching target cannot be found, this function throws an E_NOT_FOUND error (i.e. if you catch the error and check its code property, it will be the string E_NOT_FOUND).
> - If more than one route matches the specified target, the first match is returned.
> - If you only need the URL for a route (e.g. to use as an href from within one of your views), you may want to use [sails.getUrlFor()](https://sailsjs.com/documentation/reference/application/sails-get-url-for) instead of this function.

<docmeta name=”displayName” value=”sails.getRouteFor()”>
<docmeta name=”pageType” value=”method”>

 # sails.lift()

Lift a Sails app programmatically.

> This does exactly what you might be used to seeing by now when you run sails lift. It [loads](https://sailsjs.com/documentation/reference/application/sails-load) the app, runs its bootstrap, then starts listening for HTTP requests and WebSocket connections. Useful for building top-to-bottom integration tests that rely on HTTP requests, and for building higher-level tooling on top of Sails.

```usage
sailsApp.lift(configOverrides, function (err) {


});

_Or:_
+ sailsApp.lift(function (err) {…});

### Usage


|     Argument        | Type                                         | Details                            |



|---|:——————–|----------------------------------------------|:———————————–|
| 1 | _configOverrides_   | ((dictionary?))                              | A dictionary of config that will override any conflicting options present in configuration files.  If provided, this will be merged on top of [sails.config](https://sailsjs.com/documentation/reference/configuration).

##### Callback


|     Argument        | Type                | Details |



|---|:——————–|---------------------|:———————————————————————————|
| 1 |    _err_            | ((Error?))          | An error encountered while lifting, or undefined if there were no errors.

### Example

```javascript
var Sails = require(‘sails’).constructor;
var sailsApp = new Sails();

	sailsApp.lift({
	log: { level: ‘warn’ }

	}, function (err) {
	
	if (err) {
	console.log(‘Error occurred lifting Sails app:’, err);
return;

}

// –•
console.log(‘Sails app lifted successfully!’);

});

Notes
> - The difference between [.lift()](https://sailsjs.com/documentation/reference/application/sails-lift) and [.load()](https://sailsjs.com/documentation/reference/application/sails-load) is that .lift() takes the additional steps of (1) running the app’s [bootstrap](https://sailsjs.com/documentation/reference/configuration/sails-config-bootstrap) (if any), and (2) emitting the ready event. The core http hook will typically respond to the ready event by starting an HTTP server on the port configured via sails.config.port (1337 by default).
> - When a Sails app is fully lifted, it also emits the [lifted event](https://sailsjs.com/documentation/concepts/extending-sails/hooks/events).
> - With the exception of NODE_ENV and PORT, [configuration set via environment variables](https://sailsjs.com/documentation/concepts/configuration#?setting-sailsconfig-values-directly-using-environment-variables) will not automatically apply to apps started using .lift(), nor will options set in [.sailsrc files](https://sailsjs.com/documentation/concepts/configuration/using-sailsrc-files). If you wish to use those configuration values, you can retrieve them via require(‘sails/accessible/rc’)(‘sails’) and pass them in as the first argument to .lift().

<docmeta name=”displayName” value=”sails.lift()”>
<docmeta name=”pageType” value=”method”>

 # sails.load()

Load a Sails app into memory, but without lifting an HTTP server.

Useful for writing tests, command-line scripts, and scheduled jobs.

```usage
sailsApp.load(configOverrides, function (err) {


});

_Or:_
+ sailsApp.load(function (err) {…});

#### Usage


|     Argument        | Type                                         | Details                            |



|---|:——————–|----------------------------------------------|:———————————–|
| 1 |    _configOverrides_| ((dictionary?))                              | A dictionary of config that will override any conflicting options present in configuration files.  If provided, this will be merged on top of [sails.config](https://sailsjs.com/documentation/reference/configuration).

##### Callback


|     Argument        | Type                | Details |



|---|:——————–|---------------------|:———————————————————————————|
| 1 |    _err_            | ((Error?))          | An error encountered while loading, or undefined if there were no errors.

### Example

```javascript
var Sails = require(‘sails’).constructor;
var sailsApp = new Sails();

	sailsApp.load({
	
	log: {
	level: ‘error’

}

	}, function (err) {
	
	if (err) {
	console.log(‘Error occurred loading Sails app:’, err);
return;

}

// –•
console.log(‘Sails app loaded successfully!’);

});

Notes
> - This takes care of loading configuration files, initializing hooks (including the ORM), and binding routes. It does not run the bootstrap, and it does not start listening for HTTP requests and WebSocket connections.
> - More specifically, the difference between [.lift()](https://sailsjs.com/documentation/reference/application/sails-lift) and [.load()](https://sailsjs.com/documentation/reference/application/sails-load) is that .lift() takes the additional steps of (1) running the app’s [bootstrap](https://sailsjs.com/documentation/reference/configuration/sails-config-bootstrap) (if any), and (2) emitting the ready event. The core http hook will typically respond to the ready event by starting an HTTP server on the port configured via sails.config.port (1337 by default).
> - Even though a “loaded-but-not-lifted” Sails app does not listen for requests on an HTTP port, you can make “virtual” requests to it using [sails.request](https://sailsjs.com/documentation/reference/application/sails-request)
> - For an example of this in practice, see [machine-as-script](https://github.com/treelinehq/machine-as-script/blob/ec8972137489afd24562bdf0b6a10ada11e540cc/index.js#L778-L791).
> - With the exception of NODE_ENV and PORT, [configuration set via environment variables](https://sailsjs.com/documentation/concepts/configuration#?setting-sailsconfig-values-directly-using-environment-variables) will not automatically apply to apps started using .load(), nor will options set in [.sailsrc files](https://sailsjs.com/documentation/concepts/configuration/using-sailsrc-files). If you wish to use those configuration values, you can retrieve them via require(‘sails/accessible/rc’)(‘sails’) and pass them in as the first argument to .load().

<docmeta name=”displayName” value=”sails.load()”>
<docmeta name=”pageType” value=”method”>

 # sails.lower()

Shut down a lifted Sails app and have it cease listening for or responding to any future requests.

`usage
sails.lower(callback);
`

Usage

| Argument | Type | Details

|---| ————————— | ——————- | ———–
| 1 | _`callback`_ | ((function?)) | Optional. A function to call when lowering is complete (or if an error occurs)

Callback

| Argument | Type | Details |

|---|———–|:------------:|———|
| 1 | _`err`_ | ((Error?)) | An error instance will be sent as the first argument of the callback if any fatal errors occurred while lowering.

Example

```javascript
sailsApp.lower(



	function (err) {
	
	if (err) {
	return console.log(“Error occurred lowering Sails app: “, err);





}
console.log(“Sails app lowered successfully!”);





}





)

### Notes
> + The app will emit the lower event before shutting down the HTTP and WebSocket services.
> + Lowered apps cannot be lifted again.

<docmeta name=”displayName” value=”sails.lower()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # sails.registerAction()

Register a new Sails [action](https://sailsjs.com/documentation/concepts/actions-and-controllers) that can then be bound to a route.

`usage
sails.registerAction(action, name);
`

While actions are mainly registered automatically when the files in an app&rsquo;s api/controllers folder are loaded, you can use the registerAction() method to add a new action programmatically.  This is especially useful in custom [hooks](https://sailsjs.com/documentation/concepts/extending-sails/hooks), in situations where you want to provide a new action but let the app developer determine the route to bind the action to, or when you want to ensure that policies and other [action middleware](https://sailsjs.com/documentation/reference/application/sails-register-action-middleware) apply to your action.

### Usage


&nbsp;  |       Argument             | Type                | Details



|---|————————— | ——————- |:———–
| 1 |      action                | ((function)) or ((dictionary))    | Either a [classic action](https://sailsjs.com/documentation/concepts/actions-and-controllers#?classic-actions) (aka (req, res)) function or an [actions2](https://sailsjs.com/documentation/concepts/actions-and-controllers#?actions-2) definition.
| 2 |     identity               | ((string)) | The identifier for the action.   This is the string that will be used to reference the action elsewhere in an app, for instance when [binding the action to a route](http://sailsjs.com/documentation/concepts/routes/custom-routes#?standalone-action-target-syntax).

<docmeta name=”displayName” value=”sails.registerAction()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # sails.registerActionMiddleware()

> ##### _**This feature is still experimental.**_
> This method is still under development, and its interface and/or behavior could change at any time.

Register a new action middleware function that will be applied to actions with the specified identities.

`usage
sails.registerActionMiddleware(actionMiddlewareFns, actionIdentities);
`

Action middleware functions are essentially [policies](https://sailsjs.com/documentation/concepts/policies#?writing-your-first-policy) that you declare programmatically (rather than via [sails.config.policies](https://sailsjs.com/documentation/reference/configuration/sails-config-policies)).  In fact, policies are implemented under-the-hood using action middleware.  The registerActionMiddleware() method is mainly useful in [custom hooks](https://sailsjs.com/documentation/concepts/extending-sails/hooks) as a way of adding new policies to an app.

### Usage


&nbsp;  |       Argument             | Type                | Details



|---|————————— | ——————- |:———–
| 1 |      actionMiddlewareFns                | ((function)) or ((array))  | One or more middleware functions to register.  Action middleware (like policies) must be functions which accept req, res and next arguments.
| 2 |     actionIdentities               | ((string)) | An expression that indicates the action or actions that the action middleware should apply to.  Use * at the end for a wildcard; e.g. user/* will apply to any actions whose identities begin with user/. Use a ! at the beginning to indicate that the action middleware should NOT apply to the actions specified by the expression, e.g. !user/foo or !user/*.  Multiple identity expressions can be specified by separating with a comma, e.g. pets/count,user/*,!user/tickle

> The actionIdentities argument expects the identities to be expressed as if they were [standalone actions](https://sailsjs.com/documentation/concepts/actions-and-controllers#?standalone-actions).  To apply action middleware to actions inside of a controller file (e.g. UserController.js), simply refer to the lower-cased version of the filename _without “Controller”_ (e.g. user).

### Example

As an example of action middleware that might be applied in a custom hook, imagine a page view counter (this code might be added to the initialize method of the hook):

```javascript
// Declare a local var to hold the number of views for each URL.
var pageViews = {};

// Register middleware to record each page view.
sails.registerActionMiddleware(

// First argument is the middleware to run
function countPage (req, res, next) {

// Initialize the page counter to zero if this is the first time we’ve seen this URL.
pageViews[req.url] = pageViews[req.url] || 0;

// Increment the page counter.
pageViews[req.url]++;

// Add the current page count to the request, so that it can be used in other middleware / actions.
req.currentPageCount = pageViews[req.url];

// Continue to the next matching middleware / action
next();

},

// Second argument is the actions to apply the middleware to. In this case, we want the
// hook to apply to all actions EXCEPT the show-page-views action supplied by this hook.
‘*, !page-view-hook/show-page-views’

);

<docmeta name=”displayName” value=”sails.registerActionMiddleware()”>
<docmeta name=”pageType” value=”method”>
<docmeta name=”isExperimental” value=”true”>

 # sails.reloadActions()

> ##### _**This feature is still experimental.**_
> This method is still under development, and its interface and/or behavior could change at any time.

Flush and reload all Sails [actions](https://sailsjs.com/documentation/concepts/actions-and-controllers)

`usage
sails.reloadActions(cb);
`

Or:

	sails.reloadActions(options, cb)

This method causes hooks to run their registerActions() methods if they have them. After the hooks are finished reloading / re-registering their actions, actions in the api/controllers folder (including those stored in [controller files](https://sailsjs.com/documentation/concepts/actions-and-controllers#?controllers)) are reloaded and merged on top of those loaded via hooks.

This method is useful primarily in development scenarios.

Usage

 | Argument | Type | Details

|---|————————— | ——————- |:———–
| 1 | _options_ | ((dictionary?)) | Currently accepts one key, hooksToSkip, which if given should be an array of names of hooks that should _not_ call their reloadActions method.
| 2 | _callback_ | ((function)) | A callback to be called with the virtual response.

Notes
> - Never dynamically replace your Sails.js controller or action files on disk with untrusted code at runtime, regardless of whether you are using .reloadActions() in your app or not. Since reloadActions() runs the code in your Sails.js app’s files, if the files are not safe to run, then using reloadActions() would be [a security risk](https://github.com/balderdashy/sails/issues/7209). This risk is only present if your Sails app is deliberately overwriting its own files to replace them with unsafe code.

<docmeta name=”displayName” value=”sails.reloadActions()”>
<docmeta name=”pageType” value=”method”>
<docmeta name=”isExperimental” value=”true”>

 # sails.renderView()

> ##### _**This feature is still experimental.**_
> This method is still under development, and its interface and/or behavior could change at any time.

Compile a view into an HTML template.

`usage
sails.renderView(pathToView, templateData);
`

Usage

 | Argument | Type | Details

|---|————————— | ——————- |:———–
| 1 | pathToView | ((string)) | The path to the view that will be compiled into HTML.
| 2 | _templateData_ | ((dictionary?)) | The dynamic data to pass into the view.

Example

To compile an HTML template with a customized greeting for the recipient:

```javascript
var htmlEmailContents = await sails.renderView(‘emails/signup-welcome’, {


fullName: inputs.fullName,
// Don’t include the Sails app’s default layout in the rendered template.
layout: false





});

<docmeta name=”displayName” value=”sails.renderView()”>
<docmeta name=”pageType” value=”method”>
<docmeta name=”isExperimental” value=”true”>




            

          

      

      

    

  

    
      
          
            
  # sails.request()

> ##### _**This feature is still experimental.**_
> This method is still under development, and its interface and/or behavior could change at any time.

Make a virtual request to a running Sails instance.

`usage
sails.request(request);
`

_Or:_


	sails.request(url, body)


	sails.request(url, callback)


	sails.request(url, body, callback)




This method can be used on instances that have been started with [sails.load()](https://sailsjs.com/documentation/reference/application/sails-load) and that are not actively listening for HTTP requests on a server port.  This makes sails.request() useful for testing scenarios where running [sails.lift()](https://sailsjs.com/documentation/reference/application/sails-lift) is not necessary.  However, it should be noted that the data may not be processed in exactly the same way as an HTTP request; in particular, a much simpler body parser will be employed, and Express middleware such as the static asset server will not be used.

### Usage


|       Argument             | Type                | Details



|---|————————— | ——————- |:———–:
| 1 |      request (or url)      | ((string)) -or- ((dictionary))          | The virtual request to make.  If specified as a string, this should be an address containing an optional method and a path, e.g. /foo or PUT /user/friend.  If specified as an object, it should have one or more of the properties described in the “request argument” section below.
| 2 |      _body_                  | ((json?)) | (optional) A JSON-serializable value to use as the request body.  This argument will override the data property of the request argument, if provided.
| 3 |      _callback_              | ((function?)) | (optional) A callback to be called with the virtual response.

#### Request object

If the request argument is specified as an object, it can have the following properties:


Property             | Type                | Example | Details



|————————— | ——————- | ——- | :———–:
| url                        | ((string))          | “/foo”, “PUT /user/friend”    | (required) The route in the Sails app to make a request to, with an optional HTTP method prefix
| method                     | ((string))          | “GET”, “POST”    | (optional) The HTTP method to use in the request.  This will override any method supplied as part of the url property.
| headers                    | ((dictionary))          | {‘content-type’: ‘application/json’}    | (optional) Dictionary of headers to use in the virtual request.
| data                       | ((json))            | {foo:’bar’}, 12345 | ((optional)) Data to send along with the request.  For GET, HEAD and DELETE requests, the data will be serialized into a querystring and added to the URL.  Otherwise, it will be sent as-is as the request body.

#### Callback


|       Argument             | Type                | Details



|---|————————— | ——————- |:———–
| 1 |       _err_                | ((Error?))           | If the response was unsuccessful (status code was not in the 200-399 range) this will be an object containing status and body properties.  If the response was successful, this will be null.
| 2 |       response             | ((dictionary))          | If the response was successful, this will be an object containing the full server response.
| 3 |       body                 | ((json))            | If the response was successful, this will be the value of response.body.

#### Returns

Type: ((stream))

The full virtual request stream object.  This is a readable stream.

<docmeta name=”displayName” value=”sails.request()”>
<docmeta name=”pageType” value=”method”>
<docmeta name=”isExperimental” value=”true”>



            

          

      

      

    

  

    
      
          
            
  # Add (blueprint)

Add a foreign record (e.g. a comment) to one of this record’s collections (e.g. “comments”).

`usage
PUT /:model/:id/:association/:fk
`

This action adds a reference to some other record (the “foreign”, or “child” record) onto a particular collection of this record (the “primary”, or “parent” record).


	If the specified :id does not correspond with a primary record that exists in the database, this responds using res.notFound().


	If the specified :fk does not correspond with a foreign record that exists in the database, this responds using res.notFound().


	If the primary record is already associated with this foreign record, this action will not modify any records.  (Note that currently, in the case of a many-to-many association, it _will_ add duplicate junction records!  To resolve this, add a multi-column index at the database layer, if possible.  We are currently working on a friendlier solution/default for users of MongoDB, sails-disk, and other NoSQL databases.)


	Note that if the association is “2-way” (meaning it has via), then the foreign key or collection it points to with that via will also be updated on the foreign record.




### Parameters


Parameter                          | Type                                    | Details





	:———————————–| ————————————— |:———————————
	model          | ((string))   | The [identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity) of the containing model for the parent record.<br/><br/>e.g. ‘employee’ (in /employee/7/involvedinPurchases/47)
id                | ((string))    | The desired parent record’s primary key value.<br/><br/>e.g. ‘7’ (in /employee/7/involvedInPurchases/47)
association       | ((string))                             | The name of the collection attribute.<br/><br/>e.g. ‘involvedInPurchases’
fk | ((string))    | The primary key value (usually id) of the child record to add to this collection.<br/><br/>e.g. ‘47’





### Example

Add purchase #47 to the list of purchases that Dolly (employee #7) has been involved in:

`
PUT /employee/7/involvedInPurchases/47
`

[![Run in Postman](https://s3.amazonaws.com/postman-static/run-button.png)](https://www.getpostman.com/run-collection/96217d0d747e536e49a4)

##### Expected response

This returns “Dolly”, the parent record.  Notice she is now involved in purchase #47:

```json
{

“id”: 7,
“name”: “Dolly”,
“createdAt”: 1485462079725,
“updatedAt”: 1485476060873,
“involvedInPurchases”: [

	{
	“amount”: 10000,
“createdAt”: 1485476060873,
“updatedAt”: 1485476060873,
“id”: 47,
“cashier”: 7

}

]

}

Using jQuery

```javascript
$.put(‘/employee/7/involvedInPurchases/47’, function (purchases) {


console.log(purchases);






});

##### Using Angular

```javascript
$http.put(‘/employee/7/involvedInPurchases/47’)
.then(function (purchases) {

console.log(purchases);

});

Using sails.io.js

```javascript
io.socket.put(‘/employee/7/involvedInPurchases/47’, function (purchases) {


console.log(purchases);






});

##### Using [cURL](http://en.wikipedia.org/wiki/CURL)

`bash
curl http://localhost:1337/employee/7/involvedInPurchases/47 -X "PUT"
`

### Socket notifications

If you have WebSockets enabled for your app, then every client [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) to the primary record will receive a notification in which the notification event name is the primary model identity (e.g. ‘employee’), and the message has the following format:

`usage
id: <the parent record primary key value>,
verb: 'addedTo',
attribute: <the parent record collection attribute name>,
addedIds: <the now-added child records' primary key values>
`

For instance, continuing the example above, all clients subscribed to Dolly, aka employee #7, (_except_ for the client making the request) would receive the following message:

```javascript
{

id: 7,
verb: ‘addedTo’,
attribute: ‘involvedInPurchases’,
addedIds: [47]

}

Clients subscribed to the child record receive an additional notification:

Assuming involvedInPurchases had a via, then either updated or addedTo notifications would also be sent to any clients who were [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) to purchase #47, the child record we just added.

> If the via-linked attribute on the other side is [also plural](https://sailsjs.com/documentation/concepts/models-and-orm/associations/many-to-many) (e.g. cashiers), then another addedTo notification will be sent. Otherwise, if the via [points at a singular attribute](https://sailsjs.com/documentation/concepts/models-and-orm/associations/one-to-many) (e.g. cashier) then the [updated notification](https://sailsjs.com/documentation/reference/blueprint-api/update#?socket-notifications) will be sent.

Finally, a third notification might be sent:

If adding this purchase to Dolly’s collection would “steal” it from another employee’s involvedInPurchases, then any clients subscribed to that other, stolen-from employee record (e.g. Motoki, employee #12) would receive a removedFrom notification (see [Blueprints > remove from](https://sailsjs.com/documentation/reference/blueprint-api/remove-from#?socket-notifications).

Notes

> + If you’d like to spend some more time with Dolly, a more detailed walkthrough related to the example above is available [here](https://gist.github.com/mikermcneil/e5a20b03be5aa4e0459b).
> + This action is for dealing with _plural_ (“collection”) attributes. If you want to set or unset a _singular_ (“model”) attribute, just use [update](https://sailsjs.com/documentation/reference/blueprint-api/update) and set the foreign key to the id of the new foreign record (or null to clear the association).
> If you want to completely _replace_ the set of records in the collection with another set, use the [replace](https://sailsjs.com/documentation/reference/blueprint-api/replace) blueprint.
> + The example above assumes “rest” blueprints are enabled, and that your project contains at least an ‘Employee’ model with attribute: involvedInPurchases: {collection: ‘Purchase’, via: ‘cashier’} as well as a Purchase model with attribute: cashier: {model: ‘Employee’}. You can quickly achieve this by running:
>
> `shell
> $ sails new foo
> $ cd foo
> $ sails generate model purchase
> $ sails generate model employee
> `
>
> …then editing api/models/Purchase.js and api/models/Employee.js.

<docmeta name=”displayName” value=”add to”>
<docmeta name=”pageType” value=”endpoint”>

 # Create (blueprint)

Create a new record in your database.

`usage
POST /:model
`

Responds with a JSON dictionary representing the newly created instance. If a validation error occurred, a JSON response with the invalid attributes and a 400 status code will be returned instead.

Additionally, if the [autoWatch setting](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints?properties) is on (which it is by default), then a “created” notification will be published to all client sockets which are _watching_ this model; that is, client sockets who have previously sent a request to the “Find” blueprint action. Those same sockets will also be subscribed to hear about subsequent changes to the new record.

Finally, if this blueprint action is triggered via a socket request, then the requesting socket will ALSO be subscribed to the newly created record. In other words, if the record is subsequently updated or deleted using blueprints, a message will be sent to that client socket informing them of the change. See [.subscribe()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribe) for more info.

Parameters

Parameters should be sent in the [request body](https://www.getpostman.com/docs/requests#body). By default, Sails understands the most common types of encodings for body parameters, including url-encoding, form-encoding, and JSON.

Parameter | Type | Details
————– | ——————————————————— |:———————————
model | ((string)) | The [identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity) of the model in which the new record should be created.

e.g. ‘purchase’ (in POST /purchase)
* | ((json?)) | Send [body parameters](https://www.getpostman.com/docs/requests#body) with the same names as the attribute defined on your model to set those values on your new record.

These values are handled the same way as if they were passed into the model’s .create() method.

Example

Create a new user named “Applejack” with a hobby of “pickin”, who is involved in purchases #13 and #25:

POST /pony

```json
{


“name”: “Applejack”,
“hobby”: “pickin”,
“involvedInPurchases”: [13,25]





}

[![Run in Postman](https://s3.amazonaws.com/postman-static/run-button.png)](https://www.getpostman.com/run-collection/96217d0d747e536e49a4)

##### Example response
```json
{

“id”: 47,
“name”: “Applejack”,
“hobby”: “pickin”,
“createdAt”: 1485550575626,
“updatedAt”: 1485550603847,
“involvedInPurchases”: [

	{
	“id”: 13,
“amount”: 10000,
“createdAt”: 1485550525451,
“updatedAt”: 1485550544901

},
{

“id”: 25,
“amount”: 4.50,
“createdAt”: 1485550561340,
“updatedAt”: 1485550561340

}

]

}

Socket notifications

If you have WebSockets enabled for your app, then every socket client who is “watching” this model (has sent a request to the model’s [“find where” blueprint action](https://sailsjs.com/documentation/reference/blueprint-api/find-where)) will receive a “created” notification where the event name is the model identity (e.g. user), and the message has the following format:

`
verb: 'created',
data: <a dictionary of the attribute values of the new record (without associations)>
id: <the new record primary key>,
`

For instance, continuing the example above, all clients who are watching the User model (_except_ for the client making the request) would receive the following message:
```js
id: 47,
verb: ‘created’,
data: {


id: 47,
name: ‘Applejack’,
hobby: ‘pickin’,
createdAt: 1485550575626,
updatedAt: 1485550603847






}

Clients subscribed to newly-associated child records will receive a notification, too:

Since the new record in our example included an initial value for involvedInPurchases, an association pointed at by via on the other side, then addedTo notifications would also be sent to any clients who are [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) to those now-associated child records on the other side of the relationship&mdash;in this case, purchases 13 and 25.  See [Blueprints > add to](https://sailsjs.com/documentation/reference/blueprint-api/add-to) for more info about the structure of those notifications.

<docmeta name=”displayName” value=”create”>
<docmeta name=”pageType” value=”endpoint”>




            

          

      

      

    

  

    
      
          
            
  # Destroy (blueprint)

Delete the record specified by id from the database forever and notify subscribed sockets.

`usage
DELETE /:model/:id
`

This destroys the record that matches the id parameter and responds with a JSON dictionary representing the destroyed instance. If no model instance exists matching the specified id, a 404 is returned.

Additionally, a destroy event will be published to all sockets subscribed to the record room, and all sockets currently subscribed to the record will be unsubscribed from it.

### Parameters


Parameter                          | Type                                    | Details
———————————- | ————————————— |:———————————
model          | ((string))   | The [identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity) of the containing model.<br/><br/>e.g. ‘purchase’ (in /purchase/7)
id<br/>*(required)*                | ((string))                              | The primary key value of the record to destroy, specified in the path.  <br/>e.g. ‘7’ (in /purchase/7) .




### Example

Delete Pinkie Pie:

DELETE /user/4

[![Run in Postman](https://s3.amazonaws.com/postman-static/run-button.png)](https://www.getpostman.com/run-collection/96217d0d747e536e49a4)

##### Expected response

```json
{

“name”: “Pinkie Pie”,
“hobby”: “kickin”,
“id”: 4,
“createdAt”: 1485550644076,
“updatedAt”: 1485550644076

}

Socket notifications

If you have WebSockets enabled for your app, then every client [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) to the destroyed record will receive a notification where the event name is that of the model identity (e.g. user), and the “message” has the following format:

`
verb: 'destroyed',
id: <the record primary key>,
previous: <a dictionary of the attribute values of the destroyed record (including populated associations)>
`

For instance, continuing the example above, all clients subscribed to User #4 (_except_ for the client making the request) might receive the following message:

```js
id: 4,
verb: ‘destroyed’,
previous: {


name: ‘Pinkie Pie’,
hobby: ‘kickin’,
createdAt: 1485550644076,
updatedAt: 1485550644076






}

If the destroyed record had any links to other records, there might be some additional notifications:

Assuming the record being destroyed in our example had an association with a via, then either updated or removedFrom notifications would also be sent to any clients who are [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) to those child records on the other side of the relationship.  See [Blueprints > remove from](https://sailsjs.com/documentation/reference/blueprint-api/remove-from) and [Blueprints > update](https://sailsjs.com/documentation/reference/blueprint-api/update) for more info about the structure of those notifications.

> If the association pointed at by the via is plural (e.g. cashiers), then the removedFrom notification will be sent. Otherwise, if the via points at a singular association (e.g. cashier) then the updated notification will be sent.

<docmeta name=”displayName” value=”destroy”>
<docmeta name=”pageType” value=”endpoint”>




            

          

      

      

    

  

    
      
          
            
  # Find (blueprint)

Find a list of records that match the specified criteria and (if possible) subscribe to each of them.

`usage
GET /:model
`

Results may be filtered, paginated, and sorted based on the blueprint configuration and/or parameters sent in the request.

If the action was triggered via a socket request, the requesting socket will be “subscribed” to all records returned. If any of the returned records are subsequently updated or deleted, a message will be sent to that socket’s client informing them of the change. See the [docs for Model.subscribe()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribe) for details.

### Parameters


Parameter      | Type         | Details
————– | ———— |:———————————
model          | ((string))   | The [identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity) of the containing model.<br/><br/>e.g. ‘purchase’ (in GET /purchase)
_*_              | ((string?))   | To filter results based on a particular attribute, specify a query parameter with the same name as the attribute defined on your model. <br/> <br/> For instance, if our Purchase model has an amount attribute, we could send GET /purchase?amount=99.99 to return a list of $99.99 purchases.
_where_          | ((string?))   | Instead of filtering based on a specific attribute, you may instead choose to provide a where parameter with the WHERE piece of a [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language), _encoded as a JSON string_.  This allows you to take advantage of contains, startsWith, and other sub-attribute criteria modifiers for more powerful find() queries. <br/> <br/> e.g. ?where={“name”:{“contains”:”theodore”}}
_limit_          | ((number?))   | The maximum number of records to send back (useful for pagination). Defaults to 30. <br/> <br/> e.g. ?limit=100
_skip_           | ((number?))   | The number of records to skip (useful for pagination). <br/> <br/> e.g. ?skip=30
_sort_           | ((string?))   | The sort order. By default, returned records are sorted by primary key value in ascending order. <br/> <br/> e.g. ?sort=lastName%20ASC
_select_         | ((string?))   | The attributes to include each record in the result, specified as a comma-delimited list.  By default, all attributes are selected.  Not valid for plural (&ldquo;collection&rdquo;) association attributes.<br/> <br/> e.g. ?select=name,age.
_omit_           | ((string?))   | The attributes to exclude from each record in the result, specified as a comma-delimited list.  Cannot be used in conjuction with select.    Not valid for plural (&ldquo;collection&rdquo;) association attributes.<br/> <br/> e.g. ?omit=favoriteColor,address.
_populate_       | ((string))    | If specified, overide the default automatic population process. Accepts a comma-separated list of attribute names for which to populate record values, or specify false to have no attributes populated. See [here](https://sailsjs.com/documentation/concepts/models-and-orm/records#?populated-values) for more information on how the population process fills out attributes in the returned list of records according to the model’s defined associations.




### Example

Find up to 30 of the newest purchases in our database:

`text
GET /purchase?sort=createdAt DESC&limit=30
`

[![Run in Postman](https://s3.amazonaws.com/postman-static/run-button.png)](https://www.getpostman.com/run-collection/96217d0d747e536e49a4)

##### Expected response

e.g.
```json
[

	{
	“amount”: 49.99,
“id”: 1,
“createdAt”: 1485551132315,
“updatedAt”: 1485551132315

},
{

“amount”: 99.99,
“id”: 47,
“createdAt”: 1485551158349,
“updatedAt”: 1485551158349

}

]

Using jQuery

> See jquery.com for more documentation.

```javascript
$.get(‘/purchase?sort=createdAt DESC’, function (purchases) {


console.log(purchases);






});

##### Using sails.io.js

> See [sails.io.js](https://sailsjs.com/documentation/reference/web-sockets/socket-client) for more documentation.

```javascript
io.socket.get(‘/purchase?sort=createdAt DESC’, function (purchases) {

console.log(purchases);

});

Using Angular

> See [Angular](https://angularjs.org/) for more documentation.

```javascript
$http.get(‘/purchase?sort=createdAt DESC’)
.then(function (res) {


var purchases = res.data;
console.log(purchases);






});

##### Using cURL

> You can read more about [cURL on Wikipedia](http://en.wikipedia.org/wiki/CURL).

`bash
curl http://localhost:1337/purchase?sort=createdAt%20DESC
`

### Notes

> + The example above assumes “rest” blueprints are enabled, and that your project contains a Purchase model.  You can quickly achieve this by running:
>
>   `bash
>   $ sails new foo
>   $ cd foo
>   $ sails generate model purchase
>   $ sails lift
>     # You will see a prompt about database auto-migration settings.
>     # Just choose 1 (alter) and press <ENTER>.
>   `

<docmeta name=”displayName” value=”find where”>
<docmeta name=”pageType” value=”endpoint”>




            

          

      

      

    

  

    
      
          
            
  # Find one (blueprint)

Look up the record with the specified id from the database, and (if possible) subscribe to the record in order to hear about any future changes.

`usage
GET /:model/:id
`

The findOne() blueprint action returns a single record from the model (given by :model) as a JSON object. The specified id is the [primary key](http://en.wikipedia.org/wiki/Unique_key) of the desired record.

If the action was triggered via a socket request, the requesting socket will be “subscribed” to the returned record. If the record is subsequently updated or deleted, a message will be sent to that socket’s client informing them of the change. See the [.subscribe()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribe) docs for more info.

### Parameters


Parameter                          | Type                                    | Details
———————————- | ————————————— |:———————————
model          | ((string))   | The [identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity) of the containing model.<br/><br/>e.g. ‘purchase’ (in /purchase/7)
id                | ((string))    | The desired target record’s primary key value<br/><br/>e.g. ‘7’ (in /purchase/7).
_populate_       | ((string?))    | If specified, overide the default automatic population process. Accepts a comma-separated list of attribute names for which to populate record values, or specify false to have no attributes populated. See [here](https://sailsjs.com/documentation/concepts/models-and-orm/records#?populated-values) for more information on how the population process fills out attributes in the returned record according to the model’s defined associations.
_select_         | ((string?))   | The attributes to include in the result, specified as a comma-delimited list.  By default, all attributes are selected.  Not valid for plural (&ldquo;collection&rdquo;) association attributes.<br/> <br/> e.g. ?select=name,age.
_omit_           | ((string?))   | The attributes to exclude from the result, specified as a comma-delimited list.  Cannot be used in conjuction with select.    Not valid for plural (&ldquo;collection&rdquo;) association attributes.<br/> <br/> e.g. ?omit=favoriteColor,address.




### Example
Find the purchase with id #1:

`text
GET /purchase/1
`

[![Run in Postman](https://s3.amazonaws.com/postman-static/run-button.png)](https://www.getpostman.com/run-collection/96217d0d747e536e49a4)

##### Expected Response


```json
{

“amount”: 49.99,
“id”: 1,
“createdAt”: 1485551132315,
“updatedAt”: 1485551132315

<docmeta name=”displayName” value=”find one”>
<docmeta name=”pageType” value=”endpoint”>

 # Populate (blueprint)

Populate and return foreign record(s) for the given association of this record.

`usage
GET /:model/:id/:association
`

If the specified association is plural (“collection”), this action returns the list of associated records as a JSON-encoded array of dictionaries (plain JavaScript objects). If the specified association is singular (“model”), this action returns the associated record as a JSON-encoded dictionary.

Parameter | Type | Details

:————– | ———— |:———————————
model | ((string)) | The [identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity) of the containing model.

e.g. ‘purchase’ (in GET /purchase/47/cashier)
id | ((string)) | The primary key of the parent record.

e.g. ‘47’ (in GET /purchase/47/cashier)
association | ((string)) | The name of the association.

e.g. ‘cashier’ (in GET /purchase/47/cashier) or ‘products’ (in GET /purchase/47/products)
where | ((string?)) | Instead of filtering based on a specific attribute, you may instead choose to provide a where parameter with the WHERE piece of a [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language), _encoded as a JSON string_. This allows you to take advantage of contains, startsWith, and other sub-attribute criteria modifiers for more powerful find() queries.

 e.g. ?where={“name”:{“contains”:”theodore”}}
limit | ((number?)) | The maximum number of records to send back (useful for pagination). Defaults to 30.

 e.g. ?limit=100
skip | ((number?)) | The number of records to skip (useful for pagination).

 e.g. ?skip=30
sort | ((string?)) | The sort order. By default, returned records are sorted by primary key value in ascending order.

 e.g. ?sort=lastName%20ASC
select | ((string?)) | The attributes to include in each record in the result, specified as a comma-delimited list. By default, all attributes are selected. Not valid for plural (“collection”) association attributes.

 e.g. ?select=name,age.
omit | ((string?)) | The attributes to exclude from each record in the result, specified as a comma-delimited list. Cannot be used in conjuction with select. Not valid for plural (“collection”) association attributes.

 e.g. ?omit=favoriteColor,address.

Example

Populate the cashier who conducted purchase #47:

`text
`GET /purchase/47/cashier`
`

[![Run in Postman](https://s3.amazonaws.com/postman-static/run-button.png)](https://www.getpostman.com/run-collection/96217d0d747e536e49a4)

Expected response

```json
{


“name”: “Dolly”,
“id”: 7,
“createdAt”: 1485462079725,
“updatedAt”: 1485476060873,





}

Using [jQuery](http://jquery.com/):

```javascript
$.get(‘/purchase/47/cashier’, function (cashier) {

console.log(cashier);

});

Using [Angular](https://angularjs.org/):

```javascript
$http.get(‘/purchase/47/cashier’)
.then(function (cashier) {


console.log(cashier);






});

Using [sails.io.js](https://sailsjs.com/documentation/reference/web-sockets/socket-client):

```javascript
io.socket.get(‘/purchase/47/cashier’, function (cashier) {

console.log(cashier);

});

Using [cURL](http://en.wikipedia.org/wiki/CURL):

`bash
curl http://localhost:1337/purchase/47/cashier
`

Populating a collection

You can also populate a collection. For example, to populate the involvedInPurchases of employee #7:

GET /employee/7/involvedInPurchases

Expected response

```json
[



	{
	“amount”: 10000,
“createdAt”: 1485476060873,
“updatedAt”: 1485476060873,
“id”: 47,
“cashier”: 7





},
{


“amount”: 50,
“createdAt”: 1487015460792,
“updatedAt”: 1487015476357,
“id”: 52,
“cashier”: 7




}






]

### Notes

> + In the first example above, if purchase #47 did not have a cashier (i.e. null), then this action would respond with a 404 status code.
> + The examples above assume “rest” blueprint routing is enabled (or that you’ve bound this blueprint action as a comparable [custom route](https://sailsjs.com/documentation/concepts/routes/custom-routes)), and that your project contains at least an empty Employee model as well as a Purchase model, and that Employee has the association attribute: involvedInPurchases: {model: ‘Purchase’} and that Purchase has cashier: {model: ‘Employee’}.  You can quickly achieve this by running:
>
>   `shell
>   $ sails new foo
>   $ cd foo
>   $ sails generate model purchase
>   $ sails generate model employee
>   `
> …then editing api/models/Employee.js and api/models/Purchase.js.

<docmeta name=”displayName” value=”populate where”>
<docmeta name=”pageType” value=”endpoint”>




            

          

      

      

    

  

    
      
          
            
  # Remove (blueprint)

Remove a foreign record (e.g. a comment) from one of this record’s collections (e.g. “comments”).

`usage
DELETE /:model/:id/:association/:fk
`

This action removes a reference to some other record (the “foreign” or “child” record) from a collection of this record (the “primary” or “parent” record).  Note that this does not actually destroy the foreign record, it just unlinks it.


	If the primary record does not exist, this responds using res.notFound().


	If the foreign record does not exist, this responds using res.notFound().


	If the collection doesn’t contain a reference to the foreign record, this action will not modify any records.


	If the association is “2-way” (meaning it has via), then the foreign key or collection it points to with that via will also be updated on the foreign record.




### Parameters


Parameter                          | Type                                    | Details





	:———————————- | ————————————— |:———————————
	model | ((string)) | The [identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity) of the containing model for the parent record.<br/><br/>e.g. ‘store’ (in /store/16/employeesOfTheMonth/7)
id | ((string)) | The desired parent record’s primary key value.<br/><br/>e.g. ‘16’ (in /store/16/employeesOfTheMonth/7)
association       | ((string))                              | The name of the collection attribute.<br/><br/>e.g. ‘employeesOfTheMonth’
fk  | ((string))    | The primary key value (usually id) of the child record to remove from the collection.<br/><br/>e.g. ‘7’





### Example

Say you’re building an app for a small chain of grocery stores.  Each store has a giant television screen that displays the current “Employees of the Month” at that store, so that customers and team members see it when they walk in the door.  In order to be sure it is up to date, you build a scheduled job (e.g. using [cron](https://en.wikipedia.org/wiki/Cron)) that runs on the first day of every month to change the “Employees of the Month” for each store in their system.

Let’s say that, as a part of this scheduled job, we send a request to remove Dolly (employee #7) from store #16’s employeesOfTheMonth:

`text
DELETE /store/16/employeesOfTheMonth/7
`
[![Run in Postman](https://s3.amazonaws.com/postman-static/run-button.png)](https://www.getpostman.com/run-collection/96217d0d747e536e49a4)

##### Expected response

```json
{

“id”: 16,
“name”: “Parmer and N. Lamar”,
“createdAt”: 1485552033435,
“updatedAt”: 1485552048794,
“employeesOfTheMonth”: [

	{
	“id”: 12,
“name”: “Motoki”,
“createdAt”: 1485462079725,
“updatedAt”: 1485476060873

},
{

“id”: 4,
“name”: “Timothy”,
“createdAt”: 1485462079727,
“updatedAt”: 1485476090874

}

]

}

Socket notifications

If you have WebSockets enabled for your app, then every client [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) to the parent record will receive a notification about the removed child, where the notification event name is that of the parent model identity (e.g. store), and the “message” has the following format:

`
id: <the parent record's primary key value>,
verb: 'removedFrom',
attribute: <the parent record collection attribute name>,
removedIds: <the now-removed child records' primary key values>
`

For instance, continuing the example above, all clients subscribed to employee #7 (_except_ for the client making the request) would receive the following message:

```javascript
{


id: 16,
verb: ‘removedFrom’,
attribute: ‘employeesOfTheMonth’,
removedIds: [ 7 ]






}

Clients subscribed to the child record receive an additional notification:

Assuming employeesOfTheMonth was defined with a via, then either updated or removedFrom notifications would also be sent to any clients who were [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) to Dolly, the child record we removed.

> If the via-linked attribute on the other side is [also plural](https://sailsjs.com/documentation/concepts/models-and-orm/associations/many-to-many) (e.g. employeeOfTheMonthAtStores), then another removedFrom notification will be sent. Otherwise, if the via [points at a singular attribute](https://sailsjs.com/documentation/concepts/models-and-orm/associations/one-to-many) (e.g. employeeOfTheMonthAtStore) then the [updated notification](https://sailsjs.com/documentation/reference/blueprint-api/update#?socket-notifications) will be sent.

### Notes

> + If you’d like to spend some more time with Dolly, a more detailed walkthrough for the example above is available [here](https://gist.github.com/mikermcneil/e5a20b03be5aa4e0459b).
> + This action is for dealing with _plural_ (“collection”) attributes.  If you want to set or unset a _singular_ (“model”) attribute, just use [update](https://sailsjs.com/documentation/reference/blueprint-api/update) and set the foreign key to the id of the new foreign record (or null to clear the association).
> + If you want to completely _replace_ the set of records in the collection with another set, use the [replace](https://sailsjs.com/documentation/reference/blueprint-api/replace) blueprint.

<docmeta name=”displayName” value=”remove from”>
<docmeta name=”pageType” value=”endpoint”>




            

          

      

      

    

  

    
      
          
            
  # Replace (blueprint)

Replace all of the foreign records in one of this record’s collections (e.g. “comments”).

`usage
PUT /:model/:id/:association
`

This action resets references to “foreign”, or “child” records that are members of a particular collection of _this_ record (the “primary”, or “parent” record), replacing any existing references in the collection.


	If the specified :id does not correspond with a primary record that exists in the database, this responds using res.notFound().


	Note that, if the association is “2-way” (meaning it has via), then the foreign key or collection on the foreign record(s) will also be updated.




### Parameters


Parameter                          | Type                                    | Details





	:———————————–| ————————————— |:———————————
	model          | ((string))   | The [identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity) of the containing model for the parent record.<br/><br/>e.g. ‘employee’ (in /employee/7/involvedinPurchases)
id                | ((string))    | The desired parent record’s primary key value.<br/><br/>e.g. ‘7’ (in /employee/7/involvedInPurchases)
association       | ((string))                             | The name of the collection attribute.<br/><br/>e.g. ‘involvedInPurchases’
fks | ((array))    | The primary key values (usually ids) of the child records to use as the new members of this collection.<br/><br/>e.g. [47, 65]





> _The fks parameter should be sent in the PUT request body, unless you are making this request using a development-only [shortcut blueprint route](https://sailsjs.com/documentation/concepts/blueprints/blueprint-routes#?shortcut-routes), in which case you can simply include it in the query string as ?fks=[47,65]._

### Example
Suppose you are in charge of keeping records for a large chain of grocery stores, and Dolly the cashier (employee #7) had been taking credit for being involved in a large number of purchases, when really she had only checked out two customers. Since the owner of the grocery store chain is very forgiving, Dolly gets to keep her job, but now you have to update Dolly’s involvedInPurchases collection so that it _only_ contains purchases #47 and #65:

PUT /employee/7/involvedInPurchases

`json
[47, 65]
`

[![Run in Postman](https://s3.amazonaws.com/postman-static/run-button.png)](https://www.getpostman.com/run-collection/96217d0d747e536e49a4)

##### Expected response

This returns Dolly, the parent record.  Notice that her record only shows her being involved in purchases #47 and #65:

```json
{

“id”: 7,
“name”: “Dolly”,
“createdAt”: 1485462079725,
“updatedAt”: 1485476060873,
“involvedInPurchases”: [

	{
	“amount”: 10000,
“createdAt”: 1485551132315,
“updatedAt”: 1486355134239,
“id”: 47,
“cashier”: 7

},
{

“amount”: 5667,
“createdAt”: 1483551158349,
“updatedAt”: 1485355134284,
“id”: 65,
“cashier”: 7

}

]

}

Socket notifications

If you have WebSockets enabled for your app, then every client [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) to the parent record will receive one [addedTo notification](https://sailsjs.com/documentation/reference/blueprint-api/add-to#?socket-notifications) for each child record in the new collection (if any).

For instance, continuing the example above, let’s assume that Dolly’s previous involvedInPurchases included purchases #65, #42, and #33. All clients subscribed to Dolly’s employee record (_except_ for the client making the request) would receive two kinds of notifications: addedTo for the purchase she was not previously involved in (#47), and removedFrom for the purchases she is no longer involved in (#42 and #33).

```javascript
{


id: 7,
verb: ‘addedTo’,
attribute: ‘involvedInPurchases’,
addedIds: [ 47 ]






}

and

```javascript
{

id: 7,
verb: ‘removedFrom’,
attribute: ‘involvedInPurchases’,
removedIds: [42, 33]

}

> Note that purchase #65 is not included in the addedTo notification, since it was in Dolly’s previous list of involvedInPurchases.

Clients subscribed to the child records receive additional notifications:

Assuming involvedInPurchases had a via, then either updated or addedTo/removedFrom notifications would also be sent to clients who were [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) to any of the purchases we just linked or unlinked.

> If the via-linked attribute on the other side (Purchase) is [also plural](https://sailsjs.com/documentation/concepts/models-and-orm/associations/many-to-many) (e.g. cashiers), then an addedTo or removedFrom notification will be sent. Otherwise, if the via [points at a singular attribute](https://sailsjs.com/documentation/concepts/models-and-orm/associations/one-to-many) (e.g. cashier) then the [updated notification](https://sailsjs.com/documentation/reference/blueprint-api/update#?socket-notifications) will be sent.

Finally, a third kind of notification might be sent:

If giving Dolly this new collection of Purchases would “steal” any of them from other employees’ involvedInPurchases, then any clients subscribed to those other, stolen-from employee records (e.g. Motoki, employee #12 and Timothy, employee #4) would receive removedFrom notifications. (See [Blueprints > remove from](https://sailsjs.com/documentation/reference/blueprint-api/remove-from#?socket-notifications)).

Notes

> + Remember, this blueprint replaces the _entire_ set of associated records for the given attribute. To add or remove a single associated record from the collection, leaving the rest of the collection unchanged, use the “add” or “remove” blueprint actions. (See [Blueprints > add to](https://sailsjs.com/documentation/reference/blueprint-api/add-to) and [Blueprints > remove from](https://sailsjs.com/documentation/reference/blueprint-api/remove-from)).

<docmeta name=”displayName” value=”replace”>
<docmeta name=”pageType” value=”endpoint”>

 # Update (blueprint)

Update an existing record in the database and notify subscribed sockets that it has changed.

`usage
PATCH /:model/:id
`

This updates the record in the model which matches the id parameter and responds with the newly updated record as a JSON dictionary. If a validation error occurred, a JSON response with the invalid attributes and a 400 status code will be returned instead. If no model instance exists matching the specified id, a 404 is returned.

Parameters

Attributes to change should be sent in the HTTP body as form-encoded values or JSON.

Parameter | Type | Details
———————————- | ——————————————————- |:———————————
model | ((string)) | The [identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity) of the containing model.

e.g. ‘product’ (in PATCH /product/5)
id | ((string)) | The primary key value of the record to update.

e.g. ‘5’ (in PATCH /product/5)
* | ((json)) | For PATCH (RESTful) requests, pass in body parameters with the same name as the attributes defined on your model to set those values on the desired record. For GET (shortcut) requests, add the parameters to the query string.

Example

Change Applejack’s hobby to “kickin”:

PATCH /user/47

```json
{


“hobby”: “kickin”





}

[![Run in Postman](https://s3.amazonaws.com/postman-static/run-button.png)](https://www.getpostman.com/run-collection/96217d0d747e536e49a4)

##### Expected response
```json
{

“hobby”: “kickin”,
“id”: 47,
“name”: “Applejack”,
“createdAt”: 1485462079725,
“updatedAt”: 1485476060873

}

Socket notifications

If you have WebSockets enabled for your app, then every client [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub) to the updated record will receive a notification where the event name is that of the model identity (e.g. user), and the data “payload” has the following format:

`
verb: 'updated',
id: <the record primary key>,
data: <a dictionary of changes made to the record>,
previous: <the record prior to the update>
`

For instance, continuing the example above, all clients subscribed to User #47 (_except_ for the client making the request) would receive the following message:

```js
{


id: 47,
verb: ‘updated’,
data: {


id: 47,
hobby: ‘kickin’
updatedAt: 1485476060873




},
previous: {


hobby: ‘pickin’,
id: 47,
name: ‘Applejack’,
createdAt: 1485462079725,
updatedAt: 1485462079725




}






}

If the update changed any links to other records, there might be some additional notifications:

If we were reassigning user #47 to store #25, we’d update store, which represents the &ldquo;one&rdquo; side of a [one-to-many association](https://sailsjs.com/documentation/concepts/models-and-orm/associations/one-to-many). For instance:

PATCH /user/47

```json
{

“store”: 25

}

Clients subscribed to the new store (25) would receive an addedTo notification, and a removedFrom notification would be sent to any clients subscribed to the old store. See the [add blueprint reference](https://sailsjs.com/documentation/reference/blueprint-api/add-to) and the [remove blueprint reference](https://sailsjs.com/documentation/reference/blueprint-api/remove-from) for more info about those notifications.

Notes

> + This action can be used to replace an entire collection association (for example, to replace a user’s list of friends), achieving the same result as the [replace blueprint action](https://sailsjs.com/documentation/reference/blueprint-api/replace). To modify items in a collection individually, use the [add](https://sailsjs.com/documentation/reference/blueprint-api/add-to) or [remove](https://sailsjs.com/documentation/reference/blueprint-api/remove-from) actions.
> + In previous Sails versions, this action was bound to the PUT /:model/:id route.

<docmeta name=”displayName” value=”update”>
<docmeta name=”pageType” value=”endpoint”>

 # Blueprint API

Overview

For a conceptual overview of blueprints, see [Concepts > Blueprints](https://sailsjs.com/documentation/concepts/blueprints).

Activating/deactivating blueprint routes in your app

The process for activating/deactivating blueprints varies slightly with the kind of blueprint route you are concerned with (RESTful routes, shortcut routes, or action routes). See the [Blueprint Routes documentation section](https://sailsjs.com/documentation/concepts/blueprints?blueprint-routes) for a discussion of the different blueprint types.

Overriding blueprints

To change a blueprint route, we recommend [explicitly configuring a custom route](https://sailsjs.com/documentation/concepts/routes/custom-routes). Similarly, if you want to override a blueprint action, we recommend writing your own [custom action](https://sailsjs.com/documentation/concepts/actions-and-controllers).

But if you really know what you’re doing, then read on:

RESTful / shortcut routes and actions

To override a RESTful blueprint route for a single model, simply create an action in the relevant controller file (or a [standalone action](https://sailsjs.com/documentation/concepts/actions-and-controllers#?standalone-actions) in the relevant folder) with the appropriate name: [_find_](https://sailsjs.com/documentation/reference/blueprint-api/find-where), [_findOne_](https://sailsjs.com/documentation/reference/blueprint-api/find-one), [_create_](https://sailsjs.com/documentation/reference/blueprint-api/create), [_update_](https://sailsjs.com/documentation/reference/blueprint-api/update), [_destroy_](https://sailsjs.com/documentation/reference/blueprint-api/destroy), [_populate_](https://sailsjs.com/documentation/reference/blueprint-api/populate), [_add_](https://sailsjs.com/documentation/reference/blueprint-api/add) or [_remove_](https://sailsjs.com/documentation/reference/blueprint-api/remove).

> If you’d like to override a particular blueprint for _all_ models, check out the sails-hook-custom-blueprints plugin.
> It’s important to realize that, even if you haven’t defined these yourself, Sails will respond with built-in CRUD logic for each model in the form of a JSON API (including support for sort, pagination, and filtering) as long as action or shortcut blueprints are enabled in your [blueprints configuration](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints).

Blueprints and resourceful PubSub

The blueprint API is compatible with WebSockets (as are any of your custom actions and policies), thanks to the virtual request interpreter. Check out the reference section on the browser SDK ([Reference > WebSockets > sails.io.js](https://sailsjs.com/documentation/reference/web-sockets/socket-client)) for example usage.

Blueprints and .subscribe()

By default, the Find and Find One blueprint actions will call [.subscribe()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribe) automatically when a socket request is used. This subscribes the requesting socket to each of the returned records. However, if the _same_ socket sends a request to the Update or Destroy actions with io.socket.put() (for example) this will not by default cause a message to be sent to the requesting socket, but to the other connected, subscribed sockets. This is intended to allow UI code to use the client-side SDK’s callback to handle the server response separately, e.g. to replace a loading spinner.

Blueprints and “auto-watch”

By default, the find blueprint action (when triggered via a WebSocket request) will subscribe the requesting socket to notifications about _new_ instances of that model being created. This behavior can be changed for all models by setting [sails.config.blueprints.autoWatch](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints) to false.

Disabling blueprint routes on a per-controller basis

> The following technique is only supported for compatibility reasons. Please just use custom routes, whether or not you are using blueprint actions!

If you are using controllers, rather than standalone action files, it is possible to disable certain settings from [config/blueprints.js](https://sailsjs.com/documentation/anatomy/my-app/config/blueprints-js) on a per-controller basis by defining a _config key in your controller definition:

```javascript
// In /api/controllers/PetController.js
module.exports = {



	_config: {
	actions: false,
shortcuts: false,
rest: false





}





}

> Disabling shortcuts-style automatic routes on a per-controller basis is not supported.  This is never necessary, because you should never use shortcuts: true in production.

<docmeta name=”displayName” value=”Blueprint API”>




            

          

      

      

    

  

    
      
          
            
  # Command-line interface (CLI)

Sails comes with a convenient command-line tool to quickly get your app scaffolded and running. The CLI has commands for creating, starting, and debugging your Sails applications, as well as for getting your version info. For information about each command’s usage, see the reference pages in this section.

<docmeta name=”displayName” value=”Command-line interface”>



            

          

      

      

    

  

    
      
          
            
  # sails console

Lift your Node.js/Sails.js app in interactive mode, and enter the [REPL](http://nodejs.org/api/repl.html).  This means you can access and use all of your models, helpers, configuration, services, and the sails app instance.  Useful for trying out Waterline queries, quickly managing your data, and checking out your project’s runtime configuration.

`usage
sails console
`
By default, this still lifts the server, so your routes will be accessible via HTTP and sockets (e.g. in a browser).

### Usage
sails console takes the following options:



	–dontLift: start sails console without lifting the server







### Example

```text
$ sails console

info: Starting app in interactive mode…

info: Welcome to the Sails console.
info: (to exit, type <CTRL>+<C>)

sails>
```

### Global variables in sails console

Sails exposes [the same global variables](https://sailsjs.com/documentation/reference/Globals) in the REPL as it does in your app code. By default, you have access to the sails app instance and your models, as well as any of your other configured globals (for example, lodash (_) and async (async)).

> Warning
>
> In Node versions earlier than v6, using _ as a variable in the REPL will cause unexpected behavior.  As an alternative, simply import the Lodash module as a variable:
>
> `bash
> sails> var lodash = require('lodash');
> sails> console.log(lodash.range(1, 5));
> `

### More examples

##### Waterline

The format Model.action(query).exec(console.log) console.log is good for seeing the results.

```text
sails> User.create({name: ‘Brian’, password: ‘sailsRules’}).fetch().exec(console.log)
undefined
sails> undefined { name: ‘Brian’,

password: ‘sailsRules’,
createdAt: “2014-08-07T04:29:21.447Z”,
updatedAt: “2014-08-07T04:29:21.447Z”,
id: 1 }


```

It inserts it into the database, which is pretty cool. However, you might be noticing the undefined and null`&mdash;don’t worry about those. Remember that the .exec() returns errors and data for values, so `.exec(console.log) has the same effect as .exec(console.log(err, data)). The second method will remove the undefined message, but add null on a new line. Whether you want to type more is up to you.

> Note that starting with Node 6, an object&rsquo;s constructor name is displayed next to it in the console.  For example, when using the [sails-mysql adapter](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters#?sailsmysql), the create query mentioned above would output:
>
> `text
> sails> undefined RowDataPacket { name: 'Brian',
>   password: 'sailsRules',
>   createdAt: "2014-08-07T04:29:21.447Z",
>   updatedAt: "2014-08-07T04:29:21.447Z",
>   id: 1 }
> `

##### Exposing Sails

In sails console, type sails to view a list of Sails properties. You can use this to learn more about Sails, override properties, or check to see if you disabled globals.

```text
sails> sails

|> [a lifted Sails app on port 1337]

___/ For help, see: https://sailsjs.com/documentation/concepts/

Tip: Use sails.config to access your app’s runtime configuration.

1 Models:
User

1 Controllers:
UserController

20 Hooks:
moduleloader,logger,request,orm,views,blueprints,responses,controllers,sockets,p
ubsub,policies,services,csrf,cors,i18n,userconfig,session,grunt,http,projecthooks

sails>
```

<docmeta name=”displayName” value=”sails console”>
<docmeta name=”pageType” value=”command”>



            

          

      

      

    

  

    
      
          
            
  # sails debug

> ##### _**This command should only be used with older versions of Node.  For Node v6 and above, use [sails inspect](https://sailsjs.com/documentation/reference/command-line-interface/sails-inspect).**_

Attach the node debugger and lift the Sails app (similar to running node –debug app.js). You can then use [node-inspector](https://github.com/node-inspector/node-inspector) to debug your app as it runs.

`usage
sails debug
`

### Usage
Takes the same options as [sails lift](https://sailsjs.com/documentation/reference/command-line-interface/sails-lift), listed [here](https://sailsjs.com/documentation/reference/command-line-interface/sails-lift#?usage).

### Example

```text
$ sails debug

info: Running node-inspector on this app…
info: If you don’t know what to do next, type help
info: Or check out the docs:
info: http://nodejs.org/api/debugger.html

info: (to exit, type <CTRL>+<C>)

debugger listening on port 5858
```

> To use the standard (command-line) Node debugger with Sails, you can always just run node debug app.js.

### Using Node Inspector

To debug your Sails app using Node Inspector, first install it over npm:

`bash
$ npm install -g node-inspector
`

Then, launch it with the node-inspector command:

`bash
$ node-inspector
`

Now, you can lift your Sails app in debug mode:

`bash
$ sails debug
`

Once the application is launched, visit http://127.0.0.1:8080?port=5858 in Opera or Chrome (Sorry, other browsers!). Now you can request your app as usual on port 1337 and debug your code from the browser.

> How it works
> Node.js includes a TCP-based debugger. When you start your application using sails debug, Node.js lifts your app and opens a socket on port 5858. This socket allows external tools to interact with and control the debugger. Node Inspector, accessible via the port 8080, is this kind of tool.

> If you don’t see your files in the browser at http://127.0.0.1:8080?port=5858 or if it’s very slow to load, try running Node Inspector with the –no-preload argument. [See the Node Inspector repo](https://github.com/node-inspector/node-inspector) for more details.

<docmeta name=”displayName” value=”sails debug”>
<docmeta name=”pageType” value=”command”>



            

          

      

      

    

  

    
      
          
            
  # Sails generate

Generate a code file (or multiple files) in a Sails app.

`usage
sails generate <generator>
`

Sails ships with several _generators_ to help you scaffold new projects, spit out boilerplate code for common files, and automate your development process.

### Core generators

The following _core generators_ are bundled with Sails:


Command                        | Details               |



|:--------------------------------|:———————-|
| sails generate page             | Generate four pages: .ejs, .less, page script, and view action. You must add your .less file to the importer and you must set your route for your new page to work. Note: sails generate page is intended for use with projects generated with the “Web app” template. You can still use this command if you’re not using the web app template, but you’ll need to delete the assets/js/pages/page-name.page.js file that’s been generated, as it relies on dependencies that don’t come bundled with an “Empty” Sails app.
| sails generate model            | Generate api/models/Foo.js, including attributes with the specified types if provided.<br /> For example, sails generate model User username isAdmin:boolean will generate a User model with a username string attribute and an isAdmin boolean attribute.
| sails generate action           | Generate a standalone [action](https://sailsjs.com/documentation/concepts/actions-and-controllers/generating-actions-and-controllers#?generating-standalone-actions).
| sails generate helper           | Generate a [helper](https://sailsjs.com/documentation/concepts/helpers) at api/helpers/foo.js.
| sails generate controller       | Generate api/controllers/FooController.js, including actions with the specified names if provided.
| sails generate hook             | Generate a [project hook](https://sailsjs.com/documentation/concepts/extending-sails/hooks/project-hooks) in api/hooks/foo/.
| sails generate generator        | Generate a foo folder containing the files necessary for building a new generator.
| sails generate response         | Generate a [custom response](https://sailsjs.com/documentation/concepts/extending-sails/custom-responses) at api/responses/foo.js
| sails generate adapter          | Generate a api/adapters/foo/ folder containing the files necessary for building a new adapter.
| sails generate sails.io.js      | Generate a sails.io.js file at the specified location, overwriting the default sails.io.js if applicable.
| _sails generate api_            | _Generate api/models/Foo.js and api/controllers/FooController.js._
| _sails generate new_            | _Alias for [sails new](https://sailsjs.com/documentation/reference/command-line-interface/sails-new)._
| _sails generate etc_            | Experimental. Adds the following files to your app:<br/>&bull; .gitignore <br/>&bull; .jshintrc <br/>&bull; .editorconfig <br/>&bull; .npmignore <br/>&bull; .travis.yml <br/>&bull; .appveyor.yml

### Custom generators

[Custom / third party generators](https://sailsjs.com/documentation/concepts/extending-sails/generators) allow you to extend or override the default functionality of sails generate (for example, by creating a generator that outputs view files for your favorite [view engine](https://sailsjs.com/documentation/concepts/views/view-engines)).

You can also use custom generators to automate frequent tasks or generate app-specific files.  For example, if you are using React, you might wire up a quick custom generator to allow you to generate [React components](https://facebook.github.io/react/docs/react-component.html) in the appropriate folder in your project (sails generate react component).

<docmeta name=”displayName” value=”sails generate”>
<docmeta name=”pageType” value=”command”>



            

          

      

      

    

  

    
      
          
            
  # Sails inspect

> ##### _**This command should only be used with modern versions of Node.  For Node v5 and below, use [sails debug](https://sailsjs.com/documentation/reference/command-line-interface/sails-debug).**_

Attach the Node debugger and lift the Sails app (similar to running node –inspect app.js). You can then use a tool like Chrome DevTools to interactively debug your apps (see the [Node Inspector docs](https://nodejs.org/en/docs/inspector/) for more information).

`usage
sails inspect
`

### Usage
Takes the same options as [sails lift](https://sailsjs.com/documentation/reference/command-line-interface/sails-lift), listed [here](https://sailsjs.com/documentation/reference/command-line-interface/sails-lift#?usage).

### Example

```text
$ sails inspect

info: Running app in inspect mode…
info: In Google Chrome, go to chrome://inspect for interactive debugging.
info: For other options, see the link below.
info: (to exit, type <CTRL>+<C>)

Debugger listening on ws://127.0.0.1:9229/7f984b04-b070-4497-bd15-056261a37f7c
For help see https://nodejs.org/en/docs/inspector
```

> To use the standard (command-line) Node debugger with Sails, you can always just run node inspect app.js.

> If you don’t see your files in the Chrome DevTools, try clicking the “Filesystem” tab and adding your project folder to the workspace.

<docmeta name=”displayName” value=”sails inspect”>
<docmeta name=”pageType” value=”command”>



            

          

      

      

    

  

    
      
          
            
  # sails lift

Run the Sails app in the current dir (if node_modules/sails exists, it will be used instead of the globally installed Sails).

`usage
sails lift
`

By default, Sails lifts your app in development mode.  In the development environment, Sails uses [Grunt](https://gruntjs.com/) to keep an eye on your files in /assets. If you change something (for example in one of your .css or .less files) and reload your browser, you’ll notice that your changes are reflected automatically.

Also note that, in development mode, your view templates won’t be cached in memory.  So, like assets, you can also change your view files without restarting Sails.

> Any changes to back-end logic or configuration (e.g. the files in config/, api/, or node_modules/) _will not take effect_ unless you kill and restart the server (CTRL+C  + sails lift).

### Usage:

sails lift takes the following options:



	–prod - in production environment


	–port <portNum> - on the port specified by portNum instead of the default (1337)


	–verbose - with verbose logging enabled


	–silly - with insane logging enabled







### Example

```text
$ sails lift

info: Starting app…

info:
info:
info: Sails <|
info: v1.0.0 |\
info: /|.info: / || info: ,’ |' \
info: .-'.-==|/_–’
info: –’——-’
info: __—___–___—___–___—___–___
info: ____—___–___—___–___—___–___-__
info:
info: Server lifted in `/Users/mikermcneil/code/sandbox/second
info: To see your app, visit http://localhost:1337
info: To shut down Sails, press <CTRL> + C at any time.

debug: ——————————————————–
debug: :: Sat Apr 05 2014 17:03:39 GMT-0500 (CDT)

debug: Environment : development
debug: Port : 1337
debug: ——————————————————–
```

<docmeta name=”displayName” value=”sails lift”>
<docmeta name=”pageType” value=”command”>



            

          

      

      

    

  

    
      
          
            
  # sails new

Create a new Sails project.

`usage
sails new your-app-name
`

### Usage:

Most Sails apps should be generated simply by running sails new your-app-name, without any additional customization.  But sails new also accepts the following options:



	–no-frontend: useful when generating a new Sails app that will not be used to serve any front-end assets.  Disables the generation of the assets/ folder, tasks/ folder, and related files.


	–minimal: generates an extremely minimal Sails app.  This disables the same things as –no-frontend, along with i18n, Waterline, Grunt, Lodash, Async, sessions, and views.


	–without: used to generate a Sails app without the specified feature(s). The supported “without” options are: ‘lodash’, ‘async’, ‘orm’, ‘sockets’, ‘grunt’, ‘i18n’, ‘session’, and ‘views’. To disable multiple features at once, you can include the options as a comma-separated list, e.g. sails new your-app-name –without=grunt,views.







### Example

To create a project called “test-project” in code/testProject/:

`text
$ sails new code/testProject
info: Installing dependencies...
Press CTRL+C to skip.
(but if you do that, you'll need to cd in and run `npm install`)
info: Created a new Sails app `test-project`!
`

To create a Sails project in an existing myProject/ folder:

`text
$ cd myProject
$ sails new .
info: Installing dependencies...
Press CTRL+C to skip.
(but if you do that, you'll need to cd in and run `npm install`)
info: Created a new Sails app `my-project`!
`
> Creating a new Sails app in an existing folder will only work if the folder is empty.

### Notes:
> + sails new is really just a special [generator](https://sailsjs.com/documentation/concepts/extending-sails/Generators) which runs [sails-generate-new](http://github.com/balderdashy/sails-generate-new).  In other words, running sails new foo is an alias for running sails generate new foo, and like any Sails generator, the actual generator module which gets run can be overridden in your global ~/.sailsrc file.

<docmeta name=”displayName” value=”sails new”>
<docmeta name=”pageType” value=”command”>



            

          

      

      

    

  

    
      
          
            
  # sails –version

Get the version of your computer’s _globally_ installed Sails command-line tool (i.e. the version you installed with npm install -g sails).

`usage
sails --version
`

### Example

`text
$ sails --version
1.0.0
`

### Notes
> + Different Sails apps can have different local Sails installs at different versions, since each project encapsulates its dependencies in its node_modules/ folder.  To get the _locally_ installed version of Sails from within a particular project, run npm ls sails.

<docmeta name=”displayName” value=”sails –version”>
<docmeta name=”pageType” value=”command”>



            

          

      

      

    

  

    
      
          
            
  # req._startTime

The moment that Sails started processing the request, as a [Javascript Date object](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date).

> This property is not added when your app is in [production mode](https://sailsjs.com/documentation/concepts/deployment#?set-the-nodeenv-environment-variable-to-production).

### Usage
`usage
req._startTime;
`

<docmeta name=”displayName” value=”req._startTime”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # req.accepts()

Return whether this request (req) advertises that it understands the specified media type.

> If none of the media types are considered acceptable, this returns false.  Otherwise, it returns truthy (the media type).

### Usage
`usage
req.accepts(mediaType);
`

### Example

If a request is sent with an “Accept: application/json” header:

```javascript
req.accepts(‘application/json’);
// -> ‘application/json’

req.accepts(‘json’);
// -> ‘json’

req.accepts(‘image/png’);
// -> false
```

If a request is sent with an “Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8” header:

```javascript
req.accepts(‘html’);
// -> ‘html’

req.accepts(‘text/html’);
// -> ‘text/html’

req.accepts(‘json’);
// -> false
```

### Notes

> + The specified media type may be provided as either a [MIME type string](https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types) such as “application/json”, or an extension name such as “json”.
> + This is implemented by examining the request’s [“Accept” header](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept).
> + See the [accepts package](https://www.npmjs.com/package/accepts) for the finer details of the header-parsing algorithm used in Sails/Express.

<docmeta name=”displayName” value=”req.accepts()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # req.acceptsCharsets()

Return whether this request (req) advertises that it is able to handle any of the specified character set(s), and if so, which one.

> If _more than one_ of the character sets passed in to this method are considered acceptable, then the first one will be returned.  If none of the character sets are considered acceptable, this returns false.

### Usage

`usage
req.acceptsCharsets(charset);
`

or:
+ req.acceptsCharsets(charset1, charset2, …);

### Details

Useful for advanced content negotiation where a client may or may not support certain character sets, such as Unicode (UTF-8).

### Example

If a request is sent with a “Accept-Charset: utf-8” header:

```js
req.acceptsCharsets(‘utf-8’);
// -> ‘utf-8’

req.acceptsCharsets(‘iso-8859-1’, ‘utf-16’, ‘utf-8’);
// -> ‘utf-8’

req.acceptsCharsets(‘utf-16’);
// -> false
```

### Notes
> + This is implemented by examining the request’s [Accept-Charset](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Charset) header (see [RFC-2616](http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.2)).
> + See the [accepts module](https://www.npmjs.com/package/accepts) for the finer details of the header-parsing algorithm used in Sails/Express.

<docmeta name=”displayName” value=”req.acceptsCharsets()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # req.acceptsLanguages()

Return whether this request (req) advertises that it understands any of the specified language(s), and if so, which one.

> If _more than one_ of the languages passed in to this method are considered acceptable, then the first one will be returned.  If none of the languages are considered acceptable, this returns false.
> (By languages, we mean natural languages, like English or Japanese, not programming languages.)

### Usage

`usage
req.acceptsLanguages(language);
`

_Or:_
+ req.acceptsLanguages(language1, language2, …);

### Details

This method can be useful as a complement to built-in [internationalization and localization](https://sailsjs.com/documentation/concepts/Internationalization), which allows for automatically serving different content to different locales based on the request.

### Example

If a request is sent with “Accept-Language: da, en, en-gb, en-us;”:

```js
req.acceptsLanguages(‘en’);
// -> ‘en’

req.acceptsLanguages(‘es’);
// -> false

req.acceptsLanguages(‘en-us’, ‘en’, ‘en-gb’);
// -> ‘en-us’

req.acceptsLanguages(‘en-gb’, ‘en’, ‘en-us’);
// -> ‘en-gb’

req.acceptsLanguages(‘es’, ‘fr’);
// -> false
```

### Notes

> + You can expect the [“Accept-Language” header](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Accept-Language) to exist in most requests that originate in web browsers (see [RFC-2616](http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4)).
> + Browsers send the “Accept-Language” header automatically, based on the user’s language settings.
> + See the [accepts package](https://www.npmjs.com/package/accepts) for the finer details of the header-parsing algorithm used in Sails/Express.

<docmeta name=”displayName” value=”req.acceptsLanguages()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # req.allParams()

Returns the value of _all_ parameters sent in the request, merged into a single dictionary (plain JavaScript object). Includes parameters parsed from the URL path, the request body, and the query string, _in that order_. See [req.param()](https://sailsjs.com/documentation/reference/request-req/req-param) for details.

### Usage

`usage
req.allParams();
`

### Example

Update the product with the specified sku, setting new values using the parameters that were passed in:

```javascript
var values = req.allParams();

// Don’t allow price or isAvailable to be edited.
delete values.price;
delete values.isAvailable;

// At this point, values might look something like this:
// values ==> { displayName: ‘Bubble Trouble Bubble Bath’ }

Product.update({sku: sku})
.set(values)
.exec(function (err, newProduct) {

// …

});

Notes

>+ The order of precedence means that URL path params override request body params, which will override query string params.
>+ In past versions of Sails, this method was known as req.params.all(), but this could be confusing—what if you had a route path parameter named “all”? In apps built on Sails v1 or later, you should use req.allParams() in favor of req.params.all() to avoid such a situation.

<docmeta name=”displayName” value=”req.allParams()”>
<docmeta name=”pageType” value=”method”>

 # req.body

An object containing text parameters from the parsed request body, defaulting to {}.

By default, the request body can be URL-encoded or stringified as JSON. Support for other formats, such as serialized XML, is possible using the [middleware](https://sailsjs.com/documentation/concepts/Middleware) configuration.

Usage
`usage
req.body;
`

Notes
>+ If a request contains one or more file uploads, only the text parameters sent _**before**_ the first file parameter will be available in req.body.
>+ When using [Skipper](https://github.com/balderdashy/skipper), the default body parser, this property will be undefined for GET requests.

<docmeta name=”displayName” value=”req.body”>
<docmeta name=”pageType” value=”property”>

 # req.cookies

An object containing all of the [unsigned cookies](https://github.com/balderdashy/sails/blob/master/docs/PAGE_NEEDED.md) from this request (req).

Usage
`usage
req.cookies;
`

Example
Assuming the request contained a cookie named “chocolatechip” with value “Yummy:

`javascript
req.cookies.chocolatechip;
// "Yummy"
`

<docmeta name=”displayName” value=”req.cookies”>
<docmeta name=”pageType” value=”property”>

 # req.file()

Build and return a [Skipper Upstream](https://github.com/balderdashy/skipper/tree/b0f99c526b6664a2e867e3ef0bafcfff35e6fba2#what-are-upstreams) representing an incoming multipart file upload from the specified field.

`usage
req.file(field);
`

Usage

| Argument | Type | Details |

|---|—————————–|:-------------------:|——————————————————————————|
| 1 | field | ((string)) | The name of the file parameter to listen on for uploads; e.g. avatar. |

Details

req.file() comes from [Skipper](https://github.com/balderdashy/skipper), an opinionated variant of the original Connect body parser. Skipper allows you to take advantage of high-performance, streaming file uploads without any dramatic changes in your application logic.

This simplifcation comes with a minor caveat: text parameters must be included before files in the request body. Typically these text parameters contain string metadata that provide additional information about the file upload.

Multipart requests to Sails should send all of their text parameters. before sending _any_ file parameters. For instance, if you’re building a web front end that communicates with Sails, you should include text parameters _first_ in any form upload or AJAX file upload requests. The term “text parameters” refers to the metadata parameters you might send with the file(s) providing additional information about the upload.

How it works

Skipper treats all file uploads as streams. This allows users to upload monolithic files with minimal performance impact and no disk footprint, all the while protecting your app against nasty denial-of-service attacks involving TMP files.

When a multipart request hits your server, instead of writing temporary files to disk, Skipper buffers the request just long enough to run your app code, allowing you to “plug in” to a compatible blob receiver. If you don’t “plug in” the data from a particular field, the Upstream hits its “high water mark”, the buffer is flushed, and subsequent incoming bytes on that field are ignored.

Example

In a controller action or policy:

``javascript
// See the Skipper README on GitHub for usage documentation for `.upload(), including
// a complete list of options.
req.file(‘avatar’).upload(function (err, uploadedFiles){

if (err) return res.serverError(err);
return res.json({

message: uploadedFiles.length + ‘ file(s) uploaded successfully!’,
files: uploadedFiles

});

});

Notes
> + Remember that the client request’s text parameters must be sent before the file parameters!
> + req.file() supports multiple files sent over the same field, but it’s important to realize that, as a consequence, the Upstream it returns is actually a stream (buffered event emitter) of potential binary streams (files). Specifically, an [Upstream](https://github.com/balderdashy/skipper/tree/b0f99c526b6664a2e867e3ef0bafcfff35e6fba2#what-are-upstreams) is a [Node.js Readable stream](http://nodejs.org/api/stream.html#stream_class_stream_readable) in “object mode”, where each object is itself an incoming multipart file upload stream.
> + If you prefer to work directly with the Upstream as a stream of streams, you can omit the .upload() method and bind “finish” and “error” events (or use .pipe()) instead. [Under the covers](https://github.com/balderdashy/skipper/blob/b0f99c526b6664a2e867e3ef0bafcfff35e6fba2/standalone/Upstream/prototype.upload.js), all .upload() is doing is piping the Upstream into the specified receiver instance, then running the specified callback when the Upstream emits either a finish or error event.

<docmeta name=”displayName” value=”req.file()”>
<docmeta name=”pageType” value=”method”>

 # req.fresh

A flag indicating that the user-agent sending this request (req) wants “fresh” data (as indicated by the “[if-none-match](http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26)”, “[cache-control](http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9)”, and/or “[if-modified-since](http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25)” request headers.)

If the request wants “fresh” data, usually you’ll want to .find() fresh data from your models and send it back to the client.

Usage
`usage
req.fresh;
`

Example
```js
if (req.fresh) {


// The user-agent is asking for a more up-to-date version of the requested resource.
// Let’s hit the database to get some stuff and send it back.





}

### Notes
> + See the [node-fresh](https://github.com/visionmedia/node-fresh) module for details specific to the implementation in Sails/Express/Koa/Connect.

<docmeta name=”displayName” value=”req.fresh”>
<docmeta name=”pageType” value=”property”>




            

          

      

      

    

  

    
      
          
            
  # req.get()

Returns the value of the specified header field in this request (req).  Note that header names are case-_insensitive_.

### Usage

`usage
req.get(header);
`

### Example
Assuming req contains a header named ‘myField’ with value ‘cat’:

`javascript
req.get('myField');
// -> cat
`

### Notes
>+ The header argument is case-insensitive.
>+ The header argument treats both “referrer” and “referer” as synonyms, because sp3ll1n9.

<docmeta name=”displayName” value=”req.get()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # req.headers

An object containing the predefined/custom header given in the current request.

### Usage

`usage
req.headers;
`

### Details

Often we want to check the headers of the current request. This can be done easily in Sails.

### Example

Sample output of the req.headers object:

```javascript
console.log(req.headers);

	{ host: ‘localhost:1337’,
	connection: ‘keep-alive’,
‘cache-control’: ‘no-cache’,
‘user-agent’: ‘Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/41.0.2272.89 Safari/537.36’,
accept: ‘/’,
‘accept-encoding’: ‘gzip, deflate, sdch’,
‘accept-language’: ‘en-US,en;q=0.8,hi;q=0.6’,
cookie: ‘sdfkslddklfk; sails.sid=s%3skdlfjkj1231lsdfnsc,m’ }


```

### Note

If you want to access any specific, custom, or predefined header, it can be done with bracket notation:

`javascript
req.headers['custom-header'];
`

or dot notation:

`javascript
req.headers.host;
`
<docmeta name=”displayName” value=”req.headers”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # req.host

> ##### This method is deprecated and will likely be removed or changed in an upcoming release.
> Instead, use [req.hostname](https://sailsjs.com/documentation/reference/request-req/req-hostname).

The hostname of this request, without the port number, as specified by its “Host” header.

### Usage
`usage
req.host;
`

### Example

If this request’s “Host” header was “ww3.staging.ibm.com:1492”:

`javascript
req.host;
// -> "ww3.staging.ibm.com"
`

<docmeta name=”displayName” value=”req.host”>
<docmeta name=”pageType” value=”property”>
<docmeta name=”isDeprecated” value=”true”>



            

          

      

      

    

  

    
      
          
            
  # req.hostname

Returns the hostname supplied in the host HTTP header. This header may be set either by the client or by the proxy.

### Usage

`usage
req.hostname;
`

### Example

If this request’s “Host” header was “ww3.staging.ibm.com:1492”:

`javascript
req.hostname;
// -> "ww3.staging.ibm.com"
`

<docmeta name=”displayName” value=”req.hostname”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # req.ip

The IP address of the client who sent this request (req).

> Note:
>
> If your Sails app is deployed behind a proxy (on Heroku, for example), then you’ll need to do a bit of additional configuration.  Normally, req.ip is simply the “remote address”&mdash;the IP address of the requesting user agent.  But if the [sails.config.http.trustProxy](https://sailsjs.com/documentation/reference/configuration/sails-config-http) option is enabled, this is the “[upstream address](https://en.wikipedia.org/wiki/X-Forwarded-For)”.

### Usage
`usage
req.ip;
`

### Example
`javascript
req.ip;
// -> "127.0.0.1"
`

<docmeta name=”displayName” value=”req.ip”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # req.ips

If [sails.config.http.trustProxy](https://sailsjs.com/documentation/reference/configuration/sails-config-http) is enabled, this variable contains the IP addresses in this request’s “X-Forwarded-For” header as an array of the IP address strings. Otherwise an empty array is returned.

### Usage
`usage
req.ips;
`

### Example
If a request contains a header, “X-Forwarded-For: client, proxy1, proxy2”:

``js
req.ips;
// -> [“client”, “proxy1”, “proxy2”]

// (“proxy2” is the furthest “down-stream” IP address)
```

<docmeta name=”displayName” value=”req.ips”>
<docmeta name=”pageType” value=”property”>

 # req.is()

Returns true if this request’s declared “Content-Type” matches the specified media/mime type.

Specifically, this method matches the given type against this request’s “Content-Type” header.

Usage
`usage
req.is(type);
`

Example
Assuming the request contains a “Content-Type” header, “text/html; charset=utf-8”:
`javascript
req.is('html');
// -> true
req.is('text/html');
// -> true
req.is('text/*');
// -> true
`

<docmeta name=”displayName” value=”req.is()”>
<docmeta name=”pageType” value=”method”>

 # req.isSocket

A flag indicating whether or not this request (req) originated from a Socket.io connection.

Usage
`usage
req.isSocket;
`

Example
```javascript
if (req.isSocket){


// You’re a socket.  Do cool socket stuff like subscribing.
User.subscribe(req, [req.session.userId]);




}
else {


// Just another HTTP request.
// (req.isSocket is undefined)





}

### Notes

> + Useful for allowing HTTP requests to skip calls to PubSub or WebSocket-centric methods like subscribe() or watch()  that depend on an actual Socket.io request.  This allows you to reuse backend code for both WebSocket and HTTP clients.
> + As you might expect, req.isSocket doesn’t need to be checked before running methods that publish to other connected sockets.  Those methods don’t depend on the request, so they work either way.

<docmeta name=”displayName” value=”req.isSocket”>
<docmeta name=”pageType” value=”property”>




            

          

      

      

    

  

    
      
          
            
  # req.method

The request method (aka “verb”).

### Usage
`usage
req.method;
`

### Example

If a client sends a POST request to /product:

`js
req.method;
// -> "POST"
`

### Notes

> + All requests to a Sails server have a “method”, even via WebSockets (this is thanks to the request interpreter).

<docmeta name=”displayName” value=”req.method”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # req.originalUrl

From the [Express docs](https://expressjs.com/en/4x/api.html#req.originalUrl):

> This property is much like req.url; however, it retains the original request URL, allowing you to rewrite req.url freely for internal routing purposes.

In almost all cases, you&rsquo;ll want to use [req.url](https://sailsjs.com/documentation/reference/request-req/req-url) instead.  In the rare cases where req.url is modified (for example, inside of a policy or middleware in order to redirect to an internal route), req.originalUrl will give you the URL that was originally requested.

```usage
req.originalUrl;

// => “/search”
```

<docmeta name=”displayName” value=”req.originalUrl”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # req.param()

Returns the value of the parameter with the specified name.

### Usage

`usage
req.param(name[, defaultValue]);
`

### Details

req.param() searches the URL path, body, and query string of the request (_in that order_) for the specified parameter.  If no parameter value exists anywhere in the request with the given name, it returns undefined or the optional defaultValue if specified.


	URL path parameters ([req.params](https://sailsjs.com/documentation/reference/request-req/req-params))
+ e.g. a request “/foo/4” to route /foo/:id has URL path params { id: 4 }


	body parameters ([req.body](https://sailsjs.com/documentation/reference/request-req/req-body))
+ e.g. a request with a parseable body (e.g. JSON, URL-encoded, or XML) has body parameters equal to its parsed value


	query string parameters ([req.query](https://sailsjs.com/documentation/reference/request-req/req-query))
+ e.g. a request “/foo?email=5” has query params { email: 5 }




### Example

Consider a route (POST /product/:sku) that points to a custom action or policy that has the following code:

`javascript
req.param('sku');
// -> 123
`

We can get the expected result by sending the sku parameter any of the following ways:


	POST /product/123


	POST /product?sku=123


	
	POST /product
	
	with a JSON request body: { “sku”: 123 }












### Notes
>+ The order of precedence means that URL path params will override request body params, which will override query string params.
> + If you’d like to get ALL parameters from ALL sources (including the URL path, query string, and parsed request body) you can use [req.allParams()](https://sailsjs.com/documentation/reference/request-req/req-all-params).

<docmeta name=”displayName” value=”req.param()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # req.params

An object containing parameter values parsed from the URL path.

For example if you have the route /user/:name, then the “name” from the URL path wil be available as req.params.name.  This object defaults to {}.

### Usage

`usage
req.params;
`

### Notes
> + When a route address is defined using a regular expression, each capture group match from the regex is available as req.params[0], req.params[1], etc. This strategy is also applied to unnamed wild-card matches in string routes such as /file/*.

<docmeta name=”displayName” value=”req.params”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # req.path

The URL pathname from the [request URL string](http://nodejs.org/api/http.html#http_message_url) of the current request (req). Note that this is the part of the URL after and including the leading slash (e.g. /foo/bar), but without the query string (e.g. ?name=foo) or fragment (e.g. #foobar.)

### Usage

`usage
req.path;
`

### Example

Assuming a client sends the following request:

> http://localhost:1337/donor/37?name=foo#foobar

req.path will be defined as follows:

`js
req.path;
// -> "/donor/37"
`

### Notes
> + If you would like the URL query string _as well as_ the path, see [req.url](https://sailsjs.com/documentation/reference/request-req/req-url).

<docmeta name=”displayName” value=”req.path”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # req.protocol

The protocol used to send this request (req).

### Usage
`usage
req.protocol;
`

### Example

```js
switch (req.protocol) {

	case ‘http’:
	// this is an HTTP request
break;

	case ‘https’:
	// this is a secure HTTPS request
break;

}

<docmeta name=”displayName” value=”req.protocol”>
<docmeta name=”pageType” value=”property”>

 # req.query

A dictionary containing the parsed query-string, defaulting to {}.

Usage
`usage
req.query;
`

Example

If the request is GET /search?q=mudslide:

`js
req.query.q
// -> "mudslide"
`

<docmeta name=”displayName” value=”req.query”>
<docmeta name=”pageType” value=”property”>

 # req.secure

Indicates whether or not the request was sent over a secure [TLS](http://en.wikipedia.org/wiki/Transport_Layer_Security) connection (i.e. https:// or wss://).

Usage
`usage
req.secure;
`

<docmeta name=”displayName” value=”req.secure”>
<docmeta name=”pageType” value=”property”>

 # req.setLocale()

Override the inferred locale for this request.

Normally, the locale is determined on a per-request basis based on incoming request headers (i.e. a user’s browser or device language settings). This command overrides that setting for a particular request.

Usage
`usage
req.setLocale(override);
`

Example

To allow users to specify their own language settings:
```js
if (this.req.me.preferredLocale) {


this.req.setLocale(this.req.me.preferredLocale);




}
return exits.success();
```

Or, if you are not using the “Web app” template and/or actions2:
```js
var me = await User.findOne({ id: req.session.userId });
if (me.preferredLocale) {


req.setLocale(me.preferredLocale);




}
return res.view(‘pages/homepage’);
```

<docmeta name=”displayName” value=”req.setLocale()”>
<docmeta name=”pageType” value=”method”>

 # req.setTimeout()

Time out this request if a response is not sent within the specified number of milliseconds.

Usage
`usage
req.setTimeout(numMilliseconds);
`

Example

To cause requests to a particular action to time out after 4 minutes:
`js
req.setTimeout(240000);
`

Notes

	By default, normal HTTP requests to Node.js/Express/Sails.js apps time out [after 2 minutes](https://nodejs.org/dist/latest/docs/api/http.html#http_server_settimeout_msecs_callback) (120000 milliseconds) if a response is not sent.

<docmeta name=”displayName” value=”req.setTimeout()”>
<docmeta name=”pageType” value=”method”>

 # req.signedCookies

A dictionary containing all the signed cookies from the request object, where a signed cookie is one that is protected against modification by the client. This protection is provided by a Base64-encoded HMAC of the cookie value. When retrieving the cookie, if the HMAC signature does not match based on the cookie’s value, then the cookie is not available as a member of the req.signedCookies object.

Purpose
A dictionary containing all of the signed cookies from this request (req).

Usage
`usage
req.signedCookies;
`

Example
Adding a signed cookie named “chocolatechip” with value “Yummy:

`javascript
res.cookie('chocolatechip', 'Yummy', {signed:true});
`

Retrieving the cookie:
`javascript
req.signedCookies.chocolatechip;
// "Yummy"
`

<docmeta name=”displayName” value=”req.signedCookies”>
<docmeta name=”pageType” value=”property”>

 # req.socket

If the current request (req) originated from a connected Socket.IO client, req.socket refers to the raw Socket.IO socket instance.

Usage

`usage
req.socket;
`

Details

> Warning:
>
> req.socket may be deprecated in a future release of Sails. You should use the [sails.sockets.*](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) methods instead.

If the current request (req) did NOT originate from a Socket.IO client, req.socket does not have the same meaning. In the most common scenario—HTTP requests—`req.socket` _exists_, but it refers instead to the underlying TCP socket. Before using req.socket, you should check the [req.isSocket](https://sailsjs.com/documentation/reference/request-req/req-is-socket) flag to ensure the request arrived via a connected Socket.IO client.

req.socket.id is a unique identifier representing the current socket. This is generated by the Socket.IO server when a client first connects and is a valid unique identifier until the socket is disconnected (if the client is a web browser, for example, req.socket.id would be valid until the user closes their browser tab).

Sails also provides direct, low-level access to all other methods and properties of a Socket.IO Socket, including req.socket and its methods req.socket.join, req.socket.leave, req.socket.broadcast, etc. Check out the relevant [Socket.IO docs](https://socket.io/docs/rooms-and-namespaces/#Rooms) for more information.

Example

```js
if (req.isSocket) {


// Low-level Socket.io methods and properties accessible on req.socket.
// …




}
else {


// This is not a request from a Socket.io client, so req.socket
// may or may not exist.  If this is an HTTP request, req.socket is actually
// the underlying TCP socket.
// …





}

<docmeta name=”displayName” value=”req.socket”>
<docmeta name=”pageType” value=”property”>




            

          

      

      

    

  

    
      
          
            
  # req.subdomains

An array of all the subdomains in this request’s URL.

### Usage
`usage
req.subdomains;
`

### Example

If the requested URL was “https://ww3.staging.ibm.com”:

`javascript
req.subdomains;
// -> ['ww3', 'staging']
`

<docmeta name=”displayName” value=”req.subdomains”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # req.url

Like [req.path](https://sailsjs.com/documentation/reference/request-req/req-path), but it also includes the query string suffix.

```usage
req.url;

// => “/search?q=worlds%20largest%20dogs”
```

### Notes
> + It is worth mentioning that the URL fragment/hash (e.g. “#some/clientside/route”) part of the URL is [not available on the server](https://github.com/strongloop/express/issues/1083#issuecomment-5179035). This is an [open issue with the current HTTP specification](http://stackoverflow.com/a/2305927/486547). As a result, if you write an action to redirect from one subdomain to another, for instance, you won’t be able to peek at the URL fragment in that action.
> + However, if you respond with a 302 redirect (i.e. res.redirect()), the user agent on the other end will preserve the URL fragment/hash and tack it on to the end of the new redirected URL.  In many cases, this is exactly what you want!

<docmeta name=”displayName” value=”req.url”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # req.wantsJSON

A flag indicating whether the requesting client would prefer a JSON response (as opposed to some other format, like XML or HTML.)

req.wantsJSON is used by all of the [built-in custom responses](https://sailsjs.com/documentation/anatomy/api/responses) in Sails.

### Usage
`usage
req.wantsJSON;
`

### Details

The intended purpose of req.wantsJSON is to provide a clean, reusable indication of whether the server should respond with JSON or send back something else. It’s not the right answer for _every_ content negotiation problem, but it is a simple, go-to solution for most use cases.

For instance, all major browsers set an “Accept: text/plain;” request header for requests typed in the URL field.  In this case, req.wantsJSON is false.  For many other cases, though, the distinction is less clear.  In those scenarios, Sails uses heuristics to determine the best value for req.wantsJSON.

Technically, req.wantsJSON inspects the request’s “Content-type”, “Accepts”, and “X-Requested-With” headers to determine whether the request expects a JSON response.  If the information in these headers is too scanty, Sails errs on the side of JSON, and req.wantsJSON will be set to true.

The benefit of req.wantsJSON is that it future-proofs your app and makes it less brittle. As best practices for content negotiation change over time (e.g. a new type of consumer device or enterprise user agent introduces a new header), Sails can patch req.wantsJSON at the framework level and modify the heuristics accordingly. It also reduces code duplication and saves you the annoyance of manually inspecting the headers in each of your routes.

### Example
```javascript
if (req.wantsJSON) {

sails.log(‘This request wants JSON!’);

}
else {

// req.wantsJSON is falsy (undefined), to this request must not want JSON.

}

Details

Here is the specific order in which req.wantsJSON inspects the request. If any of the following match, subsequent checks are ignored.

A request “wantsJSON” if:

	it looks like an AJAX request

	it’s a virtual request from a socket

	the request DOESN’T explicitly want HTML

	the request has a “json” content type AND has its “Accept” header set

	req.options.wantsJSON is truthy

Notes
> + Lower-level content negotiation is, of course, still possible using req.is(), req.accepts(), req.xhr, and req.get().
> + As of Sails v0.10, requests originating from a WebSocket client always want JSON.

<docmeta name=”displayName” value=”req.wantsJSON”>
<docmeta name=”pageType” value=”property”>

 # req.xhr

A flag indicating whether the current request (req) appears to be an AJAX request (i.e. it was issued with its “X-Requested-With” header set to “XMLHttpRequest”).

Usage
`usage
req.xhr;
`

Example
```javascript
if (req.xhr) {


// Yup, it’s AJAX alright.





}

### Notes
> + Whenever possible, you should prefer the req.wantsJSON flag.  Avoid writing custom content negotiation logic into your app, as it makes your code more brittle and verbose.

<docmeta name=”displayName” value=”req.xhr”>
<docmeta name=”pageType” value=”property”>




            

          

      

      

    

  

    
      
          
            
  # Request (req)

Sails is built on [Express](https://github.com/balderdashy/sails/blob/master/docs/PAGE_NEEDED.md), and uses [Node’s HTTP server](http://nodejs.org/api/http.html) conventions.  Because of this, you can access all of the Node and Express methods and properties on the req object wherever it is accessible (in your controllers, policies, and custom responses).

A nice side effect of this compatibility is that, in many cases, you can paste existing Node.js code into a Sails app and it will work.  And since Sails implements a transport-agnostic request interpreter, the code in your Sails app is WebSocket-compatible as well.

Sails adds a few methods and properties of its own to the req object, like [req.wantsJSON](https://sailsjs.com/documentation/reference/request-req/req-wants-json) and [req.allParams()](https://sailsjs.com/documentation/reference/request-req/req-all-params).  These features are syntactic sugar on top of the underlying implementation, and also support both HTTP and WebSockets.

<!–
### Protocol Support

The chart below describes support for the methods and properties on [req](https://sailsjs.com/documentation/reference/request-req), the Sails request object (req), across HTTP and WebSockets:


| HTTP    | WebSockets |



|--------------------------|———|------------|
| req.file()               | :white_check_mark: | :white_large_square: |
| req.param()              | :white_check_mark: | :white_check_mark: |
| req.route                | :white_check_mark: | :white_check_mark: |
| req.cookies              | :white_check_mark: | :white_large_square: |
| req.signedCookies        | :white_check_mark: | :white_large_square: |
| req.get()                | :white_check_mark: | :white_large_square: |
| req.accepts()            | :white_check_mark: | :white_large_square: |
| req.accepted             | :white_check_mark: | :white_large_square: |
| req.is()                 | :white_check_mark: | :white_large_square: |
| req.ip                   | :white_check_mark: | :white_check_mark: |
| req.ips                  | :white_check_mark: | :white_large_square: |
| req.path                 | :white_check_mark: | :white_large_square: |
| req.host                 | :white_check_mark: | :white_large_square: |
| req.fresh                | :white_check_mark: | :white_large_square: |
| req.stale                | :white_check_mark: | :white_large_square: |
| req.xhr                  | :white_check_mark: | :white_large_square: |
| req.protocol             | :white_check_mark: | :white_check_mark: |
| req.secure               | :white_check_mark: | :white_large_square: |
| req.session              | :white_check_mark: | :white_check_mark: |
| req.subdomains           | :white_check_mark: | :white_large_square: |
| req.method               | :white_check_mark: | :white_check_mark: |
| req.originalUrl          | :white_check_mark: | :white_large_square: |
| req.acceptedLanguages    | :white_check_mark: | :white_large_square: |
| req.acceptedCharsets     | :white_check_mark: | :white_large_square: |
| req.acceptsCharset()     | :white_check_mark: | :white_large_square: |
| req.acceptsLanguage()    | :white_check_mark: | :white_large_square: |
| req.isSocket             | :white_check_mark: | :white_check_mark: |
| req.allParams()          | :white_check_mark: | :white_check_mark: |
| req.transport            | :white_large_square: | :white_check_mark: |
| req.url                  | :white_check_mark: | :white_check_mark: |
| req.wantsJSON            | :white_check_mark: | :white_check_mark: |

### Legend



	
	white_check_mark:

	
	fully supported










	
	white_large_square:

	
	feature not yet implemented










	
	heavy_multiplication_x:

	
	unsupported due to protocol restrictions















–>

<docmeta name=”displayName” value=”Request (req)”>
<docmeta name=”stabilityIndex” value=”3”>



            

          

      

      

    

  

    
      
          
            
  # req.options

req.options is a dictionary (plain JavaScript object) of request-agnostic settings available in your app’s actions.

The purpose of req.options is to allow an action’s code to access its configured route options, if there are any.  (Simply put, “route options” are just any additional properties provided in a [route target](https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-target).)

<!–
FUTURE: pull out the rest of the content below to a new, separate page under Concepts > Routes > Route options and just link to it from in here rather than having all this exist inline.

(Also be sure to consolidate any additional useful content from https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-target-options into the new page, and replace the content under that heading with a sentence that links to the new “Route options” page.)


	-m

	Feb 23, 2017





–>

### With the blueprint API

Route options in Sails were originally devised as a more flexible way to configure built-in blueprint actions.

Some special settings must always be provided to [certain blueprint actions](https://sailsjs.com/documentation/reference/blueprint-api).  This provides a way for your app to communicate which model/association a blueprint action should target.  For example, req.options.model is the identity of the model that a particular blueprint action should target.  And for blueprint actions that directly involve an association, req.options.alias indicates the name of the associating attribute.

You can take advantage of this in your app order to bind a blueprint action to an arbitrary custom route.  For example, consider the following custom route in [config/routes.js](https://sailsjs.com/documentation/anatomy/config/routes-js):

```js
‘GET /foo/bar’: {

action: ‘user/find’,
model: ‘user’

}

Whenever a GET request to /foo/bar arrives, the find blueprint action will run, and req.options.model will be available as user. (This is how the built-in, generic “find” blueprint action knows that it should communicate with the User model.)

> Need to customize blueprint actions further? In most cases, the easiest (and most maintainable) way to do this is to write a custom action. If you’re making the transition between the blueprint API and writing your own custom actions for the first time, you might start by checking out [Concepts > Actions & Controllers](https://sailsjs.com/documentation/concepts/actions-and-controllers).
>
> Note that there is a middle ground that allows you to programmatically modify some additional aspects of a blueprint action’s behavior without overriding it completely (for example, examining the request to determine the criteria that a blueprint action uses when accessing models.) See [Reference > sails.config.blueprints > Using parseBlueprintOptions](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints#?using-parseblueprintoptions) for more on that.

Custom route options

it is also possible to configure and consume your own _custom_ route options. For example, imagine you’re building a GitHub plugin for Sails. In order to provide support for handling webhook requests from GitHub, your plugin could register a generic, configurable action like github/receive-event that allows any user of your plugin to easily bind it to any route in their app:

```js
‘POST /my-cool-webhooks/github/doings-and-things/incoming’: {


action: ‘github/receive-event’,






}

But now, imagine that one of the purposes for your plugin’s generic receive-event action is to save a record representing the incoming GitHub event to the app’s database (e.g. to track it for future use).  In order to do that, your generic action needs to know which model to use.  So, using a simple approach that is consistent with Sails’ built-in blueprint actions, your plugin could support usage like the following:

```js
‘POST /my-cool-webhooks/github/doings-and-things/incoming’: {

action: ‘github/receive-event’,
model: ‘repoactivity’

}

Meanwhile, in your plugin, the action you register might look something like this:

```js
module.exports = function receiveEvent(req, res) {



	if (_.isUndefined(req.options.model) || !sails.models[req.options.model]) {
	return res.serverError(new Error(‘Invalid configuration: To use github/receive-event, please set this route’s model to the identity of one of your app's models.  (Currently, it is ‘+req.options.model+’, which cannot be used.)’));





}

var GitHubEventModel = sails.models[req.options.model];
GitHubEventModel.create({


raw: req.allParams(),
githubId: req.param(‘id’),
// …
// … etc. (see https://developer.github.com/webhooks/#events)





	}).exec(function(err) {
	if (err) { return res.serverError(err); }

return res.ok();





});






};

> For more about creating this type of plugin, see [Concepts > Extending Sails > Hooks](TODO).

<docmeta name=”displayName” value=”req.options”>
<docmeta name=”pageType” value=”property”>




            

          

      

      

    

  

    
      
          
            
  # res.attachment()

Indicate to a web browser or other user agent that an outgoing file download sent in this response should be “Saved as…” rather than “Opened”, and optionally specify the name for the newly downloaded file on disk.

Specifically, this sets the “Content-Disposition” header of the current response to “attachment”. If a filename is given, then the “Content-Type” will be automatically set based on the extension of the file (e.g. .jpg or .html), and the “Content-Disposition” header will be set to “filename=`filename`”.

### Usage
`usage
res.attachment([filename]);
`

### Example

This method should be called prior to streaming down the bytes of your file.

For example, if you’re using the [uploads hook](https://www.npmjs.com/package/sails-hook-uploads) with [actions2](https://sailsjs.com/documentation/concepts/actions-and-controllers#?actions-2):

```js
fn: async function({id}, exits) {

var file = await LegalDoc.findOne({ id });
if(!file) { throw ‘notFound’; }

this.res.attachment(file.downloadName);
var downloading = await sails.startDownload(file.uploadFd);
return exits.success(downloading);

}

That’s it! When accessed in a browser, the file downloaded by this action will be saved as a new file (e.g. “Tax Return (Lerangis, 2019)”) instead of being directly opened in the browser itself.

Under the covers, res.attachment() isn’t doing anything fancy, it just sets response headers:

`javascript
res.attachment();
// -> response header will contain:
// Content-Disposition: attachment
`

`javascript
res.attachment('Tax Return (Lerangis, 2019).pdf');
// -> response header will contain:
// Content-Disposition: attachment; filename="Tax Return (Lerangis, 2019).pdf"
// Content-Type: application/pdf
`

<docmeta name=”displayName” value=”res.attachment()”>
<docmeta name=”pageType” value=”method”>

 # res.badRequest()

This method is used to send a 400 (“Bad Request”) response back down to the client, indicating that the request is invalid. This usually means that the request contained invalid parameters or headers, or that it tried to do something not supported by your app logic.

Usage

`usage
return res.badRequest();
`

Or:
+ return res.badRequest(data);

Details

Like the other built-in custom response modules, the behavior of this method is customizable.

By default, it works as follows:

	The status code of the response is set to 400.

	Sails sends any provided error data as JSON. If no data is provided, a default response body will be sent (the string “Bad Request”).

Example

```javascript
if ( req.param(‘amount’) > 123 )



	return res.badRequest(
	‘Transaction limit exceeded. Please try again with an amount less than $123.’





);





}

### Notes
> + This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).
>+ res.badRequest() (like other userland response methods) can be overridden or modified.  It runs the response method defined in api/responses/badRequest.js.  If a badRequest.js response method does not exist in your app, Sails will implicitly use the default behavior.
>+ This method is called automatically by the [Blueprint Actions](https://sailsjs.com/documentation/concepts/blueprints/blueprint-actions) when bad parameters are sent with a request.

<docmeta name=”displayName” value=”res.badRequest()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # res.clearCookie()

Clears cookie (name) in the response.

### Usage

`usage
res.clearCookie(name [,options]);
`

### Details

The path option defaults to “/”.

### Example
`javascript
res.cookie('name', 'tobi', { path: '/admin' });
res.clearCookie('name', { path: '/admin' });
`

<docmeta name=”displayName” value=”res.clearCookie()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # res.cookie()

Sets a cookie with name (name) and value (value) to be sent along with the response.

### Usage
`usage
res.cookie(name, value [,options]);
`

### Details

The path option defaults to “/”.

maxAge is a convenience option that sets expires relative to the current time in milliseconds.

`javascript
res.cookie('rememberme', '1', { maxAge: 900000, httpOnly: true });
`

An object that is passed is then serialized as JSON, which is automatically parsed by the Express body-parser middleware.

`javascript
res.cookie('cart', { items: [1,2,3] });
res.cookie('cart', { items: [1,2,3] }, { maxAge: 900000 });
`

Signed cookies are also supported through this method&mdash;just pass the signed option, set to true. res.cookie() will then use the secret passed into express.cookieParser(secret) to sign the value.

`javascript
res.cookie('name', 'tobi', { signed: true });
`

### Example
```javascript
res.cookie(‘name’, ‘tobi’, {

domain: ‘.example.com’,
path: ‘/admin’,
secure: true

});

	res.cookie(‘rememberme’, ‘1’, {
	expires: new Date(Date.now() + 900000),
httpOnly: true

});

<docmeta name=”displayName” value=”res.cookie()”>
<docmeta name=”pageType” value=”method”>

 # res.forbidden()

This method is used to send a 403 (“Forbidden”) response back down to the client, indicating that a request is not allowed. This usually means the user agent tried to do something it was not allowed to do, like change the password of another user.

Usage

`usage
return res.forbidden();
`

Details

Like the other built-in custom response modules, the behavior of this method is customizable.

By default, it works as follows:

	The status code of the response is set to 403.

	A response body is sent with the string “Forbidden”.

Example

```javascript
if ( !req.session.userId ) {


return res.forbidden();





}

### Notes
> + This method is terminal, meaning that it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).
>+ res.forbidden() (like other userland response methods) can be overridden or modified.  It runs the response method defined in api/responses/forbidden.js.  If a forbidden.js response method does not exist in your app, Sails will use the default behavior.

<docmeta name=”displayName” value=”res.forbidden()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # res.get()

Returns the current value of the specified response header (header).

### Usage
`usage
res.get(header);
`

### Example
`javascript
res.get('Content-Type');
// -> "text/plain"
`

### Notes
>+ The header argument is case-insensitive.
>+ Response headers can be changed up until the response is sent. See [res.set()](https://sailsjs.com/documentation/reference/response-res/res-set) for details.

<docmeta name=”displayName” value=”res.get()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # res.json()

Sends a JSON response composed of the specified data.

### Usage
`usage
return res.json(data);
`

### Details

When an object or array is passed to it, this method is identical to res.send(). Unlike res.send(), however, res.json() may also be used for explicit JSON conversion of non-objects (null, undefined, etc.), even though these are technically not valid JSON.

### Examples

`javascript
return res.json({ firstName: 'Tobi' });
`

`javascript
return res.status(201).json({ id: 201721 });
`

`javascript
var leena = await User.findOne({ firstName: 'Leena' });
if (!leena) { return res.notFound(); }
return res.json(leena.id);//« you can send down primitives, like numbers
`

### Notes
> + Don’t forget that this method’s name is all lowercase.
> + This method is terminal, meaning that it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

<docmeta name=”displayName” value=”res.json()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # res.jsonp()

Send a JSON or JSONP response.

Identical to [res.json()](https://sailsjs.com/documentation/reference/response-res/res-json) except that, if a request parameter named “callback” was provided in the query string, then Sails will send the response data as [JSONP](http://en.wikipedia.org/wiki/JSONP) instead of JSON.  The value of the “callback” request parameter will be used as the name of the JSONP function call wrapper in the response.

### Usage
`usage
return res.jsonp(data);
`

### Example

In an action:

```js
return res.jsonp([

	{
	name: ‘Thelma’,
id: 1

	}, {
	name: ‘Leonardo’
id: 2

}

]);

Given ?callback=gotStuff, the code above would send back a response body like:

`javascript
gotStuff([{name: 'Thelma', id: 1}, {name: 'Louise', id: 2}])
`

Notes
> + Don’t forget that this method’s name is all lowercase.
> + If no “callback” request parameter was provided, this method works exactly like res.json().
> + This method is terminal, meaning that it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

<docmeta name=”displayName” value=”res.jsonp()”>
<docmeta name=”pageType” value=”method”>

 # res.location()

Sets the “Location” response header to the specified URL expression (url).

Usage
`usage
res.location(url);
`

Example
`javascript
res.location('/foo/bar');
res.location('foo/bar');
res.location('http://example.com');
res.location('../login');
res.location('back');
`

Notes
>+ You can use the same kind of URL expressions as in res.redirect().

<docmeta name=”displayName” value=”res.location()”>
<docmeta name=”pageType” value=”method”>

 # res.negotiate()

> _**This method is deprecated**._
>
> You should use a [custom response](https://sailsjs.com/documentation/concepts/extending-sails/custom-responses) instead.
>
> To handle errors from [Waterline model methods](https://sailsjs.com/documentation/reference/waterline-orm/models), check the name property of the error (see the [Waterline error reference](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for more details).

Given an error (err), attempt to guess which error response should be called (badRequest, forbidden, notFound, or serverError) by inspecting the status property. If err is not a dictionary, or the status property does not match a known HTTP status code, then default to serverError.

Especially handy for handling potential validation errors from [Model.create()](https://sailsjs.com/documentation/reference/waterline-orm/models/create) or [Model.update()](https://sailsjs.com/documentation/reference/waterline-orm/models/update).

Usage

`usage
return res.negotiate(err);
`

Details

Like the other built-in custom response modules, the behavior of this method is customizable.

res.negotiate() examines the provided error (err) and determines the appropriate error-handling behavior from one of the following methods:

	[res.badRequest()](https://sailsjs.com/documentation/reference/response-res/res-bad-request) (400)

	[res.forbidden()](https://sailsjs.com/documentation/reference/response-res/res-forbidden) (403)

	[res.notFound()](https://sailsjs.com/documentation/reference/response-res/res-not-found) (404)

	[res.serverError()](https://sailsjs.com/documentation/reference/response-res/res-server-error) (500)

The determination is made based on err’s “status” property. If a more specific diagnosis cannot be determined (e.g. err doesn’t have a “status” property, or it’s a string), Sails will default to res.serverError().

Example

```javascript
// Add Fido’s birthday to the database:
Pet.update({name: ‘fido’})


.set({birthday: new Date(‘01/01/2010’)})
.exec(function (err, fido) {


if (err) return res.negotiate(err);
return res.ok(fido);




});




```

Notes
> + This method is terminal, meaning it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).
>+ res.negotiate() (like other userland response methods) can be overridden - just define a response module (/responses/negotiate.js) and export a function definition.
>+ This method is used as the default handler for uncaught errors in Sails. That means it is called automatically if an error is thrown in _any_ request handling code, _but only within the initial step of the event loop_. You should always specifically handle errors that might arise in callbacks/promises from asynchronous code.

<docmeta name=”isDeprecated” value=”true”>

<docmeta name=”displayName” value=”res.negotiate()”>
<docmeta name=”pageType” value=”method”>

 # res.notFound()

This method is used to send a 404 (“Not Found”) response using either [res.json()](https://sailsjs.com/documentation/reference/response-res/res-json) or [res.view()](https://sailsjs.com/documentation/reference/response-res/res-view). It is called automatically when Sails receives a request that doesn’t match any of its explicit routes or route blueprints (i.e. serves the 404 page).

When called manually from your app code, this method is normally used to indicate that the user agent tried to find, update, or delete something that doesn’t exist.

Usage

`usage
return res.notFound();
`

Details

Like the other built-in custom response modules, the behavior of this method is customizable.

By default, it works as follows:

	The status code of the response will be set to 404.

	If the request “[wants JSON](https://sailsjs.com/documentation/reference/request-req/req-wants-json)” (e.g. the request originated from AJAX, WebSockets, or a REST client like cURL), Sails will send a response body with the string “Not Found”.

	If the request _does not_ “want JSON” (e.g. a URL typed into a web browser), Sails will attempt to serve the view located at views/404.ejs (assuming the default EJS [view engine](https://sailsjs.com/documentation/concepts/views/view-engines)). If no such view is found, or an error occurs attempting to serve it, a default response body will be sent with the string “Not Found”.

Example

```javascript
Pet.findOne()
.where({ name: ‘fido’ })
.exec(function(err, fido) {


if (err) return res.serverError(err);
if (!fido) return res.notFound();
// …





})

### Notes
> + This method is terminal, meaning that it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).
>+ res.notFound() (like other userland response methods) can be overridden or modified.  It runs the response method defined in api/responses/notFound.js.  If a notFound.js response method does not exist in your app, Sails will use the default behavior.

<docmeta name=”displayName” value=”res.notFound()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # res.ok()

This method is used to send a <a href=”https://en.wikipedia.org/wiki/List_of_HTTP_status_codes#2xx_Success” target=”_blank”>200</a> (“OK”) response back down to the client.

### Usage

`usage
return res.ok();
`

_Or:_
+ return res.ok(data);

### Details

Like the other built-in custom response modules, the behavior of this method is customizable.

By default, it works as follows:


	The status code of the response will be set to 200.


	Sails will send any provided error data as JSON.  If no data is provided, a default response body will be sent (the string “OK”).




### Example

`javascript
return res.ok();
`

### Notes
> + This method is terminal, meaning that it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).
>+ res.ok() (like other userland response methods) can be overridden or modified.  It runs the response method defined in api/responses/ok.js.  If an ok.js response method does not exist in your app, Sails will use the default behavior.

<docmeta name=”displayName” value=”res.ok()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # res.redirect()

Redirect the requesting user agent to the given absolute or relative URL.

### Usage
`usage
return res.redirect(url);
`

_Or:_
+ return res.redirect(statusCode, url);

### Arguments


| Argument       | Type        | Details |



|---|—————-|:-----------:|———|
| 1 | _statusCode_   | ((number?)) | An optional status code (e.g. 301).  (If omitted, a status code of 302 will be assumed.)
| 2 | url            | ((string))  | A URL expression (see below for complete specification).<br/> e.g. “http://google.com” or “/login”

### Details

Sails/Express support a few forms of redirection:


	A fully qualified URI for redirecting to a different domain:




`javascript
return res.redirect('http://google.com');
`


	The domain-relative redirect.  For example, if you were on http://example.com/admin/post/new, the following redirect to /checkout would land you at http://example.com/checkout:




`javascript
return res.redirect('/checkout');
`


	Pathname-relative redirects. If you were on http://example.com/admin/post/new, the following redirect would land you at http//example.com/admin/post:




`javascript
return res.redirect('..');
`
+ A back redirect, which allows you to redirect a request back from whence it came from using the “Referer” (or “Referrer”) header (if omitted, redirects to / by default):

`javascript
return res.redirect('back');
`

### Notes
> + This method is terminal, meaning that it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).
> + As of Sails v1.x, for HTTP requests, res.redirect() [does not respect the status code established by res.status()](https://github.com/balderdashy/sails-docs/pull/796#issuecomment-284224746).  Thanks [@Guillaume-Duval](https://github.com/Guillaume-Duval) and [@oshatrk](https://github.com/oshatrk)!
> + When your app calls res.redirect(), Sails sends a response with status code [302](http://en.wikipedia.org/wiki/List_of_HTTP_status_codes#3xx_Redirection), indicating a temporary redirect.  This instructs the user agent to send a new request to the indicated URL.  There is no way to _force_ a user agent to follow redirects, but most clients play nicely.
> + In general, you should not need to use res.redirect() if a request “wants JSON” (i.e. [req.wantsJSON](https://sailsjs.com/documentation/reference/request-req/req-wants-json)).
> + If a request originated from the Sails socket client, it always “wants JSON”, so the [Sails socket client](https://sailsjs.com/documentation/reference/web-sockets/socket-client) does _not_ follow redirects. For this reason, if an action is called via a WebSocket request using (for example) [io.socket.get()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-get), it will simply receive the appropriate status code and a “Location” header indicating the location of the desired resource.  It&rsquo;s up to the client-side code to decide how to handle redirects for WebSocket requests.

<docmeta name=”displayName” value=”res.redirect()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # res.send()

Send a string response in a format other than JSON (XML, CSV, plain text, etc.).

This method is used in the underlying implementation of most of the other terminal response methods.

### Usage
`usage
return res.send([string]);
`

### Details

This method can be used to send a string of XML.

If no argument is provided, no response body is sent back&mdash;just the status code.

### Examples

To allow users to export their own data, while complying with Europe’s GDPR regulations, you might send back some dynamic CSV-formatted data, like this:

`javascript
// Send back some dynamic CSV-formatted data.
return res.set('text/csv').send(`
some,csv,like,this
or,,like,this
`);
`

Or, to respond with XML (e.g. for a sitemap):

```javascript
// Send down some dynamic XML-formatted data.
return res.set(‘application/xml’).send(`<?xml version=”1.0” encoding=”UTF-8”?>
<urlset xmlns=”http://www.sitemaps.org/schemas/sitemap/0.9”>

	<url>
	<loc>http://sailsjs.com</loc>
<lastmod>2018-03-28T17:02:23.688Z</lastmod>
<changefreq>monthly</changefreq>

</url>

</urlset>
);
``

You can also send arbitrary plain text and use any status code you like:

`javascript
// You can use any status code you like.
// (Defaults to 200 unless you specify something else.)
return res.status(420).send('Hello world!');
`

Notes
> + This method is terminal, meaning that it’s generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).
> + If you want to send a dictionary or JSON, use [res.json()](https://sailsjs.com/documentation/reference/response-res/res-json).
> + If you want to send a stream, use [actions2](https://sailsjs.com/documentation/concepts/actions-and-controllers)(preferably) or .pipe(res) (if you absolutely must).
> + If you want to send a custom status code, call [req.status()](https://sailsjs.com/documentation/reference/response-res/res-status) first.

<docmeta name=”displayName” value=”res.send()”>

<docmeta name=”pageType” value=”method”>

 # res.serverError()

This method is used to send a 500 (“Server Error”) response back down to the client, indicating that some kind of server error occurred (i.e. the error is not the requesting user agent’s fault).

Usage

`usage
return res.serverError(err);
`

Or:
+ return res.serverError();

Details

Like the other built-in custom response modules, the behavior of this method is customizable.

By default, it works as follows:

	The status code of the response will be set to 500.

	If the request “[wants JSON](https://sailsjs.com/documentation/reference/request-req/req-wants-json)” (e.g. the request originated from AJAX, WebSockets, or a REST client like cURL), Sails will send the provided error data as JSON. If no data is provided, a default response body will be sent (the string “Internal Server Error”).

	If the request _does not_ “want JSON” (e.g. a URL typed into a web browser), Sails will attempt to serve the view located at views/500.ejs (assuming the default EJS [view engine](https://sailsjs.com/documentation/concepts/views/view-engines)). If no such view is found, or an error occurs attempting to serve it, a default response body will be sent with the string “Internal Server Error”.

Example

`javascript
return res.serverError('Salesforce could not be reached');
`

Notes
> + This method is terminal, meaning that it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).

>+ res.serverError() (like other userland response methods) can be overridden or modified. It runs the response method defined in api/responses/serverError.js. If a serverError.js response method does not exist in your app, Sails will use the default behavior.

>+ The specified data will be excluded from the JSON response and view locals if the app is running in the “production” environment (i.e. process.env.NODE_ENV === ‘production’).

<docmeta name=”displayName” value=”res.serverError()”>
<docmeta name=”pageType” value=”method”>

 # res.set()

Sets specified response header (header) to the specified value (value).

Alternatively, you can pass in a single object argument (headers) to set multiple header fields at once, where the keys are the header field names and the corresponding values are the desired values.

Usage
`usage
res.set(header, value);
`

-or-

`usage
res.set(headers);
`

Example
```javascript

res.set(‘Content-Type’, ‘text/plain’);


	res.set({
	‘Content-Type’: ‘text/plain’,
‘Content-Length’: ‘123’,
‘ETag’: ‘12345’





})

```

<docmeta name=”displayName” value=”res.set()”>
<docmeta name=”pageType” value=”method”>

 # res.status()

Set the status code of this response.

Usage
`usage
res.status(statusCode);
`

Example
`javascript
res.status(418);
res.send('I am a teapot');
`

Notes
>+ The status code may be set up until the response is sent.
>+ res.status() is effectively just a chainable alias of Node’s res.statusCode = …;.

<docmeta name=”displayName” value=”res.status()”>
<docmeta name=”pageType” value=”method”>

 # res.type()

Sets the “Content-Type” response header to the specified type.

This method is pretty forgiving (see examples below), but note that if type contains a “/”, res.type() assumes it is a MIME type and interprets it literally.

Usage
`usage
res.type(type);
`

Example
`javascript
res.type('.html');
res.type('html');
res.type('json');
res.type('application/json');
res.type('png');
`

<docmeta name=”displayName” value=”res.type()”>
<docmeta name=”pageType” value=”method”>

 # res.view()

Respond with an HTML page.

Usage

`usage
return res.view(pathToView, locals);
`

Or:
+ return res.view(pathToView);
+ return res.view(locals);
+ return res.view();

Uses the [configured view engine](https://sailsjs.com/documentation/concepts/views/view-engines) to compile the [view template](https://sailsjs.com/documentation/concepts/views/partials) at pathToView into HTML. If pathToView is not provided, serves the conventional view based on the current controller and action.

The specified [locals](https://sailsjs.com/documentation/concepts/views/locals) are merged with your configured app-wide locals, as well as certain built-in locals from Sails and/or your view engine, then passed to the view engine as data.

Arguments

| Argument | Type | Details |

|---|—————-|:-----------:|———|
| 1 | pathToView | ((string)) | The path to the desired view file relative to your app’s [views folder](https://sailsjs.com/documentation/anatomy/views) (usually views/), without the file extension (e.g. .ejs), and with no trailing slash.
Defaults to “identityOfController/nameOfAction”.
| 2 | locals | ((dictionary)) | Data to pass to the view template. These explicitly specified locals will be merged in to Sails’ [built-in locals](https://sailsjs.com/documentation/concepts/views/locals) and your [configured app-wide locals](https://github.com/balderdashy/sails/blob/master/docs/PAGE_NEEDED.md).
Defaults to {}.

Example

Consider a conventionally configured Sails app with a call to res.view() in the cook() action of its OvenController.js.

With no pathToView argument, res.view() will decide the path by combining the identity of the controller (oven) and the name of the action (cook):

`js
return res.view();
// -> responds with `views/oven/cook.ejs`
`

Here’s how you would load the same view using an explicit pathToView:

`js
return res.view('oven/cook');
// -> responds with `views/oven/cook.ejs`
`

Finally, here’s a more involved example demonstrating how res.view can be combined with Waterline queries:

```js
// Find the 5 hottest oven brands on the market
Oven.find().sort(‘heat ASC’).exec(function (err, ovens){


if (err) return res.serverError(err);


	return res.view(‘oven/top5’, {
	hottestOvens: ovens





});
// -> responds using the view at views/oven/top5.ejs,
// and with the oven data we looked up as view locals.
//
// e.g. in the view, we might have something like:
// …
// <% _.each(hottestOvens, function (aHotOven) { %>
//  <li><%= aHotOven.name %></li>
// <% }) %>
// …




});

```

Notes
> + This method is terminal, meaning that it is generally the last line of code your app should run for a given request (hence the advisory usage of return throughout these docs).
> + res.view() reads a view file from disk, compiles it into HTML, then streams it back to the client. If you already have the view in memory, or don’t want to stream the compiled HTML directly back to the client, use sails.hooks.views.render() instead.
> + res.view() always looks for the _lowercased_ version of a view filename. For example, if your controller is FooBarController and your action is Baz, res.view() will attempt to find views/foobar/baz.ejs. On _case-sensitive_ filesystems (e.g. Ubuntu Linux), this can lead to unexpected errors when locating views if they are saved with capital letters. For this reason, it is recommended that you always save your views and view folders in lowercase.

<docmeta name=”displayName” value=”res.view()”>
<docmeta name=”pageType” value=”method”>

 # Response (res)

Overview

Sails is built on [Express](https://github.com/expressjs/) and uses [Node’s HTTP server](http://nodejs.org/api/http.html#http_http_createserver_requestlistener) conventions. As a result, you can access all of the Node and Express methods and properties on the res object wherever it is accessible (i.e. in your actions, helpers, and policies).

One of the benefits of this compatibility is that, in many cases, you can paste existing Node.js code into a Sails app and it will work. And since Sails implements a transport-agnostic request interpreter, the code in your Sails app is WebSocket-compatible as well.

Sails adds a few methods of its own to the res object, like [res.badRequest()](https://sailsjs.com/documentation/reference/response-res/res-bad-request), [res.serverError()](https://sailsjs.com/documentation/reference/response-res/res-server-error), [res.view()](https://sailsjs.com/documentation/reference/response-res/res-view). These features are syntactic sugar on top of the underlying implementation, and support both HTTP _and_ (in many cases) WebSockets.

<!–
Protocol Support

The chart below describes support for the methods and properties on the Sails Response object (res) across multiple transports:

| HTTP | WebSockets |

----------------	———	------------
res.status()	:white_check_mark:	:white_check_mark:
res.set()	:white_check_mark:	:white_large_square:
res.get()	:white_check_mark:	:white_large_square:
res.cookie()	:white_check_mark:	:white_large_square:
res.clearCookie()	:white_check_mark:	:white_large_square:
res.redirect()	:white_check_mark:	:white_check_mark:
res.location()	:white_check_mark:	:white_large_square:
res.charset	:white_check_mark:	:white_check_mark:
res.send()	:white_check_mark:	:white_check_mark:
res.json()	:white_check_mark:	:white_check_mark:
res.jsonp()	:white_check_mark:	:white_check_mark:
res.type()	:white_check_mark:	:white_large_square:
res.format()	:white_check_mark:	:white_large_square:
res.attachment()	:white_check_mark:	:white_large_square:
res.sendfile()	:white_check_mark:	:white_large_square:
res.download()	:white_check_mark:	:white_large_square:
res.links()	:white_check_mark:	:white_large_square:
res.locals	:white_check_mark:	:white_check_mark:
res.render()	:white_check_mark:	:white_large_square:
res.view()	:white_check_mark:	:white_large_square:

Legend

	
	white_check_mark:

	
	fully supported

	
	white_large_square:

	
	feature not yet implemented

	
	heavy_multiplication_x:

	
	unsupported due to protocol restrictions

–>

<docmeta name=”displayName” value=”Response (res)”>
<docmeta name=”stabilityIndex” value=”3”>

 # Miscellaneous (sails.config.*)

For a conceptual overview of configuration in Sails, see https://sailsjs.com/documentation/concepts/Configuration.

This page is a quick reference of assorted configuration topics that don’t fit elsewhere, namely top-level properties on the sails.config object. Many of these properties are best set on a [per-environment basis](https://sailsjs.com/documentation/anatomy/my-app/config/env), or in your [config/local.js](https://sailsjs.com/documentation/concepts/configuration/the-local-js-file). To set them globally for your app, create a new file in the config folder (e.g. config/misc.js) and add them there.

sails.config.port

The port setting determines which TCP port your Sails app will use to listen for incoming requests. Ports are a [transport-layer](https://en.wikipedia.org/wiki/Transport_layer) concept designed to allow many different networking applications to run at the same time on a single computer.

By default, if it’s set, Sails uses the port configured in your app (sails.config.port). If not, it checks to see if the PORT environment variable is set, and uses that if possible. Otherwise it falls back to port 1337.

> In production, you will probably want Sails to listen on port 80 (or 443, if you have an SSL certificate and are serving your site via https://), but depending on where your app is deployed, you may or may not need to actually modify this setting. For example, if you are deploying behind a proxy, or to a PaaS like [Heroku](http://heroku.com), [Azure App Service](https://azure.microsoft.com/en-us/services/app-service/), or [Deis](http://deis.io/), you probably won’t need to configure sails.config.port, since in most cases that’s handled automatically. For more guidance and tips related to deploying, scaling, and maintaining Sails in production, see [Concepts > Deployment](https://sailsjs.com/documentation/concepts/deployment).

sails.config.explicitHost

By default, Sails will assume localhost as the host that will be listening for incoming requests. This will work in the majority of hosting environments you encounter, but in some cases ([OpenShift](http://www.openshift.com) being one example) you’ll need to explicitly declare the host name of your Sails app. Setting explicitHost tells Sails to listen for requests on that host instead of localhost.

sails.config.environment

The runtime “environment” of your Sails app is usually either development or production.

In development, your Sails app will go out of its way to help you (for instance you will receive more descriptive error and debugging output).

In production, Sails configures itself (and its dependencies) to optimize performance. You should always put your app in production mode before you deploy it to a server; this helps ensure that your Sails app remains stable, performant, and scalable.

Using the “production” environment

By default, Sails determines its environment using the NODE_ENV environment variable. If NODE_ENV is not set, Sails will look to see if you provided a sails.config.environment setting, and use it if possible. Otherwise, it runs in the development environment.

When you lift your app with the NODE_ENV environment variable set to production, Sails automatically sets sails.config.environment to production too. This is the recommended way of switching to production mode. We don’t usually recommend configuring sails.config.environment manually, since some of Sails’ dependencies rely on the NODE_ENV environment variable, and it is automatically set by most Sails/Node.js hosting services.

If you attempt to lift a Sails app in the production environment _without_ setting NODE_ENV to production (for example, by running sails lift –prod), Sails automatically sets NODE_ENV to production for you. If you attempt to lift a Sails app in production while NODE_ENV is set to a _different_ value (for example NODE_ENV=development sails lift –prod), the app fails to start.

> For more background on configuring your Sails app for production, see [Concepts > Deployment](https://sailsjs.com/documentation/concepts/deployment).

Note that it is perfectly valid to set sails.config.environment to something else entirely, like “staging”, while still setting NODE_ENV=production. This causes Sails to load a different environment-specific configuration file (e.g. config/env/staging.js) and Grunt task (e.g. tasks/register/staging.js), while still otherwise acting like it’s in production.

sails.config.hookTimeout

A time limit, in milliseconds, imposed on all hooks in your app. Sails will give up if any hook takes longer than this to load. Defaults to 20000 (20 seconds).

> The most common reason to change this setting is to tolerate slow production Grunt tasks. For example, if your app is using uglify, and you have lots and lots of client-side JavaScript files in your assets folder, then you might need Sails to wait longer than 20 seconds to compile all of those client-side assets. For more tips about the production asset pipeline, see [Concepts > Deployment](https://sailsjs.com/documentation/concepts/deployment).

sails.config.ssl

SSL/TLS (transport-layer security) is critical for preventing potential man-in-the-middle attacks. Without a protocol like SSL/TLS, web basics like securely transmitting login credentials and credit card numbers would be much more complicated and troublesome. SSL/TLS is not only important for HTTP requests (https://), it’s also necessary for WebSockets (over wss://). Fortunately, you only need to worry about configuring SSL settings in one place: sails.config.ssl.

> ##### SSL and load balancers
>
> The sails.config.ssl setting is only relevant if you want your _Sails process_ to manage SSL. This isn’t always the case. For example, if you expect your Sails app to get more traffic over time, it will need to scale to multiple servers, necessitating a load balancer. Most of the time, for performance and simplicity, it is a good idea to terminate SSL at your load balancer. If you do that, then since SSL/TLS will have already been dealt with _before packets reach your Sails app_, you won’t need to use the sails.config.ssl setting at all. (This is also true if you’re using a PaaS like Heroku, or almost any other host with a built-in load balancer.)
>
> If you’re satisfied that this configuration setting applies to your app, then please continue below for more details.

Use sails.config.ssl to set up basic SSL server options, or to indicate that you will be specifying more advanced options in [sails.config.http.serverOptions](https://sailsjs.com/documentation/reference/configuration/sails-config-http#?properties).

If you specify a dictionary, it should contain both key _and_ cert keys, _or_ a pfx key. The presence of those options indicates to Sails that your app should be lifted with an HTTPS server. If your app requires a more complex SSL setup (for example by using [SNICallback](https://nodejs.org/api/tls.html#tls_tls_createserver_options_secureconnectionlistener)), set sails.config.ssl to true and specify your advanced options in [sails.config.http.serverOptions](https://sailsjs.com/documentation/reference/configuration/sails-config-http#?properties).

SSL configuration example

For this example, we’ll assume you created a folder in your project, config/ssl/ and dumped your certificate/key files inside. Then, in one of your config files, include the following:

``javascript
// Assuming this is in `config/env/production.js, and your folder of SSL cert/key files is in config/ssl/:

	ssl: {
	ca: require(‘fs’).readFileSync(require(‘path’).resolve(__dirname,’../ssl/my-gd-bundle.crt’)),
key: require(‘fs’).readFileSync(require(‘path’).resolve(__dirname,’../ssl/my-ssl.key’)),
cert: require(‘fs’).readFileSync(require(‘path’).resolve(__dirname,’../ssl/my-ssl.crt’))

}

<docmeta name=”displayName” value=”sails.config.*”>

 # sails.config.blueprints

These configurable settings allow you to configure the blueprint API in Sails. Some settings (like sails.config.blueprints.autoWatch) control the behavior of built-in [blueprint actions](https://sailsjs.com/documentation/concepts/blueprints/blueprint-actions), whereas others (like sails.config.blueprints.shortcuts) tweak the behavior of implicit [blueprint routing](https://sailsjs.com/documentation/concepts/blueprints/blueprint-actions) and/or determine whether Sails automatically binds certain kinds of blueprint routes at all.

> Remember, blueprint actions can be attached to your custom routes _regardless of whether or not_ you have any kind of implicit blueprint routing enabled.

Properties

Route-related settings

Property | Type | Default | Details |

|:------------|:———-:|:----------|:——–|
| actions`| ((boolean))|`false`| Whether implicit blueprint (“shadow”) routes are automatically generated for every action in your app. e.g. having an `api/controllers/foo/bar.js file or a bar function in api/controllers/FooController.js would automatically route incoming requests to /foo/bar to that action, as long as it is not overridden by a [custom route](https://sailsjs.com/documentation/concepts/routes/custom-routes). When enabled, this setting _also_ binds additional, special implicit (“shadow”) routes to any actions named index, and for the relative “root” URL for your app and each of its controllers. For example, a /foo shadow route for api/controllers/foo/index.js, or a / shadow route for api/controllers/index.js.
|`rest`|((boolean))|`true`|Automatic REST blueprints enabled? e.g. `'get /:model/:id?'` `'post /:model'` `'put /:model/:id'` `'delete /:model/:id'`.
|`shortcuts`|((boolean))|`true`|These CRUD shortcuts exist for your convenience during development, but you'll want to disable them in production.: `'/:model/find/:id?'`, `'/:model/create'`, `'/:model/update/:id'`, and `'/:model/destroy/:id'`.
| `prefix` | ((string))| ‘’ | Optional mount path prefix (e.g. ‘/api/v2’) for all [blueprint routes](https://sailsjs.com/documentation/concepts/blueprints/blueprint-routes), including rest, actions, and shortcuts. This only applies to implicit blueprint (“shadow”) routes, not your [custom routes](https://sailsjs.com/documentation/concepts/routes/custom-routes).
| restPrefix | ((string))| ‘’ | Optional mount path prefix for all REST blueprint routes on a controller, e.g. ‘/api/v2’. (Does not include actions and shortcuts routes.) This allows you to take advantage of REST blueprint routing, even if you need to namespace your RESTful API methods. Will be joined to your prefix config, e.g. prefix: ‘/api’ and restPrefix: ‘/rest’. RESTful actions will be available under /api/rest.
|`pluralize`|((boolean))|false| Whether to use plural model names in blueprint routes, e.g. /users for the User model. (This only applies to blueprint autoroutes, not manual routes from sails.config.routes.)

Action-related settings

Property | Type | Default | Details |

|:------------|:———-:|:----------|:——–|
|`autoWatch`|((boolean))|`true`| Whether to subscribe the requesting socket in the find and findOne blueprint action to notifications about newly _created_ records via the blueprint API.
|`parseBlueprintOptions`|((function))|(See below)|Provide this function in order to override the default behavior for blueprint actions (including search criteria, skip, limit, sort and population).

Using parseBlueprintOptions

Each blueprint action includes, at its core, a Waterline model method call. For instance, the find blueprint, when run for the User model, runs User.find() in order to retrieve some user records. The options that are passed to these Waterline methods are determined by a call to parseBlueprintOptions(). The default version of this method (available via sails.hooks.blueprints.parseBlueprintOptions()) determines the default behaviors for blueprints. You can override parseBlueprintOptions in your [blueprints config](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints) (in [config/blueprints.js](https://sailsjs.com/documentation/anatomy/config/blueprints.js)) to customize the behavior for _all_ blueprint actions, or on a [per-route basis](https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-target-options) to customize the behavior for a single route.

The parseBlueprintOptions() method takes a single argument (the [request object](https://sailsjs.com/documentation/reference/request-req)) and is expected to return a dictionary of Waterline query options. (You can review an unrealistically-expanded example of a such a dictionary [here](https://gist.github.com/mikermcneil/1b87af6b6a8458254deb83a6d1cf264f), but keep in mind that not all keys apply to all blueprint actions. See [source code in Sails code](https://github.com/balderdashy/sails/tree/v1.2.2/lib/hooks/blueprints/actions) for complete details).

Adding your own parseBlueprintOptions() is an advanced concept, and it is recommended that you first familiarize yourself with the [default method code](https://github.com/balderdashy/sails/blob/v1.2.2/lib/hooks/blueprints/parse-blueprint-options.js) and use it as a starting point. For small modifications to blueprint behavior, it is best to first call the default method inside your override and then make changes to the returned query options:

```js
parseBlueprintOptions: function(req) {


// Get the default query options.
var queryOptions = req._sails.hooks.blueprints.parseBlueprintOptions(req);

// If this is the “find” or “populate” blueprint action, and the normal query options
// indicate that the request is attempting to set an exceedingly high limit clause,
// then prevent it (we’ll say limit must not exceed 100).
if (req.options.blueprintAction === ‘find’ || req.options.blueprintAction === ‘populate’) {



	if (queryOptions.criteria.limit > 100) {
	queryOptions.criteria.limit = 100;





}




}

return queryOptions;





}

<docmeta name=”displayName” value=”sails.config.blueprints”>
<docmeta name=”pageType” value=”property”>




            

          

      

      

    

  

    
      
          
            
  # sails.config.bootstrap

### What is this?
sails.config.bootstrap is a customizable seed function that runs before your Sails app is lifted (i.e. starts up).


	By convention, this function is used for:
	
	setting up baseline data
+ _e.g. find or create an admin user_


	running sanity checks on the status of your database
+ _e.g. count hand records that don’t have any fingers. If any are found, then refuse to lift until the database is fixed_


	seeding your database with stub data
+ _e.g. create & associate a few fake “Clinic”, “Pet”, and “Veterinarian” records to make it easier to test your animal adoption app_








For an example bootstrap function, generate a new Sails app and have a look at [config/bootstrap.js](https://sailsjs.com/documentation/anatomy/config/bootstrap.js).

### Notes

> - Sails will log a warning if the bootstrap function is “taking too long”.  If your bootstrap function is taking longer to run than the default timeout of 30 seconds and you would like to prevent the warning from being displayed, you can stall it by configuring sails.config.bootstrapTimeout to a larger number of milliseconds. (For example, you can increase the timeout to one minute by using 60000.)

<docmeta name=”displayName” value=”sails.config.bootstrap()”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # sails.config.datastores

### What is this?

Datastore configurations (or simply datastores) are like “saved settings” for your adapters.

In Sails, [database adapters](https://sailsjs.com/documentation/concepts/extending-sails/adapters) are the middleman between your app and some kind of structured data storage (typically a database).  But in order for an adapter to communicate between your Sails app and a particular database, it needs some additional information.  That’s where datastores come in.  Datastores are dictionaries (plain JavaScript objects) that specify an adapter, as well as other necessary configuration information, like url, or host, port, user, and password.

While this [can be overridden](https://sailsjs.com/documentation/concepts/orm/model-settings) on a per-model basis, out of the box, every model in your app uses a datastore named “default”.

### The default datastore

##### The default development database
As a convenience during development, Sails provides a built-in database adapter called sails-disk.  This adapter simulates a real database by reading and writing database records to a JSON file on your computer’s hard drive.  And while sails-disk makes it easy to run your Sails/Node.js app in almost any environment with minimal setup, it is not designed for production use.  Before deploying your app and exposing it to real users, you’ll want to choose a proper database such as PostgreSQL, MySQL, MongoDB, etc.  To do that, you’ll need to customize your app’s default datastore.

##### Using a local MySQL database in development
Unsurprisingly, the default datastore shared by all of your app’s models is named “default”.  So to hook up a different database, that’s the key you’ll want to change.  For example, imagine you want to develop against a MySQL server installed locally on your laptop:

First, install the [MySQL adapter](http://npmjs.com/package/sails-mysql) for Sails and Waterline:

`bash
npm install sails-mysql --save --save-exact
`

Then edit your default datastore configuration in config/datastores.js so that it looks something like this:

```javascript
// config/datastores.js
module.exports.datastores = {

	default: {
	adapter: require(‘sails-mysql’),
url: ‘mysql://root:squ1ddy@localhost:3306/my_dev_db_name’,

}

};

That’s it! The next time you lift your app, all of your models will communicate with the specified MySQL database whenever your code executes built-in model methods like .create() or .find().

> Want to use a different database? Don’t worry, MySQL is just an example. You can use any [supported database adapter](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters) in your Sails app.

The connection URL

You might have noticed that we used url here, instead of specifying individual settings like host, port, user, password, and database. This is called a _connection URL_ (or “connection string”), and it’s just another, more concise way, to tell Sails and Waterline about your datastore configuration.

One major benefit to this style of configuration is that the format of a connection URL is the same across various types of databases. In other words, whether you’re using MySQL, PostgreSQL, MongoDB, or almost any other common database technology, you can specify basic configuration using a URL that looks roughly the same:

`
protocol://user:password@host:port/database
`

The protocol:// chunk of the URL is always based on the adapter you’re using (mysql://, mongodb://, etc.), and the rest of the URL is composed of the credentials and network information that your app needs to locate and connect to the database. Here’s a deconstructed version of the url from the MySQL example above that shows what each section is called:

`
mysql:// root : squ1ddy @ localhost : 3306 / my_dev_db_name
| | | | | |
| | | | | |
protocol user password host port database
`

In production, if you are using a cloud-hosted database, you’ll probably be given a connection URL (e.g. mysql://lkjdsf4:kw8sd@us-west-2.64-8.amazonaws.com:3306/4e843g). If not, it’s usually a good idea to build one yourself from the individual pieces of information. For more information about how to configure your particular database, check out the [database adapter reference](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters).

Building your own connection URL

If you have all of the pieces of information mentioned above, building a connection URL is easy: you just stick them together. But sometimes, you may not want to specify _all_ of those details (if you want to use the default port, or if you’re using a local database that does not require a username and password, for example).

Fortunately, since database connection URLs are more or less just normal URLs, you can omit various pieces of information in the same way you might already be familiar with. For example, here are a few common mashups, all of which are potentially valid connection URLs:

	protocol://user:password@host:port/databaseName

	protocol://user:password@host/databaseName _(no port)_

	protocol://user@host:port/databaseName _(no password)_

	protocol://host:port/databaseName _(neither a username nor a password)_

> Connection URLs are the recommended approach for configuring your Sails app’s database(s), so it’s best to stick with them if possible. But technically, _some adapters_ also support configuration of individual settings (user, password, host, port, and database) as an alternative. In that scenario, if both the url notation and individual settings are used, the non-url configuration options should always take precedence. You should, however, always use one approach or the other: either the url or the individual properties. Mixing the two configuration strategies may confuse the adapter, or cause the underlying database driver to reject your configuration.

Production datastore configuration

When configuring your app for a production deployment, you won’t actually use the config/datastores.js file. Instead, you can take advantage of config/env/production.js, a special file of configuration overrides that only get applied in a production environment. This allows you to override the url and adapter (or just the url) that you set in config/datastores.js:

```javascript
// config/env/production.js
module.exports = {


// …
// Override the default datastore settings in production.
datastores: {



	default: {
	// No need to set adapter again, because we already configured it in config/datastores.js.
url: ‘mysql://lkjdsf4a23d9xf4:kkwer4l8adsfasd@u23jrsdfsdf0sad.aasdfsdfsafd.us-west-2.ere.amazonaws.com:3306/ke9944a4x23423g’,





}




},
// …






};

Connection URLs really shine in production, because you can change them by swapping out a single config key.  Not only does this make your production settings easier to understand, it also allows you to swap out your production database credentials simply by setting an [environment variable](https://sailsjs.com/documentation/concepts/configuration#?setting-sailsconfig-values-directly-using-environment-variables) (sails_datastores__default__url).  This is a handy way to avoid immortalizing sensitive database credentials as commits in your version control system.

### Supported databases

Sails’s ORM, [Waterline](https://sailsjs.com/documentation/concepts/models-and-orm), has a well-defined adapter system for supporting all kinds of datastores.  The Sails core team maintains official adapters for [MySQL](http://npmjs.com/package/sails-mysql), [PostgreSQL](http://npmjs.com/package/sails-postgresql), [MongoDB](http://npmjs.com/package/sails-mongo), and [local disk](http://npmjs.com/package/sails-disk); and community adapters exist for databases like Oracle, DB2, MSSQL, OrientDB, and many more.

You can find an up-to-date list of supported database adapters [here](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters).

> Still can’t find the adapter for your database?  You can also create a [custom adapter](https://sailsjs.com/documentation/concepts/extending-sails/adapters/custom-adapters).  Or if you’d like to modify/update an existing adapter, get in touch with its maintainer.  (Need help?  Click [here](https://sailsjs.com/support) for additional resources.)

### Multiple datastores

You can set up more than one datastore pointed at the same adapter, or at different adapters.

For example, you might be using MySQL as your primary database but also need to integrate with a _second_ MySQL database that contains data from an existing Java or PHP app.  Meanwhile, you might need to integrate with a _third_ MongoDB database that was left over from a promotional campaign a few months ago.

You could set up config/datastores.js as follows:

```javascript
// config/datastores.js
module.exports.datastores = {

	default: {
	adapter: require(‘sails-mysql’),
url: ‘mysql://root@localhost:3306/dev’,

},
existingEcommerceDb: {

adapter: require(‘sails-mysql’),
url: ‘mysql://djbluegrass:0ldy3ll3r@legacy.example.com:3306/store’,

},
q3PromoDb: {

adapter: require(‘sails-mongo’),
url: ‘mongodb://djbluegrass:0ldy3ll3r@seasonal-pet-sweaters-promo.example.com:27017/promotional’,

}

};

```

> Note: If a datastore is using a particular adapter, then _all_ datastores that share that adapter will be loaded on sails lift, whether or not models are actually using them.  In the example above, if a model was defined with datastore: ‘existingEcommerceDb’, then at runtime Waterline would create two MySQL connection pools: one for existingEcommerceDb and one for default.  Because of this behavior, we recommend commenting out or removing any “aspirational” datastore configurations that you’re not actually using from config/datastores.js.

### Best practices
Some general rules of thumb:


	To change the datastore you’re using _during development_, edit the default key in config/datastores.js (or use config/local.js if you’d rather not check in your credentials).


	To configure your default _production_ datastore, use config/env/production.js (or set environment variables if you’d rather not check in your credentials).


	To override the datastore for a particular model, [set its datastore](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?datastore).


	Besides the config/datastores.js and config/env/production.js files, you can configure datastores in [the same way you configure anything else in Sails](https://sailsjs.com/documentation/concepts/configuration), including environment variables, command-line options, and more.




<docmeta name=”displayName” value=”sails.config.datastores”>
<docmeta name=”pageType” value=”property”>




            

          

      

      

    

  

    
      
          
            
  # Custom configuration

### What is this?

The custom configuration for your app. This is useful for one-off settings specific to your application, like the domain to use when sending emails, or third-party API keys for Stripe, Mailgun, Twitter, Facebook, etc.

These values are usually set in the [config/custom.js](https://sailsjs.com/documentation/anatomy/config/custom-js) file and may be overridden in production using config/env/production.js, environment variables, or any  of the other [configuration mechanisms](https://sailsjs.com/documentation/concepts/configuration) provided by Sails.

### Example

First, to set custom configuration:

```javascript
// config/custom.js
module.exports.custom = {

mailgunDomain: ‘transactional-mail.example.com’,
mailgunApiKey: ‘key-testkeyb183848139913858e8abd9a3’

};

Then, to access these values from your actions and helpers, use sails.config.custom:

`javascript
sails.config.custom.mailgunApiKey;
// -> "key-testkeyb183848139913858e8abd9a3"
`

<docmeta name=”displayName” value=”sails.config.custom”>

 # sails.config.globals

Configuration for the [global variables](https://developer.mozilla.org/en-US/docs/Glossary/Global_variable) that Sails exposes by default. The globals configuration in Sails is only for controlling global variables introduced by Sails. The options are conventionally specified in the [config/globals.js](https://sailsjs.com/anatomy/config/globals-js) configuration file.

Properties

Property | Type | Convention | Details |

|:-----------|:———-:|:----------|:——–|
| _ _(underscore)_ | ((ref))
or
((boolean)) | require(‘lodash’) | Expose the specified lodash as a global variable (_). Or set this to false to disable the _ global altogether. _(More on that below.)_
| async | ((ref))
or
((boolean)) | require(‘async’) | Expose the specified async as a global variable (async). Or set this to false to disable the async global altogether. _(More on that below.)_
| models | ((boolean)) | true | Expose each of your app’s models as a global variable (using its “globalId”). For example, a model defined in api/models/User.js would have a “globalId” of User. If this is disabled, then you can still access all of your models by identity in the [sails.models](https://sailsjs.com/documentation/reference/application#?sailsmodels) dictionary.
| sails | ((boolean)) | true | Expose the sails instance representing your app. Even if this is disabled, you can still get access to it in your actions via env.sails, or in your policies via req._sails.
| services | ((boolean)) | true | Expose each of your app’s services as global variables (using their “globalId”). E.g. a service defined in api/services/NaturalLanguage.js would have a globalId of NaturalLanguage by default. If this is disabled, you can still access your services via sails.services.*.

Using global Lodash (_) and Async libraries

Newly-generated Sails 1.0 apps have Lodash v3.10.1 and Async v2.0.1 installed by default and enabled globally so that you can reference _ and async in your app code without needing to require(). This is effected with the following default configuration in config/globals.js:

```
{


_: require(‘lodash’),

async: require(‘async’)





}

You can disable access by setting the properties to false. Prior to Sails v1.0 you could set the properties to true; this has been deprecated and replaced by the syntax above.

To use your own version of Lodash or Async, you just need to npm install the version you want.  For example, to install the latest version of Lodash 4.x.x:

`sh
npm install lodash@^4.x.x --save --save-exact
`

### Using Lodash (_) and Async without globals

If you have to disable globals, but would still like to use Lodash and/or Async, you’re in luck!  With Node.js and NPM, importing packages is very straightforward.

To use your own version of Lodash or Async without relying on globals, first modify the relevant settings in config/globals.js:

`js
// Disable `_` and `async` globals.
_: false,
async: false,
`

Then install your own Lodash:

`sh
npm install lodash --save --save-exact
`

Or Async:

`sh
npm install async --save --save-exact
`

Finally, just like you’d import [any other Node.js module](https://soundcloud.com/marak/marak-the-node-js-rap), include var _ = require(‘lodash’); or var async = require(‘async’) at the top of any file where you need them.

### Notes

> + As a shortcut to disable _all_ of the above global variables, you can set sails.config.globals itself to false.  This does the same thing as if you had manually disabled each of the settings above.

<docmeta name=”displayName” value=”sails.config.globals”>
<docmeta name=”pageType” value=”property”>




            

          

      

      

    

  

    
      
          
            
  # sails.config.http

Configuration for your app’s underlying HTTP server.  These properties are conventionally specified in the [config/http.js](https://sailsjs.com/documentation/anatomy/config/http.js) configuration file.

### Properties


Property          | Type       | Default   | Details





	:—————— |:----------:| ——— |:——-
	middleware       | ((dictionary)) | See [conventional defaults for HTTP middleware](https://sailsjs.com/documentation/concepts/Middleware?q=conventional-defaults) | A dictionary of all HTTP middleware functions your app will run on every incoming HTTP request.<br/>[Example](https://gist.github.com/mikermcneil/9cbd68c95839da480e97)
middleware.order | ((array))  | See [conventional defaults for HTTP middleware order](https://github.com/balderdashy/sails/blob/master/lib/hooks/http/index.js#l51-66) | An array of middleware names (strings) indicating the order in which middleware should be run for all incoming HTTP requests.
cache            | ((number)) | 31557600000 _(1 year)_ | The number of milliseconds to cache [static assets](https://sailsjs.com/documentation/concepts/assets) when your app is running in a [‘production’ environment](https://sailsjs.com/documentation/reference/configuration/sails-config#?sailsconfigenvironment).<br/>More specifically, this is the “max-age” that will be included in the “Cache-Control” header when responding to requests for static assets&mdash;i.e. any flat files like images, scripts, stylesheets, etc. that are served by Express’ static middleware.
serverOptions    | ((dictionary)) | {}      | _SSL only_: advanced options to send directly to the [Node https module](https://nodejs.org/dist/latest/docs/api/https.html) when creating the server.  These will be merged with your [SSL settings](https://sailsjs.com/documentation/reference/configuration/sails-config#?sailsconfigssl), if any.  See the [createServer docs](https://nodejs.org/dist/latest/docs/api/https.html#https_https_createserver_options_requestlistener) for more info.


trustProxy      | ((boolean)) _or_ ((function)) | undefined      | This tells Sails/Express how it should interpret “X-Forwarded” headers.  Only use this setting if you are using HTTPS _and_ if you are deploying behind a proxy (for example, a PaaS like Heroku).  If your app does not fit that description, then leave this as undefined.  Otherwise, you might start by setting this to true, which works for many deployments.  If that doesn’t work, see [here](https://expressjs.com/en/guide/behind-proxies.html) for all available options.








### Customizing the body parser

The _body parser_ is what Sails/Express apps use to read and understand the body of incoming HTTP requests.  Many different body parsers are available, each with their own strengths and weaknesses.  By default, Sails apps use [Skipper](http://github.com/balderdashy/skipper), a general-purpose solution that knows how to parse most kinds of HTTP request bodies and provides support for streaming, multipart file uploads.

> You can specify a different body parser or a custom function with req, res, and next parameters (just like any other [HTTP middleware function](https://sailsjs.com/documentation/concepts/middleware).)

##### Configuring Skipper

To customize Skipper, first make sure to npm install skipper –save in your app.  Next, uncomment the following code in your config/http.js file:

```javascript
bodyParser: (function _configureBodyParser(){

var skipper = require(‘skipper’);
var middlewareFn = skipper({

strict: true,
// … more Skipper options here …

});
return middlewareFn;

})(),
```

Then pass in any of the following options from the table below.


Property                               | Type        | Default   | Details





	:————————————— |:-----------:|:——— |:——-
	maxWaitTimeBeforePassingControlToApp  | ((number))  | 500     | The maximum number of milliseconds to wait when processing an incoming multipart request before passing control to your app’s policies and controllers.  If this number of milliseconds elapses without any incoming file uploads, and the request hasn’t finished sending other data like text parameters (i.e. the form emits “close”), then control will be passed without further delay.  For apps running behind particular combinations of load balancers, proxies, and/or SSL, it may be necessary to increase this delay (see https://github.com/balderdashy/skipper/issues/71#issuecomment-217556631).
maxTimeToWaitForFirstFile             | ((number))  | 10000   | The maximum number of milliseconds to wait for the first file upload to arrive in any given upstream before triggering .upload()’s callback.  If the first file upload on a given upstream does not arrive before this number of milliseconds have elapsed, then an ETIMEOUT error will fire.
maxTimeToBuffer                         | ((number))  | 4500    | The maximum number of milliseconds to wait for any given live [upstream](https://github.com/balderdashy/skipper#what-are-upstreams) to be plugged in to a receiver after it begins receiving an incoming file upload.  Skipper pauses upstreams to allow custom code in your app’s policies and controller actions to run (e.g. doing database lookups) before you “plug in” the incoming file uploads (e.g. req.file(‘avatar’).upload(…)) to your desired upload target (local disk, S3, gridfs, etc).  Incoming bytes are managed using [a combination of buffering and TCP backpressure](https://howtonode.org/streams-explained) built into Node.js streams.  The max buffer time is a configurable layer of defense to protect against denial of service attacks that attempt to flood servers with pending file uploads.  If the timeout is exceeded, an EMAXBUFFER error will fire.  The best defense against these types of attacks is to plug incoming file uploads into receivers as early as possible at the top of your controller actions.
strict           | ((boolean)) | true    | When enabled, the body of incoming HTTP requests will only be parsed as JSON if it appears to be an array or dictionary (i.e. plain JavaScript object).  Otherwise, if _disabled_, the body parser will accept anything JSON.parse() accepts (including null, true, false, numbers, and double-quote-wrapped strings).  While these other types of data are uncommon in practice, they are technically JSON compatible; therefore, this setting is enabled by default.
extended         | ((boolean)) | true    | Whether or not to understand multiple text parameters in square bracket notation in the URL-encoded request body (e.g. courseId[]=ARY%20301&courseId[]=PSY%20420) encoded  the HTTP body as an array (e.g. courseId: [‘ARY 301’, ‘PSY 420’], …).  Enabled by default.  See https://github.com/expressjs/body-parser#extended for more details.
onBodyParserError | ((function)) | (see details) | An optional function to be called if Skipper encounters an error while parsing the request body (for example, if it encounters malformed JSON).  The function accepts four arguments: err, req, res and next.  Sails provides a default implementation that responds to the request with a 400 status and a message detailing the error encountered.  If no onBodyParserError function is provided, parser errors will be passed to next() and handled by the next available [error-handling middleware](https://expressjs.com/en/guide/error-handling.html).





> Note that, to allow for performance tuning and other advanced configuration, the options you pass in to Skipper this way are also passed through to the underlying Express body parser.  See the [body-parser repo](https://github.com/expressjs/body-parser) for a full list of lower-level options.

### Compatibility

Most middleware compatible with [Express](https://github.com/expressjs/), [Connect](https://github.com/senchalabs/connect), [Kraken](http://krakenjs.com/), [Loopback](https://github.com/strongloop/loopback), or [Pillar](https://pillarjs.github.io/) can also be used in a Sails app.

### Notes

> + Note that this HTTP middleware stack configured in sails.config.http.middleware is only applied to true HTTP requests&mdash;it is ignored when handling virtual requests (e.g. sockets).
> + The middleware named router is what handles all of your app’s explicit routes (i.e. sails.config.routes), as well as shadow routes that are injected for blueprints, policies, etc.
> + You cannot define a custom middleware function with the key order (since sails.config.http.middleware.order has special meaning).

<docmeta name=”displayName” value=”sails.config.http”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # sails.config.i18n

Configuration for Sails’ built-in internationalization and localization features.  By convention, this is set in config/i18n.js, from which you can set your supported locales. For more information see the [concepts section on internationalization](https://sailsjs.com/documentation/concepts/Internationalization).

### Properties


Property           | Type        | Default               | Details |



|:-------------------|:———–:|:----------------------|:——–|
| locales          | ((array))   | [‘en’,’es’,’fr’,’de’] | List of supported [locale codes](http://en.wikipedia.org/wiki/BCP_47). Note that these values and the name of their corresponding translation files must be lowercase.
| localesDirectory | ((string))  | ‘config/locales’     | The app-relative path to the folder containing your locale translations (i.e. stringfiles).  Alternatively, an absolute path maybe provided.
| defaultLocale    | ((string))  | ‘en’                  | The default locale for the site. Note that this setting will be overridden for any request that sends an “Accept-Language” header (i.e. most browsers), but it’s still useful if you need to localize the response for requests made by non-browser clients (e.g. mobile devices, IoT, cURL, Postman, etc.).

<docmeta name=”displayName” value=”sails.config.i18n”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # sails.config.log

Configuration for the [logger](https://sailsjs.com/documentation/concepts/logging) in your Sails app.  These settings apply whenever you call functions like sails.log.debug() or sails.log.error() in your app code, as well as when Sails logs a message to the console automatically.  The options here are conventionally specified in the [config/log.js](https://sailsjs.com/documentation/anatomy/config/log.js) configuration file.

### Properties


Property  | Type        | Default     | Details                                                                             |



|:----------|————-|:------------|:————————————————————————————|
| level   | ((string))  | ‘info’    | Set the level of detail to be shown in your app’s log.
| inspect | ((boolean)) | true      | Set to false to disable captain’s log’s handling of logging, logs will instead be passed to the configured custom logger.  |
| custom  | ((ref))     | undefined | Specify a reference to an instance of a custom logger (such as [Winston](https://github.com/winstonjs/winston)).  If provided, instead of logging directly to the console, the functions exposed by the custom logger will be called, and log messages from Sails will be passed through.  For more information, see [captains-log](https://github.com/balderdashy/captains-log/blob/master/README.md#why-use-a-custom-logger).

### Using a custom logger

It is sometimes useful to configure a custom logger, particularly for regulatory compliance and organizational requirements (e.g. if your company is using a particular logger in other apps).  In the context of Sails, configuring a custom logger also allows you to intercept all log messages automatically created by the framework, which is handy for setting up email notifications about errors and warnings.

> Don’t feel like you _have_ to use a custom logger if you want these sorts of notifications!  In fact, there are usually more straightforward ways to implement features like automated Slack, SMS, or email notifications when errors occur.  One approach is to customize your app’s default server error response ([responses/serverError.js](https://sailsjs.com/documentation/anatomy/my-app/api/responses/server-error-js)).  Another popular option is to use a product like [Papertrail](https://papertrailapp.com/), or a monitoring service like [AppDynamics](https://www.appdynamics.com/nodejs/sails/) or [NewRelic](https://discuss.newrelic.com/t/using-newrelic-with-sails-js/3338/8).

Here’s an example configuring [Winston](https://github.com/winstonjs/winston) as a custom logger, defining both a console transport and file transport.
First of all, add winston as a dependency of your project:

`bash
npm install winston
`

Then, replace the content of config/log.js with the following:

```javascript
// config/log.js

const { version } = require(‘../package’);

const { createLogger, format, transports } = require(‘winston’);
const { combine, timestamp, colorize, label, printf, align } = format;
const { SPLAT } = require(‘triple-beam’);
const { isObject } = require(‘lodash’);

	function formatObject(param) {
	
	if (isObject(param)) {
	return JSON.stringify(param);

}
return param;

}

// Ignore log messages if they have { private: true }
const all = format((info) => {

const splat = info[SPLAT] || [];
const message = formatObject(info.message);
const rest = splat.map(formatObject).join(’ ‘);
info.message = ${message} ${rest};
return info;

});

	const customLogger = createLogger({
	
	format: combine(
	all(),
label({ label: version }),
timestamp(),
colorize(),
align(),
printf(info => ${info.timestamp} [${info.label}] ${info.level}: ${formatObject(info.message)})

),
transports: [new transports.Console()]

});

	module.exports.log = {
	custom: customLogger,
inspect: false
// level: ‘info’

};

```

<docmeta name=”displayName” value=”sails.config.log”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # sails.config.models

Your default, project-wide model settings, conventionally specified in the [config/models.js](https://sailsjs.com/documentation/anatomy/config/models-js) configuration file.

Most of the settings below can also be overridden on a per-model basis&mdash;just edit the appropriate model definition file.  There are some additional model settings, too, which are not listed below; these can _only_ be specified on a per-model basis.  For more details, see [Concepts > Model Settings](https://sailsjs.com/documentation/concepts/orm/model-settings).

### Properties



Property             | Type            | Default                         | Details





	:———————|:---------------:|:——————————- |:——–
	attributes         | ((dictionary))  | _see [Attributes](https://sailsjs.com/documentation/concepts/models-and-orm/attributes)_ | Default [attributes](https://sailsjs.com/documentation/concepts/models-and-orm/attributes) to implicitly include in all of your app’s model definitions.  (Can be overridden on an attribute-by-attribute basis.)





migrate             | ((string))   | _see [Model Settings](https://sailsjs.com/documentation/concepts/orm/model-settings)_        | The [auto-migration strategy](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?migrate) for your Sails app.  How & whether Sails will attempt to automatically rebuild the tables/collections/etc. in your schema every time it lifts.
schema              | ((boolean))     | false                      | Only relevant for models hooked up to a schemaless database like MongoDB.  If set to true, then the ORM will switch into “schemaful” mode.  For example, if properties passed in to .create(), .createEach(), or .update() do not correspond to recognized attributes, then they will be stripped out before saving.
datastore           | ((string))   | ‘default’                     | The default [datastore configuration](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores) any given model will use without a configured override.  Avoid changing this.
primaryKey          | ((string))   | ‘id’             | The name of the attribute that every model in your app should use as its primary key by default.  Can be overridden here or on a per-model basis, but there’s [usually a better way](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?primarykey).


archiveModelIdentity | ((string)) _or_ ((boolean))   | ‘archive’             | The identity of the model to use when calling [.archive()](https://sailsjs.com/documentation/reference/waterline-orm/models/archive).  By default this is the Archive model, an implicit model automatically defined by Sails/Waterline.  Set to false to disable built-in support for soft-deletes.







<docmeta name=”displayName” value=”sails.config.models”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # sails.config.policies
<!–
> FUTURE:
>
> Merge most of the contents of this file into the main reference section on policies.
> Include a simple config reference table (with only one row with property: *) explaining how
> this particular config module is read.  But don’t worry about trying to explain what policies are here– instead, link to the full docs on the subject (again, to reduce duplicate content and make this all more maintainable)
–>

This configuration is a dictionary that maps [policies](https://sailsjs.com/documentation/concepts/policies) to an app&rsquo;s [actions](https://sailsjs.com/documentation/concepts/actions-and-controllers).  See [Concepts > Policies](https://sailsjs.com/documentation/concepts/policies#?using-policies-with-blueprint-actions) for more info.

### Properties


Property    | Type       | Default  | Details |



|:-----------|:———-:|:----------|:——–|
| (any string)  | ((string))<br/>_or_<br/>((dictionary)) | n/a | Any properties added to sails.config.policies will be interpreted as a mapping of policies to a controller or a set of standalone actions.

### Example

```js
module.exports.policies = {

‘*’: ‘isLoggedIn’, // Require user to be logged in to access any action not otherwise mapped in this config
‘UserController’: {

‘login’: true // Always allow access to the user login action

}

}

<docmeta name=”displayName” value=”sails.config.policies”>
<docmeta name=”pageType” value=”property”>

 # sails.config.routes

Configuration for custom (aka “explicit”) routes. sails.config.routes is a dictionary whose keys are URL paths (the “route address”) and whose values are one of several types of route handler configurations (called the “route target”).

For example:

```
module.exports.routes = {


‘GET /’: { view: ‘pages/homepage’ },
‘POST /foo/bar’: { action: ‘foo/bar’ }





}

Please see the [routes concept overview](https://sailsjs.com/documentation/concepts/routes) for a full discussion of Sails routes, and the [custom routes documentation](https://sailsjs.com/documentation/concepts/routes/custom-routes) for a detailed description of the available configurations for both the route address and route target.

<docmeta name=”displayName” value=”sails.config.routes”>
<docmeta name=”pageType” value=”property”>




            

          

      

      

    

  

    
      
          
            
  # sails.config.security

Configuration for your app’s security settings, including how it deals with cross-origin requests (CORS), and which routes require a CSRF token to be included with the request. For an overview of how Sails handles security, see [Concepts > Security](https://sailsjs.com/documentation/concepts/security).

## sails.config.security.cors
Configuration for Sails’ [built-in support for Cross-Origin Resource Sharing](https://sailsjs.com/documentation/concepts/security/cors).  CORS specifies how HTTP requests to your app originating from foreign domains should be treated.  It is primarily used to allow third-party sites to make AJAX requests to your app, which are normally blocked by browsers following the <a href=”http://en.wikipedia.org/wiki/Same-origin_policy” target=”_blank”>same-origin policy</a>.

These options are conventionally set in the config/security.js configuration file.  Note that these settings (with the exception of allRoutes) can be changed on a per-route basis in the [config/routes.js file](https://sailsjs.com/documentation/concepts/routes/custom-routes#?route-target-options).

### Properties


Property    | Type       | Default   | Details |



|:------------|:———-:|:----------|:——–|
| allRoutes | ((boolean))| false     | Indicates whether the other CORS configuration settings should apply to every route in the app by default.
| allowOrigins        | ((array)) or ((string))       | ‘*’      | Array of default hosts (beginning with http:// or https://) to grant cross-domain browser access (e.g. AJAX over CORS).  Alternatively, if this is the string *, then AJAX requests from _any_ domain will be allowed.<br/><br/>**Warning**: If your CORS settings specify allRoutes: true AND allowOrigins: ‘*’, then your app will be fully accessible to sites hosted on foreign domains (except for routes which have their own CORS settings).  If allowCredentials is also true, you will _probably want to set this to an array of explicit hosts!_  If you don’t, then the app will fail to lift for security reasons, unless you circumvent that precaution by enabling the allowAnyOriginWithCredentialsUnsafe: true flag.
| allowRequestMethods |((string))| ‘GET, POST, PUT, DELETE, OPTIONS, HEAD’ |Comma-delimited list of HTTP methods that are allowed to be used in CORS requests.  This is only used in response to [preflight requests](https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS#Preflighted_requests), so the inclusion of GET, POST, OPTIONS and HEAD, although customary, is not necessary.
| allowRequestHeaders |((string))| ‘content-type’ |Comma-delimited list of headers that are allowed to be sent with CORS requests.  This is only used in response to [preflight requests](https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS#Preflighted_requests).  _(For example, if you want cross-origin AJAX requests to be able to include their CSRF token as a request header, you might change this to  `'content-type,x-csrf-token'`.)_
| allowResponseHeaders |((string))|`''`| List of response headers that browsers will be allowed to access.  See [access-control-expose-headers](https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Access-Control-Expose-Headers).
| allowCredentials |((boolean)) | false | Whether or not cookies can be shared in CORS requests.  _(For example, if `allowCredentials` is not enabled, then when Sails receives an AJAX request from a webpage on some other domain, it won't be able to provide `req.session` when the backend code runs.)_ |
| allowAnyOriginWithCredentialsUnsafe |((boolean))|false| A safety precaution.  This flag must be enabled in order to use allowOrigins: ‘*’ and allowCredentials: true _at the same time_.  This essentially negates the security benefits of browsers’ cross-origin policy and should be used very carefully.

### Custom route config example

The following will allow cross-origin AJAX GET, PUT and POST requests to /foo/bar from sites hosted http://foobar.com and https://owlhoot.com.  DELETE requests, or requests from sites on any other domains, will be blocked by the browser.

```javascript
‘/foo/bar’: {

action: ‘foo/bar’,
cors: {

allowOrigins: [’http://foobar.com’,’https://owlhoot.com [http://foobar.com','https://owlhoot.com]’],
allowRequestMethods: ‘GET,PUT,POST,OPTIONS,HEAD’

}

}

sails.config.security.csrf

Configuration for Sails’ built-in [CSRF](http://en.wikipedia.org/wiki/Cross-site_request_forgery) protection middleware. CSRF options are conventionally set in the [config/security.js](https://sailsjs.com/documentation/anatomy/config/security.js) configuration file. For detailed usage instructions, see [Concepts > Security > Cross-Site Request Forgery](https://sailsjs.com/documentation/concepts/security/csrf).

This setting protects your Sails app against cross-site request forgery (or CSRF) attacks. In addition to the user’s session cookie, a would-be attacker also needs this timestamped, secret CSRF token, which is refreshed/granted when the user visits a URL on your app’s domain. This allows you to have certainty that your users’ requests haven’t been hijacked, and that the requests they’re making are intentional and legitimate.

Properties

Property | Type | Default | Details |

|:------------|:———-:|:----------|:——–|
| csrf | ((boolean)) or ((dictionary))| false | CSRF protection is disabled by default to facilitate development. To turn it on, just set sails.config.security.csrf to true, or for more flexibility, specify csrf: true or csrf: false in any route in your [config/routes.js](https://sailsjs.com/anatomy/config/routes-js) file.

Notes

> + In Sails v1.0, sails.config.csrf.grantTokenViaAjax and sails.config.csrf.origin were removed in favor of the [built-in security/grant-csrf-token](https://sailsjs.com/docs/concepts/security/csrf) action.

<docmeta name=”displayName” value=”sails.config.security”>
<docmeta name=”pageType” value=”property”>

 # sails.config.session

Configuration for Sails’ built-in session support.

Sails’ default session integration leans heavily on the great work already done by Express and Connect, but also adds
a bit of its own special sauce by hooking into the request interpreter. This allows Sails to access and auto-save any changes your code makes to req.session when handling a virtual request from Socket.IO. Most importantly, it means you can just write code that uses req.session in the way you might be used to from Express or Connect, whether your controller actions are designed to handle HTTP requests, WebSocket messages, or both.

Properties

Property | Type | Default | Details |

|:------------|:———-:|:----------|:——–|
| adapter | ((string)) | undefined | If left unspecified, Sails will use the default memory store bundled in the underlying session middleware. This is fine for development, but in production, you _must_ pass in the name of an installed scalable session store module instead (e.g. @sailshq/connect-redis). See [Production config](https://sailsjs.com/documentation/reference/configuration/sails-config-session#?production-config) below for details.
| name | ((string)) | sails.sid | The name of the session ID cookie to set in the response (and read from in the request) when sessions are enabled (which is the case by default for Sails apps). If you are running multiple different Sails apps from the same shared cookie namespace (i.e. the top-level DNS domain, like frog-enthusiasts.net), you must be especially careful to configure separate unique keys for each separate app, otherwise the wrong cookie could be used.
| secret | ((string))| _n/a_ | This session secret is automatically generated when your new app is created. Care should be taken any time this secret is changed in production, as doing so will invalidate the session cookies of your users, forcing them to log in again. Note that this is also used as the “cookie secret” for signed cookies.
| cookie | ((dictionary)) | _see [below](https://sailsjs.com/documentation/reference/configuration/sails-config-session#?the-session-id-cookie)_ | Configuration for the session ID cookie, including maxAge, secure, and more. See [below](https://sailsjs.com/documentation/reference/configuration/sails-config-session#?the-session-id-cookie) for more info.
| isSessionDisabled | ((function)) | (see details) | A function to be run for every request which, if it returns a “truthy” value, will cause session support to be disabled for the request (i.e. req.session will not exist). By default, this function will check the request path against the [sails.LOOKS_LIKE_ASSET_RX](https://sailsjs.com/documentation/reference/application/advanced-usage/sails-looks-like-asset-rx) regular expression, effectively disabling session support when requesting [assets](https://sailsjs.com/documentation/concepts/assets).

Advanced session config

If you are using Redis as a session store in development, additional configuration options are available. Most apps can use Sails’ default Redis support as described [here](https://sailsjs.com/documentation/concepts/sessions#?using-redis-as-the-session-store), but some advanced use cases may include the following optional config:

Property | Type | Default | Details |

|:--------------|————|:---------|:——–|
| url | ((string)) | undefined | The URL of the Redis instance to connect to. This may include one or more of the other settings below, e.g. redis://:mypass@myredishost.com:1234/5 would indicate a host of myredishost.com, a port of 1234, a pass of mypass and a db of 5. In general, you should use either url or a combination of the settings below, to avoid confusion.
| host | ((string)) |’127.0.0.1’ | Hostname of your Redis instance. If a url setting is configured, this setting will be ignored.
| port | ((number)) |6379 | Port of your Redis instance. If a url setting is configured, this setting will be ignored.
| pass | ((string)) | undefined | The password for your Redis instance. Leave blank if you are not using a password. If a url setting is configured that includes a password, this setting will override the password in url.
| db | ((number)) |undefined | The index of the database to use within your Redis instance. If specified, must be an integer. _(On typical Redis setups, this will be a number between 0 and 15.)_ If a url setting is configured that includes a db, this setting will override the db in url.
| client | ((ref)) | undefined | An already-connected Redis client to use. If provided, any url, host and port settings will be ignored. This setting is useful if you have a Redis Sentinel setup and need to connect using a module like `ioredis`
| onRedisDisconnect | ((function)) | undefined | An optional function for Sails to call if the Redis connection is dropped. Useful for placing your site in a temporary maintenance mode or “panic mode” (see [sails-hook-panic-mode](https://www.npmjs.com/package/sails-hook-panic-mode) for an example).
| onRedisReconnect | ((function)) | undefined | An optional function for Sails to call if a previously-dropped Redis connection is restored (see onDisconnect above).
| handleConstructingSessionStore | ((function)) | undefined | An optional override function for Sails to call instead of the standard session store construction behavior. To use this setting, please first read and understand the [relevant source code](https://github.com/balderdashy/sails/blob/master/lib/hooks/session/index.js#L415).

> Note: onRedisDisconnect and onRedisReconnect will only be called for Redis clients that are created by Sails for you; if you provide your own Redis client (see the client option above), these functions will _not_ be called automatically in the case of a disconnect or reconnect.

Using other session stores

Any session adapter written for Connect/Express works in Sails, as long as you use a compatible version.

The recommended production session store for Sails.js is Redis… but we realize that, for some apps, that isn’t an option. Fortunately, Sails.js supports almost any Connect/Express-compatible session store– meaning you can store your sessions almost anywhere, whether that’s Mongo, on the local filesystem, or even in a relational database. Check out the community session stores for Sails.js, Express, and Connect [available on NPM](https://www.npmjs.com/search?q=connect%20session-).

The session ID cookie

The built-in session integration in Sails works by using a session ID cookie. This cookie is [HTTP-only](https://www.owasp.org/index.php/HttpOnly) (as safeguard against [XSS exploits](https://sailsjs.com/documentation/concepts/security/xss)), and by default, is set with the name “sails.sid”.

The “__Host-” prefix.

By default, cookies have no integrity against same-site attackers.

In production enviroments, we recommend that you prefix the “name” of your cookie (sails.config.session.name) with “__Host-” to limit the scope of your cookie to a single origin.

You can read more about the “__Host-” prefix [here](https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#attributes).

```js
session: {


name: ‘__Host-sails.sid’





}

> Note: Adding this prefix requires the [“secure” flag](#the-secure-flag) to be set to true.

##### Expiration

The maximum age / expiration of your app’s session ID cookie can be set as a number of milliseconds.

For example, to log users out after 24 hours:

```js
session: {

	cookie: {
	maxAge: 24 * 60 * 60 * 1000

}

}

Otherwise, by default, this option is set as null, meaning that session ID cookies will not send any kind of [“Expires” or “Max Age” header](https://en.wikipedia.org/wiki/HTTP_cookie) and will last only for as long as a user’s web browser is open.

The “secure” flag

Whether to set the [“Secure” flag](https://www.owasp.org/index.php/SecureFlag) on the session ID cookie.

```js
session: {



	cookie: {
	secure: true





}






}

During development, when you are not using HTTPS, you should leave sails.config.session.cookie.secure as undefined (the default).

But in production, you’ll want to set it to true.  This instructs web browsers that they should refuse to send back the session ID cookie _except_ over a secure protocol (https://).

> Note: If you are using HTTPS behind a proxy/load balancer&mdash;for example, on a PaaS like Heroku&mdash;then you should still set secure: true.  But note that, in order for sessions to work with secure enabled, you will _also_ need to set another option called [sails.config.http.trustProxy](https://sailsjs.com/documentation/reference/configuration/sails-config-http).

##### Do I need an SSL certificate?

In production?  Yes.

If you are relying on Sails’s built-in session integration, please always use an SSL certificate in production.  Otherwise, the session ID cookie (or any other secure data) could be transmitted in plain-text, which would make it possible for an attacker in a coffee shop to eavesdrop on one of your authenticated user’s HTTP requests, intercept their session ID cookie, then masquerade as them to wreak havoc.

Also realize that, even if you have an SSL certificate, and you always redirect http:// to https://, for _all_ of your subdomains, it is still important to set secure: true.  (Because without it, even if you redirect all HTTP traffic immediately, that _very first request_ will  still have been made over http://, and thus would have transmitted the session ID cookie in plain text.)

##### Advanced options

To see other available options (like “[domain](https://stackoverflow.com/a/7887384/486547)”) for configuring the session ID cookie in Sails, see [express-session#cookie](https://github.com/expressjs/session/blob/v1.15.6/README.md#cookie).

### Disabling sessions

Sessions are enabled by default in Sails.  To disable sessions in your app, disable the session hook by changing your .sailsrc file.  The process for disabling session is identical to the process for [disabling the Grunt hook](https://sailsjs.com/documentation/concepts/assets/disabling-grunt) (just type session: false instead of grunt: false).

> Note:
> If the session hook is disabled, the session secret configured as sails.config.session.secret will still be used to support signed cookies, if relevant.  If the session hook is disabled _AND_ no session secret configuration exists for your app (e.g. because you deleted config/session.js), then signed cookies will not be usable in your application.  To make more advanced changes to this behavior, you can customize any of your app’s HTTP middleware manually using [sails.config.http](https://sailsjs.com/documentation/reference/configuration/sails-config-http).

<docmeta name=”displayName” value=”sails.config.session”>
<docmeta name=”pageType” value=”property”>




            

          

      

      

    

  

    
      
          
            
  # sails.config.sockets

### What is this?
These configuration options provide transparent access to Socket.IO, the WebSocket/PubSub server encapsulated by Sails.

### Commonly used options


Property      | Type       | Default  | Details |



|:--------------|————|:---------|:——–|
| adapter      |((string))  |`'memory'`| The queue Socket.IO will use to deliver messages.  Can be set to either ‘memory’ or ‘@sailshq/socket.io-redis’.  If ‘@sailshq/socket.io-redis’ is specified, you should be sure @sailshq/socket.io-redis is amongst your app’s dependencies. |
| transports  |((array))  | [‘websocket’]     | An array of allowed transport strategies that Sails/Socket.IO will use when connecting clients.  This should _always_ match the [configuration in your socket client (i.e. sails.io.js)](https://sailsjs.com/documentation/reference/web-sockets/socket-client#?configuring-the-sailsiojs-library)&mdash;if you change transports here, you need to configure them there, and vice versa.<br/><br/> <em>Note that if you opt to modify the default transports, then you may need to do additional configuration in production.  (For example, if you add the polling transport, and your app is running on multiple servers behind a load balancer like Nginx, then you will need to configure that load balancer to support TCP sticky sessions.  However, that _should not_ be necessary out of the box with only the websocket transport enabled.)  See [Deployment > Scaling](https://sailsjs.com/documentation/concepts/deployment/scaling) for more tips and best practices.</em> |
| onlyAllowOrigins | ((array)) | undefined | Array of hosts (beginning with http:// or https://) from which sockets will be allowed to connect.  By default (i.e. while this is undefined) Sails/Socket.IO will allow sockets from _any_ origin to connect, which is useful for testing.  But in production mode, as of Sails v1.0, the framework forces you to configure this option to prevent [cross-site WebSocket hijacking (CSWSH) attacks](https://sailsjs.com/documentation/concepts/security/socket-hijacking).  Consequently, there’s a conventional place to configure this setting in [config/env/production.js](https://sailsjs.com/documentation/anatomy/config/env/production-js), or using environment variables.  For example, if you plan on serving web pages from a local Node.js/Sails.js server running in production mode while testing, you&rsquo;ll probably want to add http://localhost:1337 to this array.<br/><br/>Note that as the name implies (and in contrast to the similar [CORS setting](https://sailsjs.com/documentation/reference/configuration/sails-config-security-cors)), _only_ the origins listed will be allowed to connect.  Also note that this setting is ignored if a connecting socket doesn’t declare an “origin” header in its upgrade request (e.g. a non-browser environment like a native iOS app, command-line script, or custom hardware).  And if you are using a pseudo-browser development platform like Electron, Ionic, React Native, or Cordova/PhoneGap, you’ll need to determine what (if any) “origin” header your tool is attaching to initial socket connection requests.  For example, Ionic, Cordova, and PhoneGap all send file:// as their origin.<br/><br/>Finally, note that if you want to override this behavior altogether with your own custom implementation, you can opt to use the beforeConnect setting instead.

### Redis configuration


If you are configuring your Sails app for production and plan to [scale to more than one server](https://sailsjs.com/documentation/concepts/deployment/scaling), then you should set sails.config.sockets.adapter to ‘@sailshq/socket.io-redis’, set up your Redis instance, and then use the following config to point at it from your app:





Property      | Type       | Default  | Details |



|:--------------|————|:---------|:——–|
| url          | ((string)) | undefined | The connection URL for the Redis instance to connect to.  This may include one or more of the other settings below, e.g. redis://:mypass@myredishost.com:1234/5 would indicate a host of myredishost.com, a port of 1234, a pass of mypass and a db of 5.  In general, you should use either url _or_ a combination of the settings below, to avoid confusion (the url setting will override all of the settings below).
| db           | ((number))  |undefined   | The index of the database to use within your redis instance.  If specified, must be an integer.  _(On most Redis setups, this will be a number between 0 and 15.)_
| host         |((string))  |’127.0.0.1’ | Hostname of your Redis instance.
| pass         | ((string)) | undefined | Password for your Redis instance.
| port         |((number)) |6379   | Port of your Redis instance.

### Advanced configuration

These configuration options provide lower-level access to the underlying Socket.IO server settings for complete customizability.


Property   | Type      | Default  | Details |



|:-----------|:———:|:---------|:——–|
| beforeConnect`|((boolean)), ((function)) | `undefined | A function that runs every time a new client-side socket attempts to connect to the server, and which can be used to reject or allow the incoming connection.  Useful for tweaking your production environment to prevent [DoS](https://sailsjs.com/documentation/concepts/security/ddos) attacks or reject Socket.IO connections based on business-specific heuristics. See [beforeConnect](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets#?beforeconnect) below for more info. |
| afterDisconnect`| ((function)) | `undefined | A function to run when a client-side socket disconnects from the server.  To define your own custom logic, specify a function like afterDisconnect: function (session, socket, cb) {}.
| allowUpgrades | ((boolean)) | true | This is a raw configuration option exposed from Engine.io.  It indicates whether to allow Socket.io clients to upgrade the transport that they are using (e.g. start with polling, then upgrade to a true WebSocket connection).  |
| cookie | ((string)), ((boolean)) | false | This is a raw configuration option exposed from Engine.io.  It indicates the name of the HTTP cookie that contains the connecting Socket.IO client’s socket id.  The cookie will be set when responding to the initial Socket.IO “handshake”.  Alternatively, may be set to false to disable the cookie altogether.  Note that the sails.io.js client does not rely on this cookie, so it is disabled (set to false) by default for enhanced security.  If you are using Socket.IO directly and need to re-enable this cookie, keep in mind that the conventional setting is “io”.  |
| grant3rdPartyCookie | ((boolean)) | true | Whether to expose a GET /__getcookie route that sets an HTTP-only session cookie.  By default, if it detects that it is about to connect to a cross-origin server, the Sails socket client (sails.io.js) sends a JSONP request to this endpoint before it begins connecting.  For user agents where 3rd party cookies are possible, this allows sails.io.js to connect the socket to the cross-origin Sails server using a user’s existing session cookie, if they have one (for example, if they were already logged in). Without this, virtual requests you make from the socket will not be able to access the same session and will need to reauthenticate using some other mechanism.   |
| maxHttpBufferSize | ((number)) | 10E7 | This is a raw configuration option exposed from Engine.io.  It reflects the maximum number of bytes or characters in a message when polling before automatically closing the socket (to avoid [DoS]((https://sailsjs.com/documentation/concepts/security/ddos)). |
| path        | ((string)) | /socket.io | Path that client-side sockets should connect to on the server.  See http://socket.io/docs/server-api/#server(opts:object).
| pingInterval | ((number)) | 25000 | This is a raw configuration option exposed from Engine.io.  It reflects the number of milliseconds to wait between “ping packets” (this is what “heartbeats” has become, more or less).  |
| pingTimeout | ((number)) | 60000 | This is a raw configuration option exposed from Engine.io.  It reflects how many milliseconds without a pong packet to wait before considering a Socket.IO connection closed. |
| sendResponseHeaders`|((boolean))  | `true     | Whether to include response headers in the JWR (JSON WebSocket Response) originated for each socket request (e.g. io.socket.get() in the browser). This doesn’t affect direct Socket.IO usage, unless you’re communicating with Sails via the request interpreter (e.g. making normal calls with the sails.io.js browser SDK).  This can be useful for squeezing out more performance when tuning high-traffic apps, since it reduces total bandwidth usage.  However, as of Sails v0.10, response headers are trimmed whenever possible, so this option should almost never need to be used, even in extremely high-scale applications. |
| serveClient`|((boolean))  | `false     | Whether to serve the default Socket.IO client at /socket.io/socket.io.js.  Occasionally useful for advanced debugging. |
| onRedisDisconnect | ((function)) | undefined | An optional function for Sails to call if the Redis connection is dropped.  Useful for placing your site in a temporary maintenance mode or “panic mode” (see [sails-hook-panic-mode](https://www.npmjs.com/package/sails-hook-panic-mode) for an example).
| onRedisReconnect | ((function)) | undefined | An optional function for Sails to call if a previously-dropped Redis connection is restored (see onDisconnect above).

> Note: onRedisDisconnect and onRedisReconnect will only be called for Redis clients that are created by Sails for you; if you provide your own Redis clients (see below), these functions will _not_ be called automatically in the case of a disconnect or reconnect.

### beforeConnect

During development, when a socket tries to connect, Sails allows it every time (much in the same way any HTTP request is allowed to reach your routes). Then, in production, the onlyAllowOrigins array ensures that only incoming socket connections that originate from the base URLs on the whitelist will be permitted to connect to your app.

If your app needs more flexibility, as an additional precaution you can define your own custom logic to allow or deny socket connections.  To do so, specify a beforeConnect function:
```javascript
beforeConnect: function(handshake, proceed) {

// Send back true to allow the socket to connect.
// (Or send back false to reject the attempt.)
return proceed(undefined, true);

},

> Note that if beforeConnect is used, then the onlyAllowOrigins setting will be ignored. This allows you to accept socket connections from non-traditional clients (for example, in an [Electron app](electron.atom.io)) that may not set an origin header.

Sockets & sessions

When client sockets connect to a Sails app, they authenticate using a session cookie by default (with the session hook enabled). This allows Sails to associate the virtual requests made from the socket with an existing user session, similar to how normal HTTP requests work.

> A note for browser clients: The user’s session cookie is NOT (and will never be) accessible from client-side JavaScript. Using HTTP-only cookies is crucial for your app’s security.

Cross-origin sockets
The sails.io.js client is usually initiated from an HTML page that was already fetched via HTTP, which means that sockets connecting from this sort of browser environment will usually provide a valid session cookie automatically. As a result, everything will behave normally and req.session will be available.

However, in the case of cross-origin sockets, it is possible to receive a connection upgrade request _without a cookie_ (for certain transports, anyway). In this case, there is no way to keep track of the requesting user between virtual requests, since there is no identifying information to link them with a session. The sails.io.js client solves this by sending an HTTP request to a CORS+JSONP endpoint first, in order to get a 3rd party cookie. This cookie is then used when opening the socket connection.

Non-browser clients
Similarly, if a socket connects _without_ providing a session cookie or provides a corrupted cookie, then a temporary, throwaway session entry will be created for it. The same thing happens if the provided session cookie doesn’t match any known session entry.

You can also configure sails.io.js to pass along an override for the session cookie in the form of a ?cookie query parameter in the [url when connecting the socket](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails). Sails will use this instead of the actual session cookie that may or may not have been sent in the initial connection upgrade request. For example, if you were building a standalone Electron app, and you disabled autoConnect in favor of connecting a socket manually, you might do:

`javascript
var hotSocket = io.sails.connect('http://localhost:1337?cookie=smokeybear');
`

Providing your own Redis clients

By default, Sails will create new Redis clients in the background when using the @sailshq/socket.io-redis adapter. In some cases, you may instead need to create your own Redis clients for PubSub (typically using the node-redis or ioredis modules) and provide them to Sails for use in PubSub. This often comes up when using a Redis Sentinel setup, which requires that clients connect using a module like ioredis. The following advanced configuration options allow you to pass already-connected Redis clients and related config info to Sails.

Property | Type | Default | Details |

|:-----------|:———:|:---------|:——–|
| pubClient | ((ref)) | undefined | A custom Redis client used for _publishing_ on channels used by Socket.IO. If unspecified, Sails will create a client for you. |
| subClient | ((ref)) | undefined | A custom Redis client used for _subscribing_ to channels used by Socket.IO. If unspecified, Sails will create a client for you. |
| adminPubClient`| ((ref)) | `undefined | A custom Redis client for _publishing_ on the internal Sails admin bus, which allows for inter-server communication. If you provide a client for pubClient, you’ll likely need to provide a client for this setting as well.
| adminSubClient`| ((ref)) | `undefined | A custom Redis client for _subscribing_ to the internal Sails admin bus, which allows for inter-server communication. If you provide a client for subClient, you’ll likely need to provide a client for this setting as well.
| subEvent | ((string)) | message | The Redis client event name to subscribe to. When using clients created with ioredis, you’ll likely need to set this to messageBuffer. |

Notes
> + In older versions of Sails (<v0.11) and Socket.IO (<v1.0), the beforeConnect setting was called authorization.

<docmeta name=”displayName” value=”sails.config.sockets”>
<docmeta name=”pageType” value=”property”>

 # sails.config.views

Configuration for your app’s server-side [views](https://sailsjs.com/documentation/concepts/Views). The options are conventionally specified in the [config/views.js](https://sailsjs.com/documentation/anatomy/config/views.js) configuration file.

Properties

Property | Type | Default | Details |

|:------------|:———-:|:----------|:——–|
| layout | ((string)) -or- ((boolean)) | “layout” | Set the default [layout](https://sailsjs.com/documentation/concepts/views/layouts) for your app by specifying the relative path to the desired layout file from your views folder (i.e. views/), or disable layout support altogether with false. Built-in support for layouts is only relevant when using ejs (see below).
| extension | ((string)) | “ejs” | The file extension for view files. |
| getRenderFn | ((function)) | none | A function that Sails will call to get the rendering function for your desired view engine. See the [view engine documentation](http://sailsjs.com/documentation/concepts/views/view-engines) for more info about specifying a getRenderFn value. If this setting is undefined, Sails will use the built-in EJS renderer.
| locals | ((dictionary)) | {} | Default data to be included as [view locals](http://sailsjs.com/documentation/concepts/views/locals) every time a server-side view is compiled anywhere in this app. If an optional locals argument was passed in directly via res.view(), its properties take precedence when both dictionaries are merged and provided to the view (more on that below). |

Notes

> + If your app is NOT using ejs (the default view engine) Sails will function as if the layout option was set to false. To take advantage of layouts when using a custom view engine like Jade or Handlebars, check out [that view engine’s documentation](https://sailsjs.com/documentation/concepts/views/view-engines) to find the appropriate syntax.
> + As of Sails 0.12.0, app-wide locals from sails.config.views.locals are combined with any one-off locals you use with res.view() using a shallow merge strategy. That is, if your app-wide locals configuration is {foo: 3, bar: { baz: ‘beep’ } }, and then you use res.view({bar: ‘boop’}), your view will have access to foo (3) and bar (‘boop’).

<docmeta name=”displayName” value=”sails.config.views”>
<docmeta name=”pageType” value=”property”>

 # Configuration (sails.config)

The sails.config object contains the runtime values of [your app’s configuration](https://sailsjs.com/documentation/concepts/configuration). It is assembled automatically when Sails loads your app; merging together command-line arguments, environment variables, your .sailsrc file, and the configuration objects exported from any and all modules in your app’s [config/](https://sailsjs.com/documentation/anatomy/config) directory.

For more general info about how to configure your Sails app, see the [configuration concepts guide](https://sailsjs.com/documentation/concepts/configuration). See the other pages in this reference section for details on the configuration files that come with every new Sails app, or read about [custom configuration](https://sailsjs.com/documentation/reference/configuration/sails-config-custom).

<docmeta name=”displayName” value=”Configuration”>

 # Waterline (ORM)

By default, new Sails apps are bundled with an ORM called [Waterline](http://waterlinejs.org) (implemented in the [sails-hook-orm](http://npmjs.com/package/sails-hook-orm) dependency).

> To learn more about using Waterline, start in [Concepts > Models & ORM](https://sailsjs.com/documentation/concepts/models-and-orm).

Reference

This section of the documentation contains a reference of all of the methods available at runtime on [models](https://sailsjs.com/documentation/reference/waterline-orm/models), [queries](https://sailsjs.com/documentation/reference/waterline-orm/queries), and [datastores](https://sailsjs.com/documentation/reference/waterline-orm/datastores).

<docmeta name=”displayName” value=”Waterline (ORM)”>

 # Working with datastores

Datastores represent the data sources configured for your app. A datastore usually represents a particular database, whether that’s a database running within a locally installed MySQL server, a remote PostgreSQL database running in your company’s data center, or a remote MongoDB database hosted by a cloud provider.

Configuring datastores

Datastores are configured in [sails.config.datastores](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores).

Sails apps start out with an implicit datastore which is used by all of your models by default. For many apps, this is sufficient, but if you are building an app that needs to work with multiple databases, you may also find it helpful to configure additional, named datastores like legacyProductDb.

Using datastores without a model

Every [model](https://sailsjs.com/documentation/concepts/models-and-orm/models) in a Sails app is wired up to a particular datastore, so every time you call a built-in model method, the model communicates with its configured datastore implicitly.

Even so, it’s sometimes useful to be able to communicate with a datastore _outside_ of the context of any particular model. So, when your app lifts, Sails automatically instantiates objects called _registered datastore instances_ for each of your configured datastores. To access one of these at runtime, call either [sails.getDatastore()](https://sailsjs.com/documentation/reference/application/sails-get-datastore) or the [.getDatastore() model method](https://sailsjs.com/documentation/reference/waterline-orm/models/get-datastore).

Registered datastores expose some methods and properties of their own, like .leaseConnection() and .manager, which provide an easy way to talk directly to the underlying database. (The rest of the pages in this section of the documentation are devoted to covering these datastore methods and properties in detail.)

<docmeta name=”displayName” value=”Datastores”>

 # .driver

The generic, stateless, low-level driver for this datastore (if supported by the adapter).

`usage
datastore.driver;
`

> This property is not guaranteed to exist for all database adapters. If the datastore’s underlying adapter does not support the [standardized driver interface](https://github.com/node-machine/driver-interface), then driver will not exist.

Example

Imagine you’re building your own structured data visualizer (e.g. phpMyAdmin). You might want to connect to any number of different databases dynamically.

```javascript
// Get the generic, stateless driver for our database (e.g. MySQL).
var Driver = sails.getDatastore().driver;

// Create our own dynamic connection manager (e.g. connection pool)
var manager = (


await Driver.createManager({ connectionString: req.param(‘connectionUrl’) })




).manager;

var db;
try {



	db = (
	await Driver.getConnection({ manager: managerReport.manager })





).connection;





	} catch (err) {
	await Driver.destroyManager({ manager: managerReport.manager });
throw err;





}

// - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Do some stuff here…
// e.g.
//     await Driver.sendNativeQuery({
//       connection: db,
//       nativeQuery: ‘…’
//     });
// - - - - - - - - - - - - - - - - - - - - - - - - - - - -

// Finally, before we continue, tear down the dynamic connection manager.
// (this also takes care of releasing the active connection we acquired above)
await Driver.destroyManager({ manager: managerReport.manager });

return res.ok();
```

<docmeta name=”displayName” value=”.driver”>
<docmeta name=”pageType” value=”property”>

 # .leaseConnection()

Lease a new connection from the datastore for use in running multiple queries on the same connection (i.e. so that the logic provided in during can reuse the db connection).

`usage
await datastore.leaseConnection(during);
`

Or

	var result = await datastore.leaseConnection(during);

Usage
| | Argument | Type | Details
|---|———————|---------------------|:————|
| 1 | during | ((function)) | A [procedural parameter](https://en.wikipedia.org/wiki/Procedural_parameter) that Sails will call automatically when a connection has been obtained and made ready for you. It will receive the arguments specified in the “During” usage table below. |

During
| | Argument | Type | Details
|---|———————|---------------------|:————|
| 1 | db | ((ref)) | Your newly-leased database connection. (See [.usingConnection()](https://sailsjs.com/documentation/reference/waterline-orm/models/using-connection) for more information on what to do with this.) |

> Note that prior to Sails 1.1.0, the recommended usage of .leaseConnection() expected your “during” code to call a callback (proceed) when it finished. This is no longer necessary as long as you do not actually include a second argument in the function signature of your “during” code.

Result

Type | Details |

|---------------------|:———————————————————————————|
| ((Ref?)) | The optional result data sent back from during. In other words, if, in your during function, you did return ‘foo’;, then this will be ‘foo’. |

Errors

Name | Type | When? |

|:----------------|———————|:---|
| UsageError | ((Error)) | Thrown if something invalid was passed in.
| AdapterError | ((Error)) | Thrown if something went wrong in the database adapter.
| Error | ((Error)) | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

Example

Lease a database connection from the default datastore, then use it to send two queries before releasing it back to the pool.

```javascript
var inventory = await sails.getDatastore()
.leaseConnection(async (db)=> {


var location = await Location.findOne({ id: inputs.locationId })
.usingConnection(db);
if (!location) {


let err = new Error(‘Cannot find location with that id (‘+inputs.locationId+’)’);
err.code = ‘E_NO_SUCH_LOCATION’;
throw err;




}

// Get all products at the location
var productOfferings = await ProductOffering.find({ location: inputs.locationId })
.populate(‘productType’)
.usingConnection(db);

return productOfferings;




})
.intercept(‘E_NO_SUCH_LOCATION’, ‘notFound’);

// All done!  Whatever we were doing with that database connection worked.
// Now we can proceed with our business.
```

<docmeta name=”displayName” value=”.leaseConnection()”>
<docmeta name=”pageType” value=”method”>

 # .manager

The live connection manager for this datastore.

`usage
datastore.manager
`

> Depending on the adapter, this might represent a connection pool, a single connection, or just a reference to a preconfigured client library instance.

Example
Access a raw Mongo collection instance representing a model Pet.
``javascript
// Since the db connection manager exposed by `sails-mongo is actually
// the same as the Mongo client’s db instance, we can treat it as such.
var db = Pet.getDatastore().manager;

// Now we can do anything we could do with a Mongo db instance:
var rawMongoCollection = db.collection(Pet.tableName);
```

<docmeta name=”displayName” value=”.manager”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # .sendNativeQuery()

Execute a raw SQL query using this datastore.

`usage
var rawResult = await datastore.sendNativeQuery(sql, valuesToEscape);
`

> .sendNativeQuery() is only available on Sails/Waterline [datastores](https://sailsjs.com/documentation/reference/waterline-orm/datastores) that are configured to use a SQL database (e.g. MySQL, SQL Server, or PostgreSQL). Note that exact SQL and result format varies between databases, so you’ll need to refer to the documentation for your underlying database adapter. (See below for a simple example to help get you started.)

### Usage
|   |     Argument        | Type                | Details
|---|———————|---------------------|:————|
| 1 | sql                 | ((string))          | A SQL string written in the appropriate dialect for this database.  Allows template syntax like $1, $2, etc. (See example below.)  If you are using custom table names or column names, be sure to reference those directly (rather than model identities and attribute names).  |
| 2 | valuesToEscape     | ((array?))           | An array of dynamic, untrusted strings to SQL-escape and inject within sql.  _(If you have no dynamic values to inject, then just omit this argument or pass in an empty array here.)_

##### Result


Type                | Details |



|:--------------------|:———————————————————————————|
| ((Ref?))            | The raw result from the database adapter, if any. _(The exact format of this raw result data varies depending on the SQL query you passed in, as well as the adapter/dialect you’re using. See example below for links to relevant documentation.)_ |

##### Errors


Name        | Type                | When? |



|:----------------|———————|:---------------------------------------------------------------------------------|
| UsageError      | ((Error))           | Thrown if something invalid was passed in.
| AdapterError    | ((Error))           | Thrown if something went wrong in the database adapter.
| Error           | ((Error))           | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

### Example

> Below, you’ll find a generic example that works with just about any relational database.  But remember: usage and result data vary depending on the SQL query you send, as well as on the adapter/dialect you’re using.  The standard [MySQL adapter](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters#?sailsmysql) for Sails and Waterline uses the [mysql](http://npmjs.com/package/mysql) NPM package.  The [PostgreSQL adapter](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters#?sailspostgresql) uses [pg](http://npmjs.com/package/pg).

``js
// Build our SQL query template.
var NAMES_OF_PETS_SQL = `
SELECT pet.name
FROM pet
WHERE pet.species_label = $1 OR pet.species_label = $2;

// Send it to the database.
var rawResult = await sails.sendNativeQuery(NAMES_OF_PETS_SQL, [ ‘dog’, ‘cat’ ]);

sails.log(rawResult);
// (result format depends on the SQL query that was passed in, and the adapter/dialect you’re using)

// Then parse the raw result and do whatever you like with it.

return exits.success();
```

Custom table/column names

The SQL query you write should refer to table names and column names, not model identities and attribute names. If your models are defined with custom table names, or if their attributes are defined with custom column names, you’ll want to be sure you’re using those custom names in your native SQL queries.

Are you using custom table/column names and concerned about scattering them throughout your code, because they might change? Fortunately, there’s a way to work around this. By using the underlying references to tableName and columnName available on your Waterline model, you can build your SQL query templates without directly referencing column name and table names.

For example:

```js
var NAMES_OF_PETS_SQL = `
SELECT ${Pet.tableName}.${Pet.schema.name.columnName}
FROM ${Pet.tableName}
WHERE


${Pet.tableName}.${Pet.schema.speciesLabel.columnName} = $1
OR
${Pet.tableName}.${Pet.schema.speciesLabel.columnName} = $2





`;

Be aware that you still have to deal with custom column names on the way out!  The rawResult you get back from .sendNativeQuery() is inherently database-specific and tied to the physical layer, thus it will inherit any complexity you’ve set up there (including custom table/column names from your model definitions).

### Notes
> + This method only works with SQL databases.  If you are using another database like MongoDB, use [.manager](https://sailsjs.com/documentation/reference/waterline-orm/datastores/manager) to get access to the raw MongoDB client, or [.driver](https://sailsjs.com/documentation/reference/waterline-orm/datastores/driver) to get access to the static, underlying db library (e.g. mysql, pg, etc.).
> + Depending on the adapter you are using, the valuesToEscape may be mutated. This was a deliberate decision that was made for performance reasons, but may change in a future major version of Sails. For now if you are passing in a variable for valuesToEscape and you’re using that variable later on in your code, clone it first.

<docmeta name=”displayName” value=”.sendNativeQuery()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # .transaction()

Fetch a preconfigured, deferred object hooked up to the sails-mysql or sails-postgresql adapter (and consequently the appropriate driver).

`usage
await datastore.transaction(during);
`

or


	var result = await datastore.transaction(during);




### Usage
|   |     Argument        | Type                | Details
|---|———————|---------------------|:————|
| 1 | during              | ((function))        | See parameters in the “during usage” table below. |

##### During
|   |     Argument        | Type                | Details
|---|———————|---------------------|:————|
| 1 | db                  | ((ref))             | The leased (transactional) database connection. (See [.usingConnection()](https://sailsjs.com/documentation/reference/waterline-orm/queries/using-connection) for more information on what to do with this.) |

> Note that prior to Sails 1.1.0, the recommended usage of .transaction() expected your “during” code to call a callback (proceed) when it finished.  This is no longer necessary as long as you do not actually include a second argument in the function signature of your “during” code.

##### Result
| Type                | Details |
|---------------------|:———————————————————————————|
|  ((Ref?))            | The optional result data sent back from during.  In other words, if in your during function you did return ‘foo’;, then this will be ‘foo’. |

##### Errors


Name        | Type                | When? |



|:----------------|———————|:---------------------------------------------------------------------------------|
| UsageError      | ((Error))           | Thrown if something invalid was passed in.
| AdapterError    | ((Error))           | Thrown if something went wrong in the database adapter.
| Error           | ((Error))           | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

### Example

Subtract the specified amount from one user’s balance and add it to another’s.

```javascript
// e.g. in an action:

var flaverr = require(‘flaverr’);

await sails.getDatastore()
.transaction(async (db)=> {

var myAccount = await BankAccount.findOne({ owner: this.req.session.userId })
.usingConnection(db);
if (!myAccount) {

throw new Error(‘Consistency violation: Database is corrupted– logged in user record has gone missing’);

}

var recipientAccount = await BankAccount.findOne({ owner: inputs.recipientId }).usingConnection(db)
if (!recipientAccount) {

throw flaverr(‘E_NO_SUCH_RECIPIENT’, new Error(‘There is no recipient with that id’));

}

// Do the math to subtract from the logged-in user’s account balance,
// and add to the recipient’s bank account balance.
var myNewBalance = myAccount.balance - inputs.amount;

// If this would put the logged-in user’s account balance below zero,
// then abort. (The transaction will be rolled back automatically.)
if (myNewBalance < 0) {

throw flaverr(‘E_INSUFFICIENT_FUNDS’, new Error(‘Insufficient funds’));

}

// Update the current user’s bank account
await BankAccount.update({ owner: this.req.session.userId })
.set({

balance: myNewBalance

})
.usingConnection(db);

// Update the recipient’s bank account
await BankAccount.update({ owner: inputs.recipientId })
.set({

balance: recipientAccount.balance + inputs.amount

})
.usingConnection(db);

})
.intercept(‘E_INSUFFICIENT_FUNDS’, ()=>’badRequest’)
.intercept(‘E_NO_SUCH_RECIPIENT’, ()=>’notFound’);
```

> Note that the example above is just a demonstration; in practice, this kind of increment/decrement logic should also include row-level locking.  [Unsure?](https://sailsjs.com/support).

<docmeta name=”displayName” value=”.transaction()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .addToCollection()

Add one or more existing child records to the specified collection (e.g. the comments of BlogPost #4).

`usage
await Something.addToCollection(parentId, association)
.members(childIds);
`

### Usage


|     Argument        | Type                                         | Details                            |



|---|:——————–|----------------------------------------------|:———————————–|
| 1 |  parentId           | ((number)) or ((string))                     | The primary key value(s) (i.e. ids) for the parent record(s). <br/>Must be a number or string (e.g. ‘507f191e810c19729de860ea’ or 49).  <br/>Alternatively, an array of numbers or strings may be specified (e.g. [‘507f191e810c19729de860ea’, ‘14832ace0c179de897’] or [49, 32, 37]).  In this case, _all_ of the child records will be added to the appropriate collection of each parent record.
| 2 |  association        | ((string))                                   | The name of the plural (“collection”) association (e.g. “pets”).
| 3 |  childIds           | ((array))                                    | The primary key values (i.e. ids) of the child records to add. _Note that this does not [create](https://sailsjs.com/documentation/reference/waterline-orm/models/create) these child records, it just links them to the specified parent(s)._

##### Errors


Name        | Type                | When? |



|:----------------|———————|:---------------------------------------------------------------------------------|
| UsageError      | ((Error))           | Thrown if something invalid was passed in.
| AdapterError    | ((Error))           | Thrown if something went wrong in the database adapter.
| Error           | ((Error))           | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

### Example

For user 3, add pets 99 and 98 to the “pets” collection:

`javascript
await User.addToCollection(3, 'pets')
.members([99,98]);
`

> If either user record already has one of those pets in its “pets”, then we just silently skip over it.

### Edge cases


	If an empty array of child ids is provided, then this is a <a href=”https://en.wikipedia.org/wiki/NOP_(code)” target=”_blank”>no-op</a>.


	If an empty array of parent ids is provided, then this is a <a href=”https://en.wikipedia.org/wiki/NOP_(code)” target=”_blank”>no-op</a>.


	If the parent id (or any _one_ of the parent ids, if specified as an array) does not actually correspond with an existing, persisted record, the exact behavior depends on what kind of association this is:
+ If this collection is a 1-way association, or a 2-way association where the other side is plural ([many-to-many](https://sailsjs.com/documentation/concepts/models-and-orm/associations/many-to-many)), then Waterline pretends like the parent record(s) exist anyways, tracking their relationships as prearranged, “aspirational” junction records in the database.
+ If this is a 2-way association where the other side is singular ([one-to-many](https://sailsjs.com/documentation/concepts/models-and-orm/associations/one-to-many)), then the missing parent records are simply ignored.


	Along the same lines, if one of the child ids does not actually correspond with an existing, persisted record, then:
+ If this is a 1-way association, or a 2-way association where the other side is plural ([many-to-many](https://sailsjs.com/documentation/concepts/models-and-orm/associations/many-to-many)), then Waterline pretends like these hypothetical child record(s) exist anyways, tracking their relationships as prearranged, “aspirational” junction records in the database.
+ If this is a 2-way association where the other side is singular ([one-to-many](https://sailsjs.com/documentation/concepts/models-and-orm/associations/one-to-many)), then the missing child records are simply ignored.


	If a parent record’s collection _already has_ one or more of these children as members, then, for performance reasons, those memberships might be tracked again (e.g. stored in your database’s join table multiple times).  In most cases, that’s OK, since it usually doesn’t affect future queries (for example, when populating the relevant parent record’s collection, the double-tracked relationship will not result in the child being listed more than once).  If you do need to prevent duplicate join table records, there’s an easy way to work around this&mdash;assuming you are using a relational database like MySQL or PostgreSQL, then you can create a multi-column index on your join table.  Doing so will cause queries like this to result in an AdapterError with code: ‘E_UNIQUE’.




### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).

> + If the association is “2-way” (meaning it has via) then the child records will be modified accordingly.  If the attribute on the other side is singular, then each child record’s foreign key will be changed.  If it’s plural, then each child record’s collection will be modified accordingly.

> + In addition, if the via points at a singular (“model”) attribute on the other side, then .addToCollection() will “steal” these child records if necessary.  For example, imagine you have an Employee model with this plural (“collection”) attribute: involvedInPurchases: { collection: ‘Purchase’, via: ‘cashier’ }.  If you executed Employee.addToCollection(7, ‘involvedInPurchases’, [47]) to assign this purchase to employee #7 (Dolly), but purchase #47 was already associated with a different employee (e.g. #12, Motoki), then this would “steal” the purchase from Motoki and give it to Dolly.  In other words, if you executed Employee.find([7, 12]).populate(‘involvedInPurchases’), Dolly’s involvedInPurchases array would contain purchase #47 and Motoki’s would not.

<docmeta name=”displayName” value=”.addToCollection()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .archive()

Archive (“soft-delete”) records that match the specified criteria, saving them as new records in the built-in Archive model, then destroying the originals.

`usage
await Something.archive(criteria);
`

#### Usage


|     Argument        | Type                                         | Details                            |



|---|:——————–|----------------------------------------------|:———————————–|
| 1 |    criteria         | ((dictionary))                               | Records that match this [Waterline criteria](https://github.com/balderdashy/waterline-docs/blob/master/queries/query-language.md) will be archived.  Be warned, if you specify an empty dictionary ({}) as your criteria, _all records will be destroyed!_ |

##### Callback


|     Argument        | Type                | Details |



|---|:——————–|---------------------|:—————————————————————————–|
| 1 |    err              | ((Error?))          | The error that occurred, or null if there were no errors.
| 2 |  _archivedRecords_  | ((array?)) of ((dictionary))  |  For improved performance, the archived records are not provided to this callback by default.  But if you chain .fetch(), then the recently archived records will be sent back. (Be aware that this requires an extra database query in some adapters.)

### Example

To archive a particular user in the the database, use [.archiveOne()](https://sailsjs.com/documentation/reference/waterline/archive-one).

Or to archive multiple records in the the database:

`javascript
await Pet.archive({ lastActiveAt: { '<': Date.now()-1000*60*60*24*365 } });
`

### Accessing archived records
If you need to access archived records in the future, you can do so by searching the Archive model.  For example, you might pass in the original record’s primary key and [model identity](https://sailsjs.com/documentation/reference/waterline-orm/models#?sailsmodels) as constraints in a query.

For example, to retrieve the archive describing the user we got rid of above:

```javascript
var archive = await Archive.findOne({

fromModel: ‘user’,
originalRecordId: 1

});

// The data from the original record is stored as archive.originalRecord.
```

### Notes
> This method is best used in situations where you would otherwise use [.destroy()](https://sailsjs.com/documentation/reference/waterline-orm/models/destroy), but you still need to keep the deleted data somewhere (e.g. for compliance reasons).  If you anticipate needing to access the data again in your app (e.g. if you allow un-deleting), you may want to consider using an isDeleted flag instead, since archived records are more difficult to work with programmatically.  (There is no built-in “unarchive”.)

<docmeta name=”displayName” value=”.archive()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .archiveOne()

Archive (“soft-delete”) the record that matches the specified criteria, saving it (if it exists) as a new record in the built-in Archive model, then destroying the original.

`usage
var originalRecord = await Something.archiveOne(criteria);
`

> Before attempting to modify the database, Waterline will check to see if the given criteria would match more than one record and, if so, it will throw an error instead of proceeding.

### Usage


|     Argument        | Type              | Details                            |



|---|:——————–|-------------------|:———————————–|
| 1 | criteria            | ((dictionary))    | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching the record in the database.

##### Result


Type                | Description      |



|:--------------------|:—————–|
| ((dictionary?))     | Since this method never archives more than one record, if a record is archived then it is always provided as a result.  Otherwise, this returns undefined.

##### Errors

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

### Example

```javascript
var finn = await User.archiveOne({ firstName: ‘Finn’ });
if (finn) {

sails.log(‘Archived the user named “Finn”.’);

	} else {
	sails.log(‘The database does not have a user named “Finn”.’);

}

Notes
> This method is best used in situations where you would otherwise use [.destroyOne()](https://sailsjs.com/documentation/reference/waterline-orm/models/destroy-one), but you still need to keep the deleted data somewhere (for compliance reasons, maybe). If you anticipate needing to access the data again in your app (if you allow un-deleting, for example), you may want to consider using an isDeleted flag instead, since archived records are more difficult to work with programmatically. (There is no built-in “unarchive”.)
> + This method does not support .fetch(), because it _always_ returns the archived record, if one was matched.

<docmeta name=”displayName” value=”.archiveOne()”>
<docmeta name=”pageType” value=”method”>

 # .avg()

Get the aggregate mean of the specified attribute across all matching records.

`usage
var average = await Something.avg(numericAttrName, criteria);
`

Usage

| Argument | Type | Details |

|---|:——————–|--|:———————————–|
| 1 | numericAttrName | ((string)) | The name of the numeric attribute whose mean will be calculated.
| 2 | _criteria_ | ((dictionary?)) | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching records in the database. If no criteria is specified, the average will be computed across _all_ of this model’s records. avg queries do not support pagination using skip and limit or projections using select.

Result

Type | Description |

|---------------------|:—————–|
| ((number)) | The aggregate mean of the specified attribute across all matching records.

Errors

Name | Type | When? |

|:----------------|———————|:---|
| UsageError | ((Error)) | Thrown if something invalid was passed in.
| AdapterError | ((Error)) | Thrown if something went wrong in the database adapter.
| Error | ((Error)) | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

Example

Get the average balance of bank accounts owned by people between the ages of 35 and 45.

```javascript
var averageBalance = await BankAccount.avg(‘balance’)
.where({


ownerAge: { ‘>=’: 35, ‘<=’: 45 }





});

### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).
> + Some databases like MySQL may return null for this kind of query, however it’s best practice for Sails/Waterline adapter authors to return 0 for consistency and type safety in app-level code.

<docmeta name=”displayName” value=”.avg()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # .count()

Get the total number of records matching the specified criteria.

`usage
var numRecords = await Model.count(criteria);
`

### Usage


# | Argument      | Type                  | Details    |



|---|—————|:----------------------|:———–|
| 1 | _criteria_    | ((dictionary?))       | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching records in the database.  Note that count queries do not support pagination using skip and limit or projections using select.

##### Result


Type                | Description      |



|---------------------|:—————–|
| ((number))          | The number of records from your database that match the given criteria.

##### Errors


Name                | Type                | When?                                                        |



|:--------------------|———————|:-------------------------------------------------------------|
| UsageError          | ((Error))           | Thrown if something invalid was passed in.
| AdapterError        | ((Error))           | Thrown if something went wrong in the database adapter.
| Error               | ((Error))           | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

### Example

`javascript
var total = await User.count({name:'Flynn'});
sails.log(`There ${total===1?'is':'are'} ${total} user${total===1?'':'s'} named "Flynn".`);
`

### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).

<docmeta name=”displayName” value=”.count()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .create()

Create a record in the database.

`usage
await Something.create(initialValues);
`

or


	var createdRecord = await Something.create(initialValues).fetch();




### Usage


| Argument            | Type                         | Details                               |



|---|:——————–|------------------------------|:————————————–|
| 1 | initialValues       | ((dictionary))               | The initial values for the new record.  _(Note that, if this model is in [“schemaful” mode](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?schema), then any extraneous keys will be silently omitted.)_

> Note: For performance reasons, as of Sails v1.0 / Waterline 0.13, the initialValues dictionary passed into this model method will be mutated in-place in most situations (whereas in Sails/Waterline v0.12, this was not necessarily the case).

##### Result


Type                | Description      |



|---------------------|:—————–|
| ((dictionary?))     | For improved performance, the created record is not provided as a result by default.  But if you chain .fetch(), then the newly-created record will be sent back. (Be aware that this requires an extra database query in some adapters.)

##### Errors


Name        | Type                | When? |



|--------------------|———————|:---------------------------------------------------------------------------------|
| UsageError            | ((Error))           | Thrown if something invalid was passed in.
| AdapterError     | ((Error))           | Thrown if something went wrong in the database adapter. See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for an example of how to negotiate a uniqueness error (i.e. from attempting to create a record with a duplicate that would violate a uniqueness constraint).
| Error             | ((Error))           | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

##### Meta keys


Key                 | Type              | Details                                                        |



|:--------------------|——————-|:---------------------------------------------------------------|
| fetch               | ((boolean))       | If set to true, then the created record will be sent back.<br/><br/>Defaults to false.

> For more information on meta keys, see [.meta()](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).

### Example

To create a user named Finn in the database:

```javascript
await User.create({name:’Finn’});

return res.ok();
```

##### Fetching the newly-created record
```javascript
var createdUser = await User.create({name:’Finn’}).fetch();

sails.log(‘Finn's id is:’, createdUser.id);
```

### Negotiating errors

It’s important to always handle errors from model methods.  But sometimes, you need to look at errors in a more granular way. To learn more about the kinds of errors Waterline returns, and for examples of how to handle them, see [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors).

### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).

<docmeta name=”displayName” value=”.create()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .createEach()

Create a set of records in the database.

`usage
await Something.createEach(initialValues);
`

or


	var createdRecords = await Something.createEach(initialValues).fetch();




### Usage


|     Argument        | Type                                         | Details                            |



|---|:——————–|----------------------------------------------|:———————————–|
| 1 |  initialValues      | ((array?))                                   | An array of dictionaries with attributes for the new records.

> Note: For performance reasons, as of Sails v1.0 / Waterline 0.13, the dictionaries in the initialValues array passed into this model method will be mutated in-place in most situations (whereas in Sails/Waterline v0.12, this was not necessarily the case).

##### Result


Type                | Description      |



|---------------------|:—————–|
| ((array?)) of ((dictionary))  | The created records are not provided as a result by default, in order to optimize for performance.  To override the default setting, chain .fetch() and the newly created records will be sent back. (Be aware that this requires an extra database query in some adapters.)

##### Errors


Name        | Type                | When? |



|--------------------|———————|:---------------------------------------------------------------------------------|
| UsageError            | ((Error))           | Thrown if something invalid was passed in.
| AdapterError     | ((Error))           | Thrown if something went wrong in the database adapter. See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for an example of how to negotiate a uniqueness error (arising from an attempt to create a record with a duplicate value that would violate a uniqueness constraint).
| Error             | ((Error))           | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

##### Meta keys


Key                 | Type              | Details                                                        |



|:--------------------|——————-|:---------------------------------------------------------------|
| fetch               | ((boolean))       | If set to true, then the created records will be sent back.<br/><br/>Defaults to false.

> For more information on meta keys, see [.meta()](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).

### Example

To create users named Finn and Jake in the database:

`javascript
await User.createEach([{name:'Finn'}, {name: 'Jake'}]);
`

##### Fetching newly created records
`javascript
var createdUsers = User.createEach([{name:'Finn'}, {name: 'Jake'}]).fetch();
sails.log(`Created ${createdUsers.length} user${createdUsers.length===1?'':'s'}.`);
`

### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).
> + The number of records you can add with .createEach is limited by the maximum query size of the particular database you&rsquo;re using.  MySQL has a 4MB limit by default, but this can be changed via the [max_allowed_packet setting](https://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_max_allowed_packet).  MongoDB imposes a 16MB limit on single documents, but essentially has no limit on the number of documents that can be created at once.  PostgreSQL has a very large (around 1GB) maximum size.  Consult your database&rsquo;s documentation for more information about query limitations.
> + Another thing to watch out for when doing very large bulk inserts is the maximum number of bound variables. This varies per databases but refers to the number of values being substituted in a query. See [maxmimum allowable parameters](http://stackoverflow.com/questions/6581573/what-are-the-max-number-of-allowable-parameters-per-database-provider-type) for more details.
> + When using .fetch() and manually specifying primary key values for new records, the sort order of returned records is not guaranteed (it varies depending on the database adapter in use).

<docmeta name=”displayName” value=”.createEach()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .destroy()

Destroy records in your database that match the given criteria.

`usage
await Something.destroy(criteria);
`

or


	var destroyedRecords = await Something.destroy(criteria).fetch();




### Usage


|     Argument        | Type                                         | Details                            |



|---|:——————–|----------------------------------------------|:———————————–|
| 1 |    criteria         | ((dictionary))                               | Records matching this [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) will be destroyed.  Be warned, if you specify an empty dictionary ({}) as your criteria, _all records will be destroyed!_ destroy queries do not support pagination using skip and limit or projections using select. |

##### Result


Type                | Description      |



|---------------------|:—————–|
| ((array?)) of ((dictionary))  | The destroyed records are not provided as a result by default in order to optimize for performance.  To override the default setting, chain .fetch() and the newly destroyed records will be sent back. (Be aware that this requires an extra database query in some adapters.)

##### Errors


Name        | Type                | When? |



|-----------------|———————|:---------------------------------------------------------------------------------|
| UsageError      | ((Error))           | Thrown if something invalid was passed in.
| AdapterError    | ((Error))           | Thrown if something went wrong in the database adapter.
| Error           | ((Error))           | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

##### Meta keys


Key                 | Type              | Details                                                        |



|:--------------------|——————-|:---------------------------------------------------------------|
| fetch               | ((boolean))       | If set to true, then the array of destroyed records will be sent back.<br/><br/>Defaults to false.

> For more information on meta keys, see [.meta()](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).

### Example

To delete any users named Finn from the database:

```javascript
await User.destroy({name:’Finn’});

sails.log(‘Any users named Finn have now been deleted, if there were any.’);
```

To delete two particular users who have been causing trouble:

```javascript
await User.destroy({

id: { in: [3, 97] }

});

sails.log(‘The records for troublesome users (3 and 97) have been deleted, if they still existed.’);
```

##### Fetching destroyed records

To delete a particular book and fetch the destroyed record, use [.destroyOne()](https://sailsjs.com/documentation/reference/waterline/destroy-one).

To delete multiple books and fetch all destroyed records:

```javascript
var burnedBooks = await Book.destroy({

controversiality: { ‘>’: 0.9 }

}).fetch();
sails.log(‘Deleted books:’, burnedBooks);
```

### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).
> + If you want to confirm that one or more records exist before destroying them, you should first perform a find().  However, it is generally a good idea to _try to do things_ rather than _checking first_, lest you end up with a [race condition](http://people.cs.umass.edu/~emery/classes/cmpsci377/f07/scribe/scribe8-1.pdf).

<docmeta name=”displayName” value=”.destroy()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .destroyOne()

Destroy the record in your database that matches the given criteria, if it exists.

`usage
var destroyedRecord = await Something.destroyOne(criteria);
`

> Before attempting to modify the database, Waterline will check to see if more than one record matches the given criteria. If so, it will throw an error instead of proceeding.

### Usage


|     Argument        | Type              | Details                            |



|---|:——————–|-------------------|:———————————–|
| 1 | criteria            | ((dictionary))    | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching the record in the database.

##### Result


Type                | Description      |



|:--------------------|:—————–|
| ((dictionary?))     | Since .destroyOne() never destroys more than one record, if a record is destroyed then it is always provided as a result.  Otherwise, undefined is returned.

##### Errors

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

### Example

```javascript
var burnedBook = await User.destroyOne({id: 4})
if (burnedBook) {

sails.log(‘Deleted book with id: 4.’);

	} else {
	sails.log(‘The database does not have a book with id: 4.’);

}

Notes
> + Because it _always_ returns the destroyed record, if one was matched, this method does not support .fetch().
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).

<docmeta name=”displayName” value=”.destroyOne()”>
<docmeta name=”pageType” value=”method”>

 # .find()

Find records in your database that match the given criteria.

`usage
var records = await Something.find(criteria);
`

Usage

| Argument | Type | Details |

|---|:——————–|-------------------|:———————————–|
| 1 | criteria | ((dictionary)) | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching records in the database.

Result

Type | Description |

|---------------------|:—————–|
| ((array)) of ((dictionary)) | The array of records from your database that match the given criteria.

Errors

Name | Type | When? |

|:----------------|———————|:---|
| UsageError | ((Error)) | Thrown if something invalid was passed in.
| AdapterError | ((Error)) | Thrown if something went wrong in the database adapter.
| Error | ((Error)) | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

Example

A basic find query

To find any users named Finn in the database:

`javascript
var usersNamedFinn = await User.find({name:'Finn'});
sails.log('Wow, there are %d users named Finn. Check it out:', usersNamedFinn.length, usersNamedFinn);
`

Using projection

Projection selectively omits the fields returned on found records. This is useful for achieving faster performance and greater security when passing found records to the client. The select clause in a [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) takes an array of strings that correspond with attribute names. The record ID is always returned.

```javascript
var usersNamedFinn = await User.find({


where: {name:’Finn’},
select: [‘name’, ‘email’]





});

might yield:

```javascript
[

	{
	id: 7392,
name: ‘Finn’,
email: ‘finn_2017@gmail.com’

},
{

id: 4427,
name: ‘Finn’,
email: ‘walkingfinn@outlook.com’

}
// …more users named Finn and their email addresses

]

Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).

<docmeta name=”importance” value=”10”>
<docmeta name=”displayName” value=”.find()”>
<docmeta name=”pageType” value=”method”>

 # .findOne()

Attempt to find a particular record in your database that matches the given criteria.

`usage
var record = await Something.findOne(criteria);
`

Usage

| Argument | Type | Details |

|---|:——————–|--|:———————————–|
| 1 | criteria | ((dictionary)) | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching this record in the database. (This criteria must never match more than one record.) findOne queries do not support pagination using skip or limit.

Result

Type | Description |

|---------------------|:—————–|
| ((dictionary?)) | The record that was found, or undefined if no such record could be located.

Errors

Name | Type | When? |

|:----------------|———————|:---|
| UsageError | ((Error)) | Thrown if something invalid was passed in.
| AdapterError | ((Error)) | Thrown if something went wrong in the database adapter.
| Error | ((Error)) | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

Example

To locate the user whose username is “finn” in your database:

```javascript
var finn = await Users.findOne({


username: ‘finn’




});


	if (!finn) {
	sails.log(‘Could not find Finn, sorry.’);





}
else {


sails.log(‘Found “%s”’, finn.fullName);





}

### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).
> + Being unable to find a record with the given criteria does not constitute an error for findOne().  If no matching record is found, the result will be undefined.

<docmeta name=”importance” value=”10”>
<docmeta name=”displayName” value=”.findOne()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # .findOrCreate()

Find the record matching the specified criteria.  If no such record exists, create one using the provided initial values.

`usage
var newOrExistingRecord = await Something.findOrCreate(criteria, initialValues);
`

or, if you need to know whether a new record was created,

```usage
Something.findOrCreate(criteria, initialValues)
.exec(function(err, newOrExistingRecord, wasCreated) {

});

Usage

| Argument | Type | Details |

|---|—————|:----------------------|:———–|
| 1 | _criteria_ | ((dictionary?)) | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching records in the database. This particular criteria should always match exactly zero or one records in the database.
| 2 | initialValues | ((dictionary)) | The initial values for the new record, if one is created.

Callback
| | Argument | Type | Details |
|---|:————————|---------------------|:———————————————————————————|
| 1 | _err_ | ((Error?)) | The error that occurred, or undefined if there were no errors.
| 2 | _newOrExistingRecord_ | ((dictionary?)) | The record that was found, or undefined if no such record could be located.
| 3 | wasCreated | ((boolean)) | Whether a new record was created.

Errors

Name | Type | When? |

|:----------------|———————|:---|
| UsageError | ((Error)) | Thrown if something invalid was passed in.
| AdapterError | ((Error)) | Thrown if something went wrong in the database adapter.
| Error | ((Error)) | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

Example

Let’s make sure our test user, Finn, exists:

```javascript
User.findOrCreate({ name: ‘Finn’ }, { name: ‘Finn’ })
.exec(async(err, user, wasCreated)=> {


if (err) { return res.serverError(err); }


	if(wasCreated) {
	sails.log(‘Created a new user: ‘ + user.name);





}
else {


sails.log(‘Found existing user: ‘ + user.name);




}






});

### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec). If you use await, be aware that the result will be the record only&mdash;you will not have access to wasCreated.
> + Behind the scenes, this uses .findOne(), so if more than one record in the database matches the provided criteria, there will be an error explaining so.

<docmeta name=”displayName” value=”.findOrCreate()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # .getDatastore()

Access the [datastore](https://sailsjs.com/documentation/concepts/models-and-orm#?datastores) for a particular model.

`usage
Something.getDatastore();
`

### Usage

##### Returns

Type: ((Dictionary))

A [datastore instance](https://sailsjs.com/documentation/reference/waterline-orm/datastores).

### Notes
> + This is a synchronous method, so you don’t need to use await, promise chaining, or traditional Node callbacks.

<docmeta name=”displayName” value=”.getDatastore()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # Working with models

This section of the documentation focuses on the model methods provided by Waterline out of the box.  In addition to these, additional methods can come from hooks (like the [resourceful PubSub methods](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub)) or be manually written in your app to wrap reusable custom code.

> + For an in-depth introduction to models in Sails/Waterline, see [Concepts > Models and ORM > Models](https://sailsjs.com/documentation/concepts/models-and-orm/models).
> + You can find an example of how to define a model [here](https://gist.github.com/rachaelshaw/f5bf442b2171154aa6021846d1a250f8).

### Built-in model methods

In general, model methods are _asynchronous_, meaning you cannot just call them and use the return value.  Instead, you must use callbacks, promises or async/await.
Most built-in model methods accept a callback as an optional final argument. If the callback is not supplied, a chainable Query object is returned, which has methods like .fetch(), .decrypt(), and .where(). See [Working with Queries](https://sailsjs.com/documentation/reference/waterline-orm/queries) for more on that.

Here are some of the most common model methods you will encounter building Node.js apps in Sails:


Method                | Summary
——————— | ————————————————————————
.find()             | Get an array of records which match the specified criteria.
.findOne()          | Get the record which matches the specified criteria, or undefined if there isn’t one.
.updateOne()        | Update the record that matches the specified criteria, if there is one, using the specified attrName:value pairs.
.archiveOne()       | Archive (“soft-delete”) the record that matches the specified criteria, if there is one.
.destroyOne()       | Permanently and irreversibly destroy the record that matches the specified criteria, if there is one.
.create()           | Create a new record consisting of the specified values.
.createEach()       | Create multiple new records at the same time.
.count()            | Count the total number of records that match certain criteria.
.sum()              | Compute the sum for a given attribute, totalled across all records that match certain criteria.
.avg()              | Compute the arithmetic mean for an attribute, averaged over all records that match certain criteria.
.addToCollection()      | Add existing records from an associated model to one of your collections.
.removeFromCollection() | Remove record(s) from one of your collections.




These methods are just the beginning.  To read more about available model methods in Sails, check out the complete reference in the sidebar.

<!–
Not actually all that common:


.replaceCollection()    | Replace all the members in one of your collections with a new set of records from its associated model.
.update()           | Update records matching the specified criteria, setting the specified attrName:value pairs.
.archive()          | Archive (“soft-delete”) all records that match the specified criteria.
.stream()           | Get records that meet the specified criteria one at a time (or batch at a time).
.native()/query() | Make a direct call to the underlying database using a native query.
.findOrCreate()     | Lookup a single record which matches the specified criteria, or create it if it doesn’t.
.destroy()          | Destroy records matching the specified criteria.




–>

<!– ![screenshot of the api/models/ folder in a text editor](http://i.imgur.com/xdTZpKT.png) –>

### sails.models

If you need to disable global variables in Sails, you can still use sails.models.<model_identity> to access your models.
> Not sure of your model’s identity? Check out [Concepts > Models and ORM > Model settings](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity).

<docmeta name=”displayName” value=”Models”>



            

          

      

      

    

  

    
      
          
            
  # .native()

> As of Sails v1.x, this method is deprecated.
> Instead, please change your code to use [Model.getDatastore().manager](https://sailsjs.com/documentation/reference/waterline-orm/datastores/manager), which offers a cleaner, simpler API.

.native() is only available when using Sails/Waterline with MongoDB.

Returns a raw Mongo collection instance representing the specified model, allowing you to perform raw Mongo queries.

For full documentation and usage examples, check out the [native Node Mongo driver](https://github.com/mongodb/node-mongodb-native#introduction).

Note that sails-mongo maintains a single Mongo connection for each of your configured datastores.  Consequently, when using .native(), you don’t need to close or open db manually.  For lower-level usage, you can require(‘mongodb’) directly.

### Example

```js
Pet.native(function(err, collection) {

if (err) return res.serverError(err);

	collection.find({}, {
	name: true

	}).toArray(function (err, results) {
	if (err) return res.serverError(err);
return res.ok(results);

});

});

Source: https://gist.github.com/mikermcneil/483987369d54512b6104

Notes

> + This method only works with Mongo! For raw functionality in SQL databases, use [.query()](https://sailsjs.com/documentation/reference/waterline-orm/models/query).

<docmeta name=”displayName” value=”.native()”>
<docmeta name=”pageType” value=”method”>
<docmeta name=”isDeprecated” value=”true”>

 # .query()

> As of Sails v1.0, this method is deprecated.
> Instead, please use [Model.getDatastore().sendNativeQuery()](https://sailsjs.com/documentation/reference/waterline-orm/datastores/send-native-query), the new version of this method that standardizes the format of SQL escape bindings, as well as fully supporting .exec() and promise-based usage.

Execute a raw SQL query using the specified model’s datastore.

```usage
SomeModel.query(sql, valuesToEscape, function(err, rawResult) {


});

> WARNING: Unlike other Waterine model methods, .query() supports neither promise-based usage nor the use of .exec().  In other words, it does not utilize Waterline’s normal deferred object mechanism.  Instead, it provides raw access directly to the underlying database driver.

### Usage

.query() is only available on Sails/Waterline models that are configured to use a SQL database (e.g. PostgreSQL or MySQL).  Its purpose is to perform raw SQL queries.  Note that exact usage and result format varies between adapters, so you’ll need to refer to the documentation for the underlying database driver.  (See below for a couple of simple examples to help get you started.)


|     Argument        | Type              | Details                            |



|---|:——————–|-------------------|:———————————–|
| 1 |    sql              | ((string))        | A SQL string written in the appropriate dialect for this model’s database.  Allows template syntax, (e.g. ?, $1) the exact style of which depends on the underlying database adapter. _(See examples below.)_
| 2 |    valuesToEscape   | ((array))         | An array of dynamic, untrusted strings to SQL-escape and inject within the SQL string using the appropriate template syntax for this model’s database.  _(If you have no dynamic values to inject, then just use an empty array here.)_
| 3 |    done             | ((function))      | A callback function that will be triggered when the query completes successfully, or if the adapter encounters an error.

##### Callback


|     Argument        | Type                | Details |



|---|:——————–|---------------------|:———————————————————————————|
| 1 |    _err_            | ((Error?))          | The error that occurred, or a falsy value if there were no errors.  _(The exact format of this error varies depending on the SQL query you passed in and the database adapter you’re using.  See examples below for links to relevant documentation.)_
| 2 |    _rawResult_      | ((Ref?))            | The raw result from the adapter.  _(The exact format of this raw result data varies depending on the SQL query you passed in and the database adapter you’re using.  See examples below for links to relevant documentation.)_

### Example

Remember that usage and result data vary depending on the SQL query you send and the adapter you’re using.  Below, you’ll find two examples: one for PostgreSQL and one for MySQL.

##### PostgreSQL example

Communicate directly with [pg](http://npmjs.com/package/pg), an NPM package used for communicating with PostgreSQL databases:

```js
Pet.query(‘SELECT pet.name FROM pet WHERE pet.name = $1’, [‘dog’] ,function(err, rawResult) {

if (err) { return res.serverError(err); }

sails.log(rawResult);
// (result format depends on the SQL query that was passed in, and the adapter you’re using)

// Then parse the raw result and do whatever you like with it.

return res.ok();

});

MySQL example

Assuming the Pet model is configured to use the sails-mysql adapter, the following code will communicate directly with [mysql](http://npmjs.com/package/mysql), an NPM package used for communicating with MySQL databases:

```js
Pet.query(‘SELECT pet.name FROM pet WHERE pet.name = ?’, [ ‘dog’ ] ,function(err, rawResult) {


if (err) { return res.serverError(err); }

sails.log(rawResult);
// …grab appropriate data…
// (result format depends on the SQL query that was passed in, and the adapter you’re using)

// Then parse the raw result and do whatever you like with it.

return res.ok();






});

### Notes
> + This method only works with SQL databases.  To get access to the raw MongoDB collection, use [.native()](https://sailsjs.com/documentation/reference/waterline-orm/models/native).
> + This method does not support .exec() or .then(), and it does not return a promise.  If you want to “promisify” .query(), have a look at [this](http://stackoverflow.com/questions/21886630/how-to-use-model-query-with-promises-in-sailsjs-waterline).

<docmeta name=”displayName” value=”.query()”>
<docmeta name=”pageType” value=”method”>
<docmeta name=”isDeprecated” value=”true”>




            

          

      

      

    

  

    
      
          
            
  # .removeFromCollection()

Remove one or more members (e.g. a comment) from the specified collection (e.g. the comments of BlogPost #4).

`usage
await Something.removeFromCollection(parentId, association)
.members(childIds);
`

### Usage


|     Argument        | Type                                         | Details                            |



|---|:——————–|----------------------------------------------|:———————————–|
| 1 |  parentId    | ((number)) or ((string))                   | The primary key value(s) (i.e. ids) for the parent record(s). <br/>Must be a number or string (e.g. ‘507f191e810c19729de860ea’ or 49).  <br/>Alternatively, an array of numbers or strings may be specified (e.g. [‘507f191e810c19729de860ea’, ‘14832ace0c179de897’] or [49, 32, 37]).  In this case, _all_ of the child records will be removed from the appropriate collection of each parent record.
| 2 |  association | ((string))                                   | The name of the plural (“collection”) association (e.g. “pets”)
| 3 |  childIds      | ((array))                                    | The primary key values (i.e. ids) of the child records to remove.  _Note that this does not [destroy](https://sailsjs.com/documentation/reference/waterline-orm/models/destroy) these records, it just detaches them from the specified parent(s)._

##### Errors


Name        | Type                | When? |



|:----------------|———————|:---------------------------------------------------------------------------------|
| UsageError      | ((Error))           | Thrown if something invalid was passed in.
| AdapterError    | ((Error))           | Thrown if something went wrong in the database adapter.
| Error           | ((Error))           | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

### Example

For user 3, remove pets 99 and 98 from the “pets” collection:

`javascript
await User.removeFromCollection(3, 'pets')
.members([99,98]);
`

### Edge cases


	If the parent id (or any _one_ of the parent ids, if specified as an array) does not actually correspond with an existing, persisted record, then this will modify the existing records and ignore the non-existent ones.


	If one of the child ids does not actually correspond with an existing, persisted record, then that child id will be ignored, and only those members that correspond with the other provided child ids will be removed from the collection.


	If a parent record’s collection _does not have_ one or more of these child ids as members, then the ids of those non-members will be ignored. ((TODO: test with one-to-many))


	If an empty array of child ids is provided, then this is a [no-op](https://en.wikipedia.org/wiki/NOP#Code).


	If an empty array of parent ids is provided, then this is a [no-op](https://en.wikipedia.org/wiki/NOP#Code).




### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).
> + If the association is “two-way” (meaning it has via) then the child records will be modified accordingly.  If the attribute on the other (e.g. “Pet”) side is singular, the each child record’s foreign key (“owner”) will be set to null.  If it’s plural, then each child record’s collection will be modified accordingly.

<docmeta name=”displayName” value=”.removeFromCollection()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .replaceCollection()

Replace all members of the specified collection (e.g. the comments of BlogPost #4).

`usage
await Something.replaceCollection(parentId, association)
.members(childIds);
`

### Usage


|     Argument        | Type                                         | Details                            |



|---|:——————–|----------------------------------------------|:———————————–|
| 1 |  parentId           | ((number)) or ((string))                   | The primary key value(s) (i.e. ids) for the parent record(s). <br/>Must be a number or string (e.g. ‘507f191e810c19729de860ea’ or 49).  <br/>Alternatively, an array of numbers or strings may be specified (e.g. [‘507f191e810c19729de860ea’, ‘14832ace0c179de897’] or [49, 32, 37]). In this case, the child records will be replaced in each parent record.
| 2 |  association | ((string))                                   | The name of the plural (“collection”) association (e.g. “pets”)
| 3 |  childIds      | ((array))                                    | The primary key values (i.e. ids) for the child records that will be the new members of the association.  _Note that this does not [create](https://sailsjs.com/documentation/reference/waterline-orm/models/create) these records or [destroy](https://sailsjs.com/documentation/reference/waterline-orm/models/destroy) the old ones, it just attaches/detaches records to/from the specified parent(s)._

##### Errors


Name        | Type                | When? |



|:----------------|———————|:---------------------------------------------------------------------------------|
| UsageError      | ((Error))           | Thrown if something invalid was passed in.
| AdapterError    | ((Error))           | Thrown if something went wrong in the database adapter.
| Error           | ((Error))           | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

### Example

For user 3, replace all pets in the “pets” collection with pets 99 and 98:

`javascript
await User.replaceCollection(3, 'pets')
.members([99,98]);
`

### Edge cases


	If the parent id does not actually correspond with an existing, persisted record, then this will do nothing.


	If one of the child ids does not actually correspond with an existing, persisted record, then that child id will be ignored, and only those members that correspond with the other provided child ids will be included in the replacement collection.


	If an empty array of child ids is provided, or if none of the provided child ids correspond to existing records, then this will detach _all_ child records from the parent.




### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).
> + If the association is “2-way” (meaning it has via) then the child records will be modified accordingly.  If the attribute on the other side is singular, the each newly-linked-or-unlinked child record’s foreign key will be changed.  If it’s plural, then each child record’s collection will be modified accordingly.
> + In addition, if the via points at a singular (“model”) attribute on the other side, then .addToCollection() will “steal” these child records if necessary.  For example, imagine you have an Employee model with this plural (“collection”) attribute: involvedInPurchases: { collection: ‘Purchase’, via: ‘cashier’ }.  If you executed Employee.addToCollection(7, ‘involvedInPurchases’, [47]) to assign this purchase to employee #7 (Dolly), but purchase #47 was already associated with a different employee (e.g. #12, Motoki), then this would “steal” the purchase from Motoki and give it to Dolly.  In other words, if you executed Employee.find([7, 12]).populate(‘involvedInPurchases’), Dolly’s involvedInPurchases array would contain purchase #47 and Motoki’s would not.

<docmeta name=”displayName” value=”.replaceCollection()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .stream()

Stream records from your database to be consumed one at a time or in batches, without first having to buffer the entire result set in memory.

```usage
await Something.stream(criteria)
.eachRecord(async (record)=>{

});

Usage

| Argument | Type | Details |

|---|:——————–|-------------------|:———————————–|
| 1 | _criteria_ | ((dictionary)) | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching records in the database.

Iteratee

Use one of the following:

	.eachRecord(async (record)=>{ … })

	.eachBatch(async (records)=>{ … })

The custom function you provide to eachRecord() or eachBatch() will receive the following arguments:

| Argument | Type | Details |

|---|:——————–|---------------------|:———————————————————————————|
| 1 | record or records | ((dictionary)) or ((array)) | The current record, or the current batch of records. _A batch array will always contain at least one record, and it will never contain more records than the batch size (thirty by default)._

Errors

Name | Type | When? |

|:----------------|———————|:---|
| UsageError | ((Error)) | Thrown if something invalid was passed in.
| AdapterError | ((Error)) | Thrown if something went wrong in the database adapter.
| Error | ((Error)) | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

When should I use this?

The .stream() method is almost exactly like [.find()](https://sailsjs.com/documentation/reference/waterline-orm/models/find), except that it fetches records one batch at a time. Every time a batch of records is loaded, the iteratee function you provided is called one or more times. If you used .eachRecord(), your per-record function will be called once for each record in the batch. Otherwise, using .eachBatch(), your per-batch function will be called once with the entire batch.

This is useful for working with very large result sets, the kind that might overflow your server’s available RAM if you tried to hold the entire set in memory at the same time. You can use Waterline’s .stream() method to do the kinds of things you might already be familiar with from Mongo cursors: preparing reports, looping over and modifying database records in a shell script, moving large amounts of data from one place to another, performing complex transformations, or even orchestrating map/reduce jobs.

Examples

We explore four example situations below:

Basic usage

An action that iterates over users named Finn in the database, one at a time:

```javascript
await User.stream({name:’Finn’})
.eachRecord(async (user)=>{



	if (Math.random() > 0.5) {
	throw new Error(‘Oops!  This is a simulated error.’);





}

sails.log(Found a user ${user.id} named Finn.);






});

##### Generating a dynamic sitemap

An action that responds with a dynamically generated sitemap:

``javascript
// e.g. in an action that handles `GET /sitemap.xml:

var sitemapXml = ‘<urlset xmlns=”http://www.sitemaps.org/schemas/sitemap/0.9”>’;

await BlogPost.stream()
.limit(50000)
.sort(‘title ASC’)
.eachRecord((blogPost)=>{



	sitemapXml += (
	‘<url>n’+
‘  <loc>https://blog.example.com/’ + _.escape(encodeURIComponent(blogPost.slug))+’</loc>n’+
‘  <lastmod>’+_.escape(blogPost.updatedAt)+’</lastmod>n’+
‘<changefreq>monthly</changefreq>n’+
‘</url>’





);




});

sitemapXml += ‘</urlset>’;
```

With .populate()

A snippet of a command-line script that searches for creepy comments from someone named “Bailey Bitterbumps” and reports them to the authorities:

```js
// e.g. in a shell script

var numReported = 0;

await Comment.stream({ author: ‘Bailey Bitterbumps’ })
.limit(1000)
.skip(40)
.sort(‘title ASC’)
.populate(‘attachedFiles’, {


limit: 3,
sort: ‘updatedAt’




})
.populate(‘fromBlogPost’)
.eachRecord(async (comment)=>{


var isCreepyEnoughToWorryAbout = comment.rawMessage.match(/creepy/) && comment.attachedFiles.length > 1;
if (!isCreepyEnoughToWorryAbout) {


return;




}


	await sails.helpers.sendTemplateEmail.with({
	template: ‘email-creepy-comment-notification’,
templateData: {


url: https://blog.example.com/${comment.fromBlogPost.slug}/comments/${comment.slug}.




},
to: ‘authorities@cannedmeat.gov’,
subject: ‘Creepy comment alert’





});

numReported++;




});

sails.log(Successfully reported ${numReported} creepy comments.);
```

Batch-at-a-time

If we ran the code in the previous example, we’d be sending one email per creepy comment… which could be a lot, knowing Bailey Bitterbumps. Not only would this be slow, it could mean sending _thousands_ of individual API requests to our [transactional email provider](https://documentation.mailgun.com/faqs.html#why-not-just-use-sendmail-postfix-courier-imap), quickly overwhelming our API rate limit.

For this case, we could use .eachBatch() to grab the entire batch of records being fetched, rather than processing individual records one at a time, dramatically reducing the number of necessary API requests.

Configuring batch size

By default, .stream() uses a batch size of 30. That means it will load up to 30 records per batch; thus, if you are using .eachBatch(), your custom function will receive between 1 and 30 records each time it is called.

To increase or decrease the batch size, pass an additional argument to .eachBatch():

```javascript
.eachBatch(100, async (records)=>{


console.log(Got ${records.length} records.);






})

> Using .eachBatch() in your code is not necessarily more or less efficient than using .eachRecord().  That’s because, regardless which iterator you use, Waterline asks the database for more than one record at a time (30, by default).  With .eachBatch(),  you can easily configure this batch size using the extra argument described above.  It’s also possible to customize the batch size while using .eachRecord (for example, to avoid getting rate-limited by a 3rd party API you are using). Just use [.meta()](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).  For example, .meta({batchSize: 100}).

### Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).
> + .stream() bails and throws an error _immediately_ upon receiving the first error from any iteratee.
> + .stream() runs the provided iteratee function on each record or batch, one at a time, in series.
> Prior to Sails 1.1.0, the recommended usage of .stream() expected the iteratee to invoke a callback (next), which is provided as the second argument.  This is no longer necessary as long as you do not actually include a second argument in the function signature.
> + Prior to Sails v1.0 / Waterline 0.13, this method had a lower-level interface, exposing a [Readable “object stream”](http://nodejs.org/api/stream.html).  This was powerful, but tended to be error-prone.  The new, adapter-agnostic .stream() does not rely on emitters or any particular flavor of Node streams.  (Need to get it working the old way?  Don’t worry, with a little code, you can still easily build a streams2/streams3-compatible Readable “object stream” using the new interface.)
> + Read more background about the impetus for creating .stream() [here](https://gist.githubusercontent.com/mikermcneil/d1e612cd1a8564a79f61e1f556fc49a6/raw/094d49a670e70cc38ae11a9419314542e8e4e5c9/streaming-records-in-sails-v1.md), including additional examples, background information, and implementation details.

<docmeta name=”displayName” value=”.stream()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # .sum()

Get the aggregate sum of the specified attribute across all matching records.

`usage
var total = await Something.sum(numericAttrName, criteria);
`

### Usage


|     Argument        | Type                                         | Details                            |



|---|:——————–|----------------------------------------------|:———————————–|
| 1 |  numericAttrName    | ((string))                                   | The name of the numeric attribute to be summed.
| 2 |  _criteria_         | ((dictionary?))                              | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching records in the database. If no criteria is specified, the sum will be computed across _all_ of this model’s records. sum queries do not support pagination using skip and limit or projections using select.

##### Result


Type                | Description      |



|---------------------|:—————–|
| ((number))          | The aggregate sum of the specified attribute across all matching records.

##### Errors


Name        | Type                | When? |



|:----------------|———————|:---------------------------------------------------------------------------------|
| UsageError      | ((Error))           | Thrown if something invalid was passed in.
| AdapterError    | ((Error))           | Thrown if something went wrong in the database adapter.
| Error           | ((Error))           | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

### Example

Get the cumulative account balance of all bank accounts that have less than $32,000 or are flagged as “suspended”.

```javascript
var total = await BankAccount.sum(‘balance’)
.where({

	or: [
	{ balance: { ‘<’: 32000 } },
{ suspended: true }

]

});

Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).
> + Some databases, like MySQL, may return null for this kind of query; however, it’s best practice for Sails/Waterline adapter authors to return 0 for consistency and type safety in app-level code.

<docmeta name=”displayName” value=”.sum()”>
<docmeta name=”pageType” value=”method”>

 # .update()

Update all records matching criteria.

`usage
await Something.update(criteria)
.set(valuesToSet);
`

or

	var updatedRecords = await Something.update(criteria).set(valuesToSet).fetch();

Usage

| Argument | Type | Details |

|---|:——————–|-------------------|:———————————–|
| 1 | criteria | ((dictionary)) | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching records in the database. update queries do not support pagination using skip and limit, or projections using select.
| 2 | valuesToSet | ((dictionary)) | A dictionary (plain JavaScript object) of values that all matching records should be updated to have. _(Note that, if this model is in [“schemaful” mode](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?schema), then any extraneous keys will be silently omitted.)_

> Note: For performance reasons, as of Sails v1.0 / Waterline 0.13, the valuesToSet object passed into this model method will be mutated in-place in most situations (whereas in Sails/Waterline v0.12, this was not necessarily the case).

Result

Type | Description |

|:--------------------|:—————–|
| ((array?)) | The updated records are not provided as a result by default, in order to optimize for performance. To override the default setting, chain .fetch() and an array of the updated records will be sent back. (Be aware that this requires an extra database query in some adapters.)

Errors

Name | Type | When? |

|:-------------------|———————|:---|
| UsageError | ((Error)) | Thrown if something invalid was passed in.
| AdapterError | ((Error)) | Thrown if something went wrong in the database adapter. See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for an example of how to negotiate a uniqueness error (i.e. from attempting to update one or more records so that they violate a uniqueness constraint).
| Error | ((Error)) | Thrown if anything else unexpected happens.

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

Meta keys

Key | Type | Details |

|:--------------------|——————-|:---|
| fetch | ((boolean)) | If set to true, then the array of updated records will be sent back.

Defaults to false.

> For more information on meta keys, see [.meta()](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).

Example

To update a particular record, use [.updateOne()](https://sailsjs.com/documentation/reference/waterline-orm/models/update-one).

Or to update one or more records at the same time:

```javascript
await User.update({ name:’Pen’ })
.set({


name:’Finn’




});

sails.log(‘Updated all users named Pen so that their new name is “Finn”.  I hope they like it.’);
```

Fetching updated records

To fetch updated records, use enable the fetch meta key:

```javascript
var updatedUsers = await User.update({name:’Finn’})
.set({


name:’Jake’




})
.fetch();

sails.log(Updated all ${updatedUsers.length} user${updatedUsers.length===1?’’:’s’} named “Finn” to have the name “Jake”.  Here they are now:);
sails.log(updatedUsers);
```

Notes
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).
> + This method can be used to replace an entire collection association (for example, a user’s list of friends), achieving the same result as the [replaceCollection method](https://sailsjs.com/documentation/reference/waterline-orm/models/replace-collection). To modify items in a collection individually, use the [addToCollection](https://sailsjs.com/documentation/reference/waterline-orm/models/add-to-collection) or [removeFromCollection](https://sailsjs.com/documentation/reference/waterline-orm/models/remove-from-collection) methods.

<docmeta name=”displayName” value=”.update()”>
<docmeta name=”pageType” value=”method”>

 # .updateOne()

Update the record that matches the given criteria, if such a record exists.

`usage
var updatedRecord = await Something.updateOne(criteria)
.set(valuesToSet);
`

> Before attempting to modify the database, Waterline will check to see if more than one record matches the given criteria; if so, it will throw an error instead of proceeding.

Usage

| Argument | Type | Details |

|---|:——————–|-------------------|:———————————–|
| 1 | criteria | ((dictionary)) | The [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching the record in the database.
| 2 | valuesToSet | ((dictionary)) | A dictionary (plain JavaScript object) of values that all matching records should be updated to have. _(Note that if this model is in [“schemaful” mode](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?schema), then any extraneous keys will be silently omitted.)_

> Note: For performance reasons, as of Sails v1.0 / Waterline 0.13, the valuesToSet object passed into this model method will be mutated in-place in most situations (whereas in Sails/Waterline v0.12, this was not necessarily the case).

Result

Type | Description |

|:--------------------|:—————–|
| ((dictionary?)) | updateOne() never updates more than one record, so if a record is updated, then that record is provided as a result. Otherwise, undefined is returned.

Errors

See [Concepts > Models and ORM > Errors](https://sailsjs.com/documentation/concepts/models-and-orm/errors) for examples of negotiating errors in Sails and Waterline.

Example

```javascript
var updatedUser = await User.updateOne({ firstName:’Pen’ })
.set({


firstName:’Finn’




});


	if (updatedUser) {
	sails.log(‘Updated the user named “Pen” so that their new name is “Finn”.’);





}
else {


sails.log(‘The database does not contain a user named “Pen”.’);





}

### Notes
> + This method does not support .fetch(), because it _always_ returns the modified record if one was matched.
> + This method can be used with [await](https://github.com/mikermcneil/parley/tree/49c06ee9ed32d9c55c24e8a0e767666a6b60b7e8#usage), promise chaining, or [traditional Node callbacks](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec).
> + This method can be used to replace an entire collection association (for example, a user&rsquo;s list of friends), achieving the same result as the [replaceCollection method](https://sailsjs.com/documentation/reference/waterline-orm/models/replace-collection).  To modify items in a collection individually, use the [addToCollection](https://sailsjs.com/documentation/reference/waterline-orm/models/add-to-collection) or [removeFromCollection](https://sailsjs.com/documentation/reference/waterline-orm/models/remove-from-collection) methods.

<docmeta name=”displayName” value=”.updateOne()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # .validate()

Verify that a value would be valid for a given attribute, then return it, loosely coerced.

`usage
Something.validate(attrName, value);
`

> This validates (and potentially coerces) the provided data as if it was one of the values passed into [.update()](https://sailsjs.com/documentation/reference/waterline-orm/models/update).  You might think about it like a “dry run”.

### Usage


# | Description   | Accepted Data Types          | Required ? |



|---|—————|------------------------------|:———–|
| 1 | attrName      | ((string))                   | The name of the attribute to validate against. |
| 2 | value         | ((ref))                      | The value to validate/normalize. |

### Example

Check the given string and return a normalized version.
> Note that if normalization is not possible, this throws an error.  Be careful: You must manually handle any error thrown from within an asynchronous callback.

`javascript
User.validate('emailAddress', req.param('email'));
User.validate('password', req.param('password'));
`

##### Negotiating errors

The .validate() method can throw any of the usage errors you might see when calling .update().  For example:

```javascript
try {

var normalizedBalance = BankAccount.validate(‘balance’, ‘$349.86’);

	} catch (err) {
	
	switch (err.code) {
	
	case ‘E_VALIDATION’:
	// => ‘[Error: Invalid bankAccount]’
_.each(e.all, function(woe){

sails.log(woe.attrName+’: ‘+woe.message);

});
break;

	default:
	throw err;

}

}

Notes
> + This is a synchronous method, so you don’t need to use await, promise chaining, or traditional Node callbacks.
> + .validate() is exposed as a separate method for convenience. You can always simply call .create() or .update(), _instead_ of calling .validate() first, since those model methods apply the same checks automatically.
> + .validate() is useful when implementing use cases where it is beneficial or more aesthetically pleasing (/[DRY](https://en.wikipedia.org/wiki/Don’t_repeat_yourself [https://en.wikipedia.org/wiki/Don't_repeat_yourself])) to reuse your model validations for other purposes. For example, you might want to validate some untrusted data before communicating with a 3rd party API like Mailgun or Stripe, or you might just want to run certain model validations initially to make some code easier to reason about.
> + .validate() does not communicate with the database, and thus it only detects _logical failures_ such as type safety errors and high-level validation rule violations. It cannot detect problems with _physical-layer_ constraints like uniqueness, since those constraints are checked by the underlying database, not by Sails or Waterline.

<docmeta name=”displayName” value=”.validate()”>
<docmeta name=”pageType” value=”method”>

 # .catch()

Execute a Waterline [query instance](https://sailsjs.com/documentation/reference/waterline-orm/queries) using promises.

`usage
.catch(callback)
`

> As of Sails v1 and Node.js v8, you can take advantage of [await](https://sailsjs.com/documentation/reference/waterline-orm/queries) instead of using this method.

Usage

| Argument | Type | Details |

|---|:——————–|--|:———————————–|
| 1 | filter | ((dictionary?)) | An optional dictionary whose properties will be checked against the error. If they all match, then the callback will run. Otherwise, it won’t.
| 2 | callback | ((function)) | A function that runs if the query fails.

 Takes the error as its argument.

Callback

| Argument | Type | Details |

|---|:——————–|---------------------|:———————————————————————————|
| 1 | _err_ | ((Error?)) | The Error that occurred, or undefined if there were no errors.

Example

To look up the user with the specified email address:

```javascript
User.findOne({


email: req.param(‘email’)




})
.then(function (user){


if(!user) { return res.notFound(); }
return res.json(user);




})
// If there was some kind of usage / validation error
.catch({ name: ‘UsageError’ }, function (err) {


return res.badRequest(err);




})
// If something completely unexpected happened.
.catch(function (err) {


return res.serverError(err);





});

### Notes
> + Whenever possible, it is recommended that you use await instead of calling this method.
> + This is an alternative to .exec().  When combined with .then(), it provides the same functionality.
> + The .catch() function also returns a promise to allow for chaining.  This is not recommended for any but the most advanced users of promises due to the complex (and arguably non-intuitive) behavior of chained .catch() calls.
> + For more information, see the [bluebird .catch() api docs](http://bluebirdjs.com/docs/api/catch).

<docmeta name=”displayName” value=”.catch()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # .decrypt()

Decrypt any auto-encrypted attributes in the records returned for this particular query.

`usage
query.decrypt()
`

### Usage

This method doesn’t accept any arguments.

### Example
To retrieve user records with ssn decrypted:
`javascript
await User.find({fullName: 'Finn Mertens'}).decrypt();
// =>
// [ { id: 4, fullName: 'Finn Mertens', ssn: '555-55-5555' } ]
`
If the records were retrieved without .decrypt(), you would get:
`javascript
await User.find({fullName: 'Finn Mertens'});
// =>
// [ { id: 4, fullName: 'Finn Mertens', ssn: 'YWVzLTI1Ni1nY20kJGRlZmF1bHQ=$F4Du3CAHtmUNk1pn$hMBezK3lwJ2BhOjZ$6as+eXnJDfBS54XVJgmPsg' } ]
`

### Notes
> * This is just a shortcut for [.meta({decrypt: true})](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta)

<docmeta name=”displayName” value=”.decrypt()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .exec()

Execute a Waterline [query instance](https://sailsjs.com/documentation/reference/waterline-orm/queries).

```usage
.exec(function (err, result) {

})

> As of Sails v1 and Node.js v8, you can take advantage of [await](https://sailsjs.com/documentation/reference/waterline-orm/queries) instead of using this method.

Usage

| Argument | Type | Details |

|---|:——————–|--|:———————————–|
| 1 | callback | ((function)) | The Node-style callback that will be called when the query completes, successfully or otherwise.

Callback

| Argument | Type | Details |

|---|:——————–|---------------------|:———————————————————————————|
| 1 | _err_ | ((Error?)) | The Error that occurred, or undefined if there were no errors.
| 2 | _result_ | ((Ref?)) | The result from the database, if any. Exact data type depends on the query. If an error occurred (i.e. err is truthy), then this result argument should be ignored.

Example

```javascript
Zookeeper.find().exec((err, zookeepers)=>{



	if (err) {
	return res.serverError(err);





}

// would you look at all those zookeepers?
return res.json(zookeepers);




});
//
// (don’t put code out here)
```

Notes
> + If you don’t run .exec() or use promises, your query will not execute. For help using .exec() with model methods like .find(), read more about the [chainable query object](https://sailsjs.com/documentation/reference/waterline-orm/queries).

<docmeta name=”displayName” value=”.exec()”>
<docmeta name=”pageType” value=”method”>

 # .fetch()

Tell Waterline (and the underlying database adapter) to send back records that were updated/destroyed/created when performing an [.update()](https://sailsjs.com/documentation/reference/waterline-orm/models/update), [.create()](https://sailsjs.com/documentation/reference/waterline-orm/models/create), [.createEach()](https://sailsjs.com/documentation/reference/waterline-orm/models/create-each) or [.destroy()](https://sailsjs.com/documentation/reference/waterline-orm/models/destroy) query. Otherwise, no data will be returned (or if you are using callbacks, the second argument to the .exec() callback will be undefined).

> Warning: This is not recommended for update/destroy queries that affect large numbers of records.

`usage
.fetch()
`

Usage

This method doesn’t accept any arguments.

Example

`javascript
var newUser = await User.create({ fullName: 'Alice McBailey' }).fetch();
sails.log(`Hi, ${newUser.fullName}! Your id is ${newUser.id}.`);
`

Notes
> * This is just a shortcut for [.meta({fetch: true})](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta)

<docmeta name=”displayName” value=”.fetch()”>
<docmeta name=”pageType” value=”method”>

 # .intercept()

Capture and intercept the specified error, automatically modifying and re-throwing it, or specifying a new error to be thrown instead. (Still throws.)

`usage
.intercept(filter, handler)
`
or
+ .intercept(handler) _(to intercept all errors)_

Usage
	Argument	Type	Details
---	—————–	---------------------	:———–
1	_filter_	((string)) or ((dictionary))	The code of the error that you want to intercept, or a dictionary of criteria for identifying the error to intercept. (If not provided, ALL errors will be intercepted.)
2	handler	((function)) or ((string))	A [procedural parameter](https://en.wikipedia.org/wiki/Procedural_parameter) which Sails calls automatically if the anticipated error is thrown. It will receive the argument specified in the “Handler” usage table below. The handler should return the modified Error, a new Error, or (if applicable) a [special exit signal](https://sailsjs.com/documentation/concepts/actions-and-controllers#?exit-signals). Alternatively, instead of a function, a string may be provided. This amounts to the same thing as passing in a handler function that simply returns the string. (Convenient when using actions2.)

Handler
| | Argument | Type | Details
|---|———————|---------------------|:————————|
| 1 | err | ((Error)) | The anticipated Error being intercepted. |

Return an Error instance or (if applicable) a [special exit signal](https://sailsjs.com/documentation/concepts/actions-and-controllers#?exit-signals) that will be thrown from the original logic instead of throwing the intercepted error.

> .intercept() is for intercepting a certain kind of error (or all errors). If you chain on .intercept(), and it matches the error that occurs, then the underlying logic will throw. But what it throws is determined by what your handler function returns.

Example

If every user record in an app needs to have a unique email address, you may want to ensure that error is formatted in a such a way that the appropriate message will be displayed to the end user. To intercept that error:
```javascript
var newUserRecord = await User.create({


emailAddress: inputs.emailAddress,
fullName: inputs.fullName,




})
.intercept(‘E_UNIQUE’, ()=>{ return new Error(‘There is already an account using that email address!’) })
.fetch();
```

Or, to handle the same error inside of an [actions2 action](https://sailsjs.com/documentation/concepts/actions-and-controllers#?actions-2), using a [special exit signal](https://sailsjs.com/documentation/concepts/actions-and-controllers#?exit-signals); instead of an Error instance:
```javascript
var newUserRecord = await User.create({


emailAddress: inputs.emailAddress,
fullName: inputs.fullName,




})
.intercept(‘E_UNIQUE’, ()=>’emailAlreadyInUse’)
.fetch();
```

Notes

> Note that the usage in our example above could have also been written more concisely as:
>
> `js
> .intercept('E_UNIQUE', 'emailAlreadyInUse')
> `
>
> Or less concisely as:
>
> `js
> .intercept({ code: 'E_UNIQUE' }, ()=>{ return 'emailAlreadyInUse'; })
> `
>
> For more examples and further explanation of how .intercept() works, check out [this related conversation](https://gitter.im/balderdashy/sails?at=5ab44f512b9dfdbc3a113e2f).

<docmeta name=”displayName” value=”.intercept()”>
<docmeta name=”pageType” value=”method”>

 # .limit()

Set the maximum number of records to retrieve when executing a [query instance](https://sailsjs.com/documentation/reference/waterline-orm/queries).

`usage
.limit(maximum)
`

Usage
	Argument	Type	Details
---	:——————–	--------------	————
1	maximum	((number))	The maximum number of records to retrieve.

Example

To retrieve records for up to 10 users named Jake:

```javascript
var jakes = await User.find({ name: ‘Jake’ }).limit(10);

return res.json(jakes);
```

Notes
> * If you set the limit to 0, the query will always return an empty array.
> * If the limit is greater than the number of records matching the query criteria, all of the matching records will be returned.
> * The .find() method returns a chainable object if you don’t supply a callback. This method can be chained to .find() to further filter your results.

<docmeta name=”displayName” value=”.limit()”>
<docmeta name=”pageType” value=”method”>

 # .meta()

Provide additional options to Waterline when executing a [query instance](https://sailsjs.com/documentation/reference/waterline-orm/queries).

`usage
.meta(options)
`

Usage
	Argument	Type	Details
---	—————–	---------------------	:———–
1	options	((dictionary))	A dictionary (plain JS object) of options. See all supported options (aka “meta keys”) in the table below.

Supported options

Option | Type | Default | Details
:———————————— |-------------|:———| :——————————
fetch | ((boolean)) | false | When performing [.update()](https://sailsjs.com/documentation/reference/waterline-orm/models/update), [.create()](https://sailsjs.com/documentation/reference/waterline-orm/models/create), [.createEach()](https://sailsjs.com/documentation/reference/waterline-orm/models/create-each), or [.destroy()](https://sailsjs.com/documentation/reference/waterline-orm/models/destroy) queries, set this to true to tell the database adapter to send back all records that were updated/destroyed. Otherwise, the second argument to the .exec() callback is undefined. Warning: Enabling this key may cause performance issues for update/destroy queries that affect large numbers of records.
cascade | ((boolean)) | false | If set to true on a [.destroy()](https://sailsjs.com/documentation/reference/waterline-orm/models/destroy), this tells Waterline to perform a _”virtual cascade”_ for every deleted record. Thus, deleting a record with a 2-way, _plural association_ ([one-to-many](https://sailsjs.com/documentation/concepts/models-and-orm/associations/one-to-many) or [many-to-many](https://sailsjs.com/documentation/concepts/models-and-orm/associations/many-to-many)) will also cleanly remove all links to other records (by removing join table rows or setting foreign key values to null).

This may be desirable if database size is a concern, or if primary keys may be reused for records, but it can negatively impact performance on .destroy() calls since it involves executing more queries.

The cascade meta key should only be used with databases like MongoDB that [don’t support](http://stackoverflow.com/questions/20370791/what-is-the-recommended-equivalent-of-cascaded-delete-in-mongodb-for-nm-relatio) cascading delete as a native feature. If you need cascading delete and your database supports it natively (e.g. MySQL or PostgreSQL), you’ll enjoy improved performance by simply adding a [CASCADE constraint](https://dev.mysql.com/doc/refman/5.7/en/create-table-foreign-keys.html) at the physical layer (e.g. phpMyAdmin, Sequel Pro, mySQL prompt, etc.), rather than relying on Waterline’s virtual cascade to take effect at runtime.
skipAllLifecycleCallbacks | ((boolean)) | false | Set to true to prevent [lifecycle callbacks](https://sailsjs.com/documentation/concepts/models-and-orm/lifecycle-callbacks) from running during the execution of the query.
skipRecordVerification | ((boolean)) | false | Set to true to skip Waterline’s post-query verification pass of any records returned from the adapter(s). Useful for tools like sails-hook-orm’s automigrations, or to disable warnings for use cases where you know that pre-existing records in the database do not match your model definitions.
skipExpandingDefaultSelectClause | ((boolean)) | false | Set to true to force Waterline to skip expanding the select clause in criteria when it forges stage 3 queries (i.e. the queries that get passed in to adapter methods). Normally, if a model declares schema: true, then the S3Q select clause is expanded to an array of column names, even if the S2Q had factory default select/omit clauses (which is also what it would have if no explicit select or omit clauses were included in the original query). Useful for tools like sails-hook-orm’s automigrations, where you want temporary access to properties that aren’t necessarily in the current set of attribute definitions. Warning: Do not use this flag in your web application backend, or at least [ask for help](https://sailsjs.com/support) first.
decrypt | ((boolean)) | false | Set to true to decrypt any [auto-encrypted](https://sailsjs.com/documentation/concepts/models-and-orm/attributes#?encrypt) data in the records.
encryptWith | ((string)) | ‘default’ | The id of a custom key to use for encryption for this particular query. (For decryption, the appropriate key is always used based on the data being decrypted.)
makeLikeModifierCaseInsensitive | ((boolean)) | false | Set to true to make your query case-insensitive (only for use with the MongoDB adapter). |

Example

```javascript
var newUser = await User.create({name: ‘alice’})
.meta({fetch: true});

return res.json(newUser);
```

Notes
> * The [.fetch() method](https://sailsjs.com/documentation/reference/waterline-orm/queries/fetch) is a shorthand for .meta({fetch: true}).
> * In order for cascade to work when the fetch meta key is _not_ also true, Waterline must do an extra .find().select(‘id’) before actually performing the .destroy() in order to get the IDs of the records that would be destroyed.
> * Rather than using the .meta() query method, you can also set meta keys for a query by passing in a dictionary after the explicit callback. For example: User.create({name: ‘alice’}, function(err, newUser){/*…*/}, { fetch: true }).

<docmeta name=”displayName” value=”.meta()”>
<docmeta name=”pageType” value=”method”>

 # .populate()

Modify a [query instance](https://sailsjs.com/documentation/reference/waterline-orm/queries) so that, when executed, it will populate child records for the specified collection, optionally filtering by subcriteria. Populate may be called more than once on the same query, as long as each call is for a different association.

`usage
.populate(association, subcriteria)
`

Usage

| Argument | Type | Details |

|---|:———————–|--|:———————————–|
| 1 | association | ((string)) | The name of the association to populate. e.g. snacks.
| 2 | _subcriteria_ | ((dictionary?)) | Optional. When populating collection associations between two models which reside in the same database, a [Waterline criteria](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) may be specified as a second argument to populate. This will be used for filtering, sorting, and limiting the array of associated records (e.g. snacks) associated with each primary record.

> Important: Both the basic join polyfill (cross-datastore populate, or populate between models whose configured adapter does not provide a .join() implementation) and the subcriteria argument to .populate() are fully supported in Sails individually. However, using the subcriteria argument to .populate() at the same time as the join polyfill is experimental. This means that, if an association spans multiple datastores or its datastore’s configured adapter does not support a physical layer join, then you should not rely on the subcriteria argument to .populate(). If you try that in production, you will see a warning logged to the console. SQL adapters such as [sails-postgresql](https://github.com/balderdashy/sails-postgresql) and [sails-mysql](https://github.com/balderdashy/sails-mysql) support native joins and should be okay to use the subcriteria argument.

> Note: If you are using schema: false, only defined attributes will be populated.

Example

Populating a model association

The following finds any users named Finn in the database and, for each one, also populates their dad:
```javascript
var usersNamedFinn = await User.find({name:’Finn’}).populate(‘dad’);

sails.log(‘Wow, there are %d users named Finn.’, usersNamedFinn.length);
sails.log(‘Check it out, some of them probably have a dad named Joshua or Martin:’, usersNamedFinn);

return res.json(usersNamedFinn);
```

This might yield:

```javascript
[



	{
	id: 7392,
age: 13,
name: ‘Finn’,
createdAt: 1451088000000,
updatedAt: 1545782400000,
dad: {


id: 108,
age: 47,
name: ‘Joshua’,
createdAt: 1072396800000,
updatedAt: 1356480000000,
dad: null




}





},
// …more users





]

##### Populating a collection association

> This example uses the optional subcriteria argument.

The following finds any users named Finn in the database and, for each one, also populates their three hippest purple swords, in descending order of hipness:

``javascript
// Warning: This is only safe to use on large datasets if both models are in the same database,
// and the adapter supports optimized populates.
// (e.g. cannot do this with the `User model in PostgreSQL and the Sword model in MongoDB)
var usersNamedFinn = await User.find({ name:’Finn’ })
.populate(‘currentSwords’, {



	where: {
	color: ‘purple’





},
limit: 3,
sort: ‘hipness DESC’




});

// Note that Finns without any swords are still included – their currentSwords arrays will just be empty.
sails.log(‘Wow, there are %d users named Finn.’, usersNamedFinn.length);
sails.log(‘Check it out, some of them probably have non-empty arrays of purple swords:’, usersNamedFinn);

return res.json(usersNamedFinn);
```

This might yield:

```javascript
[



	{
	id: 7392,
age: 13,
name: ‘Finn’,
createdAt: 1451088000000,
updatedAt: 1545782400000,
dad: 108,//<< not populated
swords: [//<< populated



	{
	id: 9,
title: ‘Grape Soda Sword’,
color: ‘purple’,
createdAt: 1540944000000,
updatedAt: 1540944000000





},
// …more swords




]





},
// …more users






]

<docmeta name=”displayName” value=”.populate()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # Working with queries

Queries (aka _query instances_) are the chainable deferred objects returned from model methods like .find() and .create().  They represent a not-quite-yet-fulfilled intent to fetch or modify records from the database.

`usage
var query = Zookeeper.find();
`

The purpose of query instances is to provide a convenient, chainable syntax for working with your models.  Methods like .populate(), .where(), and .sort() allow you to refine database calls _before_ they’re sent down the wire. Then, when you’re ready to fire the query off to the database, you can just await it.

> If you are using an older version of Node.js that does not support JavaScript’s await keyword, you can use .exec() or .then()`+.catch()`.  See the section on “Promises and Callbacks” below for more information.

Most of the time, you won’t think about query instances as objects _per se_, but as just another part of the syntax for communicating with the database.  In fact, you may already be using these objects in your Sails app! If so, the following syntax should look familiar:

`js
var zookeepers = await Zookeeper.find();
`

In this example, the call to Zookeeper.find() returns a query instance, but _doesn’t actually do anything_ until it is executed using the await keyword, and then the result is assigned to the zookeepers variable.

### How it works

When you execute a query using await, a lot happens.

`js
await query;
`

First, the query is “shaken out” by Waterline core into a [normalized query](https://sailsjs.com/documentation/concepts/models-and-orm/query-language).  Then it passes through the relevant Waterline adapter(s) for translation to the raw query syntax of your database(s) (e.g. Redis or Mongo commands, various SQL dialects, etc.)  Next, each involved adapter uses its native Node.js database driver to send the query out over the network to the corresponding physical database.

When the adapter receives a response, it is marshalled to the Waterline interface spec and passed back up to Waterline core, where it is integrated with any other raw adapter responses into a coherent result set.  At that point, it undergoes one last normalization before being passed back to “userland” (i.e. your code) for consumption by your app.

### Error handling

You can use a try/catch to handle specific errors, if desired:

```js
var zookeepersAtThisZoo;
try {

	zookeepersAtThisZoo = await Zookeeper.find({
	zoo: req.param(‘zoo’)

}).limit(30);

	} catch (err) {
	
	switch (err.name) {
	case ‘UsageError’: return res.badRequest(err);
default: throw err;

}

}

return res.json(zookeepersAtThisZoo);
```

The specific kinds of errors you could receive vary based on what kind of query you are executing.  See the reference docs for the various query methods for more specific information.

### Promises and callbacks

As an alternative to await, Sails and Waterline provide support for callbacks and promise-chaining.  In general, you should use `await` whenever possible; it leads to simpler, easier-to-understand code, and helps prevent DDoS vulnerabilities and stability issues that can arise from throwing uncaught exceptions in asynchronous callbacks.  That said, sometimes it is necessary to maintain backwards compatibility with an older version of Node.js.  For this reason, all queries in Sails and Waterline expose an [.exec()](https://sailsjs.com/documentation/reference/waterline-orm/queries/exec) method.

```js
Zookeeper.find().exec(function afterFind(err, zookeepers) {

// Careful! Do not throw an error in here without a try block!
// (Even a simple typo or null pointer exception could crash the process!)

	if (err) {
	// uh oh
// (handle error; e.g. return res.serverError(err))
return;

}

// would you look at all those zookeepers?
// (now let’s do the next thing;
// e.g. _.reduce(zookeepers, …) and/or return res.json(zookeepers))
// …

});
//
// (don’t put code out here)
```

As shown in the example above, the query is not executed right away, but notice that instead of using await to execute the query and wait for its result, we use the traditional .exec() method with a callback function.  With this usage, we cannot rely on try/catch and normal error handling in JavaScript to take care of our errors!  Instead, we have to manually handle them in our callback to .exec().  This style of error handling is the traditional approach used in Node.js apps prior to ~Summer 2017.

Under the covers, Sails and Waterline also provide a minimalist integration with the [Bluebird](https://github.com/petkaantonov/bluebird) promise library, exposing .then() and .catch() methods.

`js
Zookeeper.find()
.then(function (zookeepers) {...})
.catch(function (err) {...});
//
// (don't put code out here)
`

In this example, the callback passed into .catch() is equivalent to the contents of the if(err) {} block from the .exec() example above (e.g. res.serverError()).  Similarly, the .then() callback is equivalent to the code below the if(err) {} and early return.

If you are a fan of promises and have a reasonable amount of experience with them, you should have no problem working with this interface.  However if you are not very familiar with promises, or don’t care one way or another, you will probably have an easier time working with .exec(), since it uses standard Node.js callback conventions.

> If you decide to use traditional promise chaining for a particular query in your app, please make sure that you provide callbacks for both .then() _and_ .catch().  Otherwise errors could go unhandled, and unpleasant race conditions and memory leaks could ensue. This is not just a Sails or Waterline concept. Rather, it’s something to be aware of whenever you implement this type of usage in JavaScript&mdash;particularly in Node.js&mdash;since unhandled errors in server-side code tend to be more problematic than their client-side counterparts.   Omitting .catch() is equivalent to ignoring the err argument in a conventional Node callback, and it is similarly insidious.  In fact, this is hands-down one of the most common sources of bugs for Node.js developers of all skill levels.
>
> Proper error handling is particularly easy to neglect if you’re new to asynchronous code. Once you’ve been at it for a while, you’ll get in the habit of handling your asynchronous errors right after (or even better, right before) you write code that handles the successful case. Habits like this immunize your apps to those common bugs discussed above.
>
> (Better yet: just use await!)

### Notes

> + A query instance is not _exactly_ the same thing as a Promise, but it’s close enough for our purposes.  The difference is that a query instance in Sails and Waterline is actually a Deferred, as implemented by the [parley](https://npmjs.com/package/parley) library.  That means it doesn’t start executing immediately.  Instead, it only begins executing when you kick it off with either await, .exec(), .then(), or .toPromise().
> + A Node-style callback can be passed directly as a final argument to model methods (e.g. .find()).  In this case, the query will be executed immediately, and model methods _will not_ return a query instance (instead, the Node-style callback you provided will be triggered when the query is complete).  Unless you are doing something very advanced, you are generally better off sticking to standard usage; i.e. calling .exec() or calling .then() and .catch().

<docmeta name=”displayName” value=”Queries”>



            

          

      

      

    

  

    
      
          
            
  # .skip()

Indicate the number of records to skip before returning the results from executing a [query instance](https://sailsjs.com/documentation/reference/waterline-orm/queries).

`usage
.skip(numRecordsToSkip)
`

### Usage


|     Argument        | Type            | Details    |



|---|:——————–|-----------------|————|
| 1 |  numRecordsToSkip   | ((number))      | The number of records to skip. |

### Example

To retrieve records for all but the original user named Jake:

```javascript
var fakeJakes = await User.find({ name: ‘Jake’ });
.skip(1);

return res.json(fakeJakes);
```

### Notes
> If the &ldquo;skip&rdquo; value is greater than the number of records matching the query criteria, the query will return an empty array.
> The .find() method returns a chainable object if you don’t supply a callback.  This method can be chained to .find() to further filter your results.

<docmeta name=”displayName” value=”.skip()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .sort()

Set the order in which retrieved records should be returned when executing a [query instance](https://sailsjs.com/documentation/reference/waterline-orm/queries).

`usage
.sort(sortClause)
`

### Usage
	Argument	Type	Details
---	:—————–	---------------------	————
1	sortClause	((string)) _or_ ((array)) of ((dictionary))	If specified as a string, this should be formatted as: an attribute name, followed by a space, followed by either ASC or DESC to indicate an _ascending_ or _descending_ sort (e.g. name ASC).  If specified as an array, then each array item should be a dictionary with a single key representing the attribute to sort by, whose value is either ASC or DESC. The array syntax allows for sorting by multiple attributes, using the array order to establish precedence  (e.g. [ { name: ‘ASC’ }, { age:  ‘DESC’} ]).

### Example

To sort users named Jake by age, in ascending order:
```javascript
var users = await User.find({ name: ‘Jake’})
.sort(‘age ASC’);

return res.json(users);
```

To sort users named Finn, first by age, then by when they joined:
```javascript
var users = await User.find({ name: ‘Finn’})
.sort([

{ age: ‘ASC’ },
{ createdAt: ‘ASC’ },

]);

return res.json(users);
```

### Notes
> The .find() method returns a chainable object if you don’t supply a callback.  This method can be chained to .find() to further filter your results.

<docmeta name=”displayName” value=”.sort()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .then()

Execute a Waterline [query instance](https://sailsjs.com/documentation/reference/waterline-orm/queries) using promises.

`usage
.then(callback)
`

> As of Sails v1 and Node.js v8, you can take advantage of [await](https://sailsjs.com/documentation/reference/waterline-orm/queries) instead of using this method.

### Usage


|     Argument        | Type                                         | Details                            |



|---|:——————–|----------------------------------------------|:———————————–|
| 1 |   callback          | ((function))                                 | A function that runs if the query successfully completes<br/><br/> Takes the result of the query as its argument.

##### Callback


|     Argument        | Type                | Details |



|---|:——————–|---------------------|:———————————————————————————|
| 1 |    _result_         | ((Ref?))            | The result from the database, if any.  Exact data type depends on the query.

### Example

To look up the user with the specified email address:

```javascript
User.findOne({

email: req.param(‘email’)

})
.then(function (user){

if (!user) { return res.notFound(); }
return res.json(user);

})
.catch(function (err) { return res.serverError(err); });
```

### Notes
> + Whenever possible, it is recommended that you use await instead of calling this method.
> + This is an alternative to .exec().  When combined with .catch(), it provides the same functionality.
> + The .then() function returns a promise to allow for chaining.
> + For more information, see the [bluebird .then() api docs](http://bluebirdjs.com/docs/api/then).

<docmeta name=”displayName” value=”.then()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .toPromise()

Begin executing a Waterline [query instance](https://sailsjs.com/documentation/reference/waterline-orm/queries) and return a promise.

`usage
.toPromise();
`

> This is an alternative to .exec().

### Notes

> + For more information, see the [bluebird Promise.promisify() API docs](http://bluebirdjs.com/docs/api/promise.promisify.html).

<docmeta name=”displayName” value=”.toPromise()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .tolerate()

Tolerate (swallow) the specified error, and return a new result value (or undefined) instead.  (Don’t throw.)

`usage
.tolerate(filter, handler)
`

_Or:_
+ .tolerate(filter)
+ .tolerate(handler) _(to tolerate all errors)_

### Usage
	Argument	Type	Details
---	—————–	---------------------	:———–
1	filter	((string)) or ((dictionary))	The code of the error that you want to intercept, or a dictionary of criteria for identifying the error to intercept.
2	_handler_	((function?))	An optional [procedural parameter](https://en.wikipedia.org/wiki/Procedural_parameter), called automatically by Sails if the anticipated error is thrown.  It receives the argument specified in the “Handler” usage table below. If specified, the handler should return a value that will be used as the result. If omitted, the anticipated error will be swallowed and the result of the query will be undefined.

##### Handler
|   |     Argument        | Type                | Details
|---|———————|---------------------|:————————|
| 1 | err                 | ((Error))           | Your anticipated Error. |

> .tolerate() is useful for tolerating a kind of error (or all errors). If you chain on .tolerate() and it matches the error that occurs, then the underlying logic won’t throw. Instead, it returns the return value of the handler function you passed into .tolerate().

### Example

Say you’re building an address book that doesn’t allow records with duplicate email addresses. To instead swallow the error caused by entering a non-unique email address and update the existing contact:

```javascript
let newOrExistingContact = await Contact.create({

emailAddress,
fullName

})
.fetch()
.tolerate(‘E_UNIQUE’);

	if(!newOrExistingContact) {
	newOrExistingContact = await Contact.updateOne({ emailAddress })
.set({ fullName })
.fetch();

}

<docmeta name=”displayName” value=”.tolerate()”>
<docmeta name=”pageType” value=”method”>

 # .usingConnection()

Specify an existing database connection to use for this [query](https://sailsjs.com/documentation/reference/waterline-orm/queries).

`usage
.usingConnection(connection);
`

Usage

| Argument | Type | Details |

|---|:——————–|--|:———————————–|
| 1 | connection | ((ref)) | An existing database connection obtained using [.transaction()](https://sailsjs.com/documentation/reference/waterline-orm/datastores/transaction) or [.leaseConnection()](https://sailsjs.com/documentation/reference/waterline-orm/datastores/lease-connection).

Example

An example of .usingConnection() usage can be found in the example for [.transaction()](https://sailsjs.com/documentation/reference/waterline-orm/datastores/transaction#?example).

<docmeta name=”displayName” value=”.usingConnection()”>
<docmeta name=”pageType” value=”method”>

 # .where()

Specify a where clause for filtering a query.

`usage
.where(whereClause)
`

Usage
| | Arguments | Type | Details |
|---|:——————-|---------------------|————|
| 1 | whereClause | ((dictionary)) | The [where clause](https://sailsjs.com/documentation/concepts/models-and-orm/query-language) to use for matching records in the database. |

Example

To find all the users named Finn whose email addresses start with ‘f’:
```javascript
var users = await User.find()
.where({ name: ‘Finn’, ‘emailAddress’ : { startsWith : ‘f’ } });

return res.json(users);
```

Notes
> The criteria provided in the .where() method takes precendence over the the criteria provided in .find().

> The .find() method returns a chainable object if you don’t supply a callback. This method can be chained to .find() to further filter your results.

<docmeta name=”displayName” value=”.where()”>
<docmeta name=”pageType” value=”method”>

 # Records

In Sails, [records](https://sailsjs.com/documentation/concepts/models-and-orm/records) come from model methods like .find() and represent data from your database. You can work with records just like you would any other data.

`js
var orders = await Order.find();
// `orders` is an array of records
`

Working with populated records
If a record came from a query that used .populate(), it may contain populated values (or “child records”) which represent the associated data. To add, remove, or replace these child records, use [model methods](https://sailsjs.com/documentation/reference/waterline-orm/models).

<docmeta name=”displayName” value=”Records”>

 # .toJSON()

Purpose
Whenever Waterline retrieves a record, it checks whether or not the record’s model has a [customToJSON](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?customtojson) method defined; if so, Waterline adds the method to the record as its toJSON property. toJSON is _**not intended to be called directly in your code**_. Instead, it is used automatically when a record is serialized via a call to `JSON.stringify()`. The [res.json() method](https://sailsjs.com/documentation/reference/response-res/res-json), in particular, stringifies objects in this way.

When a [customToJSON](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?customtojson) is defined for a model, the .toJSON() method will be added to records retrieved via [.find()](https://sailsjs.com/documentation/reference/waterline-orm/models/find), [.findOne()](https://sailsjs.com/documentation/reference/waterline-orm/models/find-one), [.findOrCreate()](https://sailsjs.com/documentation/reference/waterline-orm/models/find-or-create) and [.stream()](https://sailsjs.com/documentation/reference/waterline-orm/models/stream), as well as those retrieved by setting the [fetch meta key](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta) to true in calls to [.create()](https://sailsjs.com/documentation/reference/waterline-orm/models/create), [.createEach()](https://sailsjs.com/documentation/reference/waterline-orm/models/create-each), [.update()](https://sailsjs.com/documentation/reference/waterline-orm/models/update) and [.destroy()](https://sailsjs.com/documentation/reference/waterline-orm/models/destroy). If any child records are attached via [.populate()](https://sailsjs.com/documentation/reference/waterline-orm/queries/populate), and the corresponding models have [customToJSON](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?customtojson) methods, then the child records will also have .toJSON() functions attached.

See the [customToJSON documentation](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?customtojson) for more info on how to customize the way your records are presented.

<docmeta name=”displayName” value=”.toJSON()”>
<docmeta name=”pageType” value=”method”>

 # WebSockets

For a full discussion of realtime concepts in Sails, see the [Realtime concept documentation](https://sailsjs.com/documentation/concepts/realtime).

For information on client-to-server socket communication, see the [Socket Client (sails.io.js)](https://sailsjs.com/documentation/reference/web-sockets/socket-client).

For information on server-to-client socket communication, see the [sails.sockets](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets).

For information on using realtime messages to communicate changes in Sails models, see the [Resourceful PubSub reference](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub).

Sails uses socket.io as the underlying engine for realtime communication. Every Sails app has a Socket.IO instance available as sails.io. However, most socket.io functionality is wrapped for convenience (and safety) by a sails.sockets method.

<docmeta name=”displayName” value=”WebSockets”>

 # .getRoomName()

Retrieve the name of the PubSub “room” for a given record.

`js
Something.getRoomName(id);
`

Usage

| Argument | Type | Details |

|---|:———–|:------------:|:——–|
| 1 | id | ((number))
 or
 ((string)) | The ID (primary key value) of the record to get the PubSub room name for.

Example


	```javascript
	// On the server:

subscribeAllBobWatchersToKaren: function (req, res) {


// Look up all users named “bob” or “karen”.
User.find({name: [‘bob’, ‘karen’]}, function(err, users) {


if (err) {return res.serverError(err);}

// Get Bob’s ID.  We’ll assume there is only one Bob.
var bobId = _.find(users, { name: ‘bob’ }).id;

// Get Karen’s ID.  We’ll assume there is only one Karen.
var karenId = _.find(users, { name: ‘karen’ }).id;

// Subscribe all of Bob’s sockets to Karen.
sails.sockets.addRoomMembersToRooms(User.getRoomName(bobId), User.getRoomName(karenId));

return res.send();




});




}





```

<docmeta name=”displayName” value=”.getRoomName()”>
<docmeta name=”pageType” value=”method”>

 # .publish()

Broadcast an arbitrary message to socket clients [subscribed](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribe) to one or more of this model’s [records](https://sailsjs.com/documentation/concepts/models-and-orm).

`js
Something.publish(ids, data, req);
`

> The event name for this broadcast is the same as the model’s identity.

Usage

| Argument | Type | Details |

|---|:———–|:------------:|:——–|
| 1 | ids | ((array)) | An array of record ids (primary key values).
| 2 | data | ((json)) | The data to broadcast.
| 3 | _req_ | ((req?)) | Optional. If provided, then the requesting socket will not receive the broadcast.

Example


	```javascript
	// On the server:

tellSecretToBobs: function (req, res) {


// Get the secret from the request.
var secret = req.param(‘secret’);

// Look up all users named “Bob”.
User.find({name: ‘bob’}, function(err, bobs) {


if (err) {return res.serverError(err);}

// Tell the secret to every client who is subscribed to these users,
// except for the client that made this request in the first place.
// Note that the secret is wrapped in a dictionary with a verb property – this is not
// required, but helpful if you’ll also be listening for events from Sails blueprints.
User.publish(_.pluck(bobs, ‘id’), {


verb: ‘published’,
theSecret: secret




}, req);

return res.send();




});




}





```


	```javascript
	// On the client:

// Subscribe this client socket to Bob-only secrets
// > See the .subscribe() documentation for more info about subscribing to records:
// > https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribe
io.socket.get(‘/subscribeToBobSecrets’);

// Whenever a user event is received, do something.
io.socket.on(‘user’, function(msg) {



	if (msg.verb === ‘published’) {
	console.log(‘Got a secret only Bobs can hear:’, msg.theSecret);





}
// else if (msg.verb === ‘created’) { … }
// else if (msg.verb === ‘updated’) { … }




});





```

Notes
> + Be sure to check that req.isSocket === true before passing in req to refer to the requesting socket. If used, the provided req must be from a socket request, not just any old HTTP request.

<docmeta name=”displayName” value=”.publish()”>
<docmeta name=”pageType” value=”method”>

 # Resourceful PubSub (RPS)

Overview

For apps that rely heavily on [realtime](https://sailsjs.com/documentation/concepts/realtime) client-server communication—for example, peer-to-peer chat and social networking apps—sending and listening for socket events can quickly become overwhelming. Sails helps smooth away some of the complexity associated with socket events by introducing the concept of resourceful PubSub ([Publish / Subscribe](http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern)). Every model in your app is automatically equipped with resourceful PubSub methods, which provide a conventional, data-centric interface for both _broadcasting notifications_ and _subscribing sockets to notifications_ about individual database records.

If your app is currently using the [blueprint API](https://sailsjs.com/documentation/reference/blueprint-api), you are already using resourceful PubSub methods! They are embedded in the default blueprint actions bundled with Sails and are called automatically when those actions run, causing requesting sockets to be subscribed when data is fetched and messages to be broadcasted to already-subscribed sockets when data is changed. (Sockets can be subscribed via a call to [.subscribe()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribe) or due to a previous socket request to the [find](https://sailsjs.com/documentation/reference/blueprint-api/find) or [findOne](https://sailsjs.com/documentation/reference/blueprint-api/find-one) blueprints.)

Even when writing custom code, you can manually call the methods described in this section in lieu of using sails.sockets.* methods directly. Think of resourceful PubSub methods as a way of standardizing the interface for socket communication across your application—these interface elements might be the names of rooms, the schema for data transmitted as socket messages, or the names of socket events. These methods are designed _exclusively_ for scenarios where one or more user interfaces are listening to socket events in order to stay in sync with the backend. If that does not fit your use case or if you are having trouble deciding, don’t worry; just call [sails.sockets.broadcast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/broadcast), [sails.sockets.join()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/join), or [sails.sockets.leave()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/leave) directly, instead. It is perfectly acceptable to use either approach, or even _both_ approaches in the same app.

Methods

Sails exposes three different resourceful PubSub (RPS) methods: .publish(), .subscribe(), and .unsubscribe().

To get a deeper understanding of resourceful PubSub methods, you may find it useful to familiarize yourself with the underlying [sails.sockets.*](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) methods first. That’s because each RPS method is more or less just a contextualized wrapper around one of the simpler sails.sockets.* methods:

	[.publish()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/publish) is like _[sails.sockets.broadcast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/broadcast)_

	[.subscribe()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribe) is like _[sails.sockets.join()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/join)_

	[.unsubscribe()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/unsubscribe) is like _[sails.sockets.leave()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/leave)_

The biggest difference between these methods and their counterparts in sails.sockets.* is that RPS methods expose a higher-level interface. For example, RPS methods choose room names for you behind the scenes, and they infer a conventional event name based on your model’s identity.

Listening for events on the client

While you are free to use any JavaScript library to listen for socket events on the client, Sails provides its own socket client called [sails.io.js](https://sailsjs.com/documentation/reference/web-sockets/socket-client) as a convenient way to communicate with the Sails server from any web browser or Node.js process that supports Socket.IO. Using the Sails socket client makes listening for resourceful PubSub events as easy as:

```javascript
io.socket.on(‘<model identity>’, function (msg) {


});

> The _[model identity](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?identity)_ is typically the lowercased version of the model name, unless it has been manually configured in the model file.

### Example

Let&rsquo;s say you have a model named User in your app, with a single &ldquo;name&rdquo; attribute.  First, we&rsquo;ll add a listener for &ldquo;user&rdquo; events:

```javascript
io.socket.on(‘user’, function(msg){

console.log(msg);

})

This will log any notifications that our client socket receives to the console, so long as those socket notifications have “user” as their event name. However, we won’t actually receive those messages until we subscribe this client socket to one or more existing User records (in our server-side code).

If your app has the blueprint API enabled, then subscribing the client socket to the User records is really easy. In addition to fetching data, if the [“Find” blueprint action](https://sailsjs.com/documentation/reference/blueprint-api/find-where) is accessed via a [socket request](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-get), then it calls [User.subscribe()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribe) (a resourceful PubSub method) automatically.

For example, imagine you write some client-side code that sends a socket GET request to http://localhost:1337/user:

```js
io.socket.get(‘/user’, function(resData) {


console.log(resData);






});

When that runs, it will hit the “Find” blueprint action, which returns the current list of users from the Sails server.  And if we’d sent a normal HTTP request (like jQuery.get(‘/user’)), then that’s all that would happen.  But because we sent a _socket request_, the server _also_ subscribed our client socket to future notifications (calls to [.publish()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/publish)) about the user records that were returned.

> See [io.socket.get()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-get) for more info about using the sails.io.js client to send virtual requests.

Unlike .subscribe(), the RPS .publish() method can run from anywhere&mdash;a controller action triggered as the result of a socket request, an AJAX request, or even a cURL request from the command line.  Alternatively, .publish() could be called from a custom helper or in a command-line script.

Continuing with the above example, if you were to open an additional browser window and go to the following URL:

`
/user/create?name=joe
`

You would see something like the following in the console of the original window:

```js
{

verb: ‘created’,

id: 1,
data: {

id: 1,
name: ‘joe’,
createdAt: ‘2014-08-01T05:50:19.855Z’
updatedAt: ‘2014-08-01T05:50:19.855Z’

}

}

What you’re seeing here is a dictionary (aka plain JavaScript object) that was broadcasted by the [“Create” blueprint action](https://sailsjs.com/documentation/reference/blueprint-api/create). In the case of the blueprint API, the format of this data is standardized, but in your app, you can use .publish() to broadcast any data you like.

<docmeta name=”displayName” value=”Resourceful PubSub”>

 # .subscribe()

Subscribe the requesting client socket to changes/deletions of one or more database records.

`js
Something.subscribe(req, ids);
`

Usage

| Argument | Type | Details |

|---|:———–|:------------:|:——–|
| 1 | req | ((req)) | The incoming socket request (req) containing the socket to subscribe.
| 2 | ids | ((array)) | An array of record ids (primary key values).

When a client socket is subscribed to a record, it is a member of its dynamic “record room”. That means it will receive all messages broadcasted to that room by [.publish()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/publish).

Example

On the server, in a controller action:

```javascript
// On the server:


	if (!this.req.isSocket) {
	throw {badRequest: ‘Only a client socket can subscribe to Louies.  But you look like an HTTP request to me.’};





}

// Let’s say our client socket has a problem with people named “louie”.

// First we’ll find all users named “louie” (or “louis” even– we should be thorough)
let usersNamedLouie = await User.find({ or: [{name: ‘louie’},{name: ‘louis’}] });

// Now we’ll subscribe our client socket to each of these records.
User.subscribe(this.req, _.pluck(usersNamedLouie, ‘id’));

// All done!  We might send down some data, or just an empty 200 (OK) response.
```

Then, back in our client-side code:

```javascript
// On the client:

// Send a request to the “subscribeToLouies” action, subscribing this client socket
// to all future events that the server publishes about Louies.
io.socket.get(‘/foo/bar/subscribeToLouies’, function (data, jwr){



	if (jwr.error) {
	console.error(‘Could not subscribe to Louie-related notifications: ‘+jwr.error);
return;





}

console.log(‘Successfully subscribed.’);





});

From now on, as long as our requesting client socket stays connected, it will receive a notification any time our server-side code (e.g. other actions or helpers) calls User.publish() for one of the Louies we subscribed to above.

In order for our client-side code to handle these future notifications, it must _listen_ for the relevant event with .on().  For example:

```js
// On the client:

// Whenever a user event is received, say something.
io.socket.on(‘user’, function(msg) {

console.log(‘Got a message about a Louie: ‘, msg);

});

See [Concepts > Realtime](https://sailsjs.com/documentation/concepts/realtime) for more background on the difference between rooms and events in Sails/Socket.IO.

Multiple rooms per record

For some applications, you may find yourself needing to manage two different channels related to the same record. To accomplish this, you can combine [.getRoomName()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/get-room-name) and [sails.sockets.join()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/join):

```js
// On the server, in your subscribe action…

if (!orgId) { throw ‘badRequest’; }

if (!this.req.isSocket) { throw {badRequest: ‘This action is designed for use with WebSockets.’}; }


	let me = await User.findOne({
	id: this.req.session.userId





})
.populate(‘globalAdminOfOrganizations’);

// Subscribe to general notifications.
Organization.subscribe(this.req, orgId);

// If this user is a global admin of this organization, then also subscribe them to
// an additional private room (this is used for additional notifications intended only
// for global admins):
if (globalAdminOfOrganizations.includes(orgId)) {


let privateRoom = Organization.getRoomName(${orgId}-admins-only);
sails.sockets.join(this.req, privateRoom);




}

```

Later, to publish to one of these rooms, just compute the appropriate room name (e.g. “13-admins-only”) and use [sails.sockets.broadcast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/broadcast) to blast out your notification.

Notes

> + Be sure and check req.isSocket === true before passing in req to refer to the requesting socket. The provided req must be from a socket request, not just any old HTTP request.
> + .subscribe() will only work with requests made over a Socket.IO connection (e.g. using io.socket.get()), not over an HTTP connection (e.g. using jQuery.get()). See the [sails.io.js socket client documentation](https://sailsjs.com/documentation/reference/web-sockets/socket-client) for information on using client sockets to send WebSockets/Socket.IO messages with Sails.
> + This function does _not actually talk to the database_! In fact, none of the resourceful PubSub methods do. Rather, these make up a simplified abstraction layer built on top of the lower-level sails.sockets methods, designed to make your app cleaner and easier to debug by using conventional names for events/rooms/namespaces etc.

<docmeta name=”displayName” value=”.subscribe()”>
<docmeta name=”pageType” value=”method”>

 # .unsubscribe()

Unsubscribe the requesting client socket from one or more database records.

`js
Something.unsubscribe(req, ids);
`

Usage

| Argument | Type | Details |

|---|:———–|:------------:|:——–|
| 1 | req | ((req)) | The incoming socket request (req) containing the socket to unsubscribe.
| 2 | ids | ((array)) | An array of record ids (primary key values).

Example

On the server:

```javascript
unsubscribeFromUsersNamedLenny: function (req, res) {



	if (!req.isSocket) {
	return res.badRequest();





}


	User.find({name: ‘Lenny’}).exec(function(err, lennies) {
	if (err) { return res.serverError(err); }

var lennyIds = _.pluck(lennies, ‘id’);

User.unsubscribe(req, lennyIds);

return res.ok();





});





},

### Notes
> + Be sure to check that req.isSocket === true before passing in req to refer to the requesting socket.  The provided req must be from a socket request, not just any old HTTP request.
> + unsubscribe will only work when the request is made over a socket connection (e.g. using io.socket.get()), not over HTTP (e.g. using jQuery.get()).

<docmeta name=”displayName” value=”.unsubscribe()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # The io.sails object

### Overview

The io.sails object is the home of global configuration options for the sails.io.js library and any sockets it creates.  Most of the properties on io.sails are used as settings when connecting a client socket to the server or as top-level configuration for the client library itself.  io.sails also provides a .connect() method used for creating new socket connections manually.

See [Socket Client](https://sailsjs.com/documentation/reference/web-sockets/socket-client) for information about your different options for configuring io.sails.

### The .connect() method

If [io.sails.autoConnect](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails#?autoconnect) is false, or if you need to create more than one socket connection with the sails.io.js library, you do so via io.sails.connect([url], [options]).  Both arguments are optional, and the value of the io.sails properties (like url, transports, etc.) are used as defaults.  See the [SailsSocket properties reference](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties) for options.

### io.sails.autoConnect

When io.sails.autoConnect is set to true (the default setting), the library will wait one cycle of the event loop after loading and then attempt to create a new [SailsSocket](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket) and connect it to the URL specified by io.sails.url.  When used in the browser, the new socket will be exposed as io.socket.  When used in a Node.js script, the new socket will be attached as the socket property of the variable used to initialize the sails.io.js library.

### io.sails.reconnection

When io.sails.reconnection is set to true, sockets will automatically (and continuously) attempt to reconnect to the server if they become disconnected unexpectedly (that is, _not_ as the result of a call to [.disconnect()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/methods#?disconnect)).  If set to false (the default), no automatic reconnection attempt will be made.  Defaults to false.

### io.sails.environment

Use io.sails.environment to set an environment for sails.io.js, which affects how much information is logged to the console.  Valid values are development (full logs) and production (minimal logs).

### Other properties and defaults

The other properties of io.sails are used as defaults when creating new sockets (either the eager socket or via [io.sails.connect()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails#?the-connect-method)).  See the [SailsSocket properties reference](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties) for a full list of available options, as well as a table of the default io.sails values.  Here are the most commonly used properties:



Property          | Type       | Default   | Details




:—————— |----------|:——— |:——-
url                | ((string)) | Value of [io.sails.url](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties#?iosails-defaults) | The URL that the socket is connected to, or will attempt to connect to.
transports         | ((array))  | Value of [io.sails.transports](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties#?iosails-defaults) | The transports that the socket will attempt to connect using.  Transports will be tried in order, with upgrades allowed: that is, if you list both “polling” and “websocket”, then after establishing a long-polling connection the server will attempt to upgrade it to a websocket connection.  This setting should match the value of sails.config.sockets.transports in your Sails app.
headers   | ((dictionary)) | Value of [io.sails.headers](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties#?iosails-defaults) | Dictionary of headers to be sent by default with every request from this socket.  Can be overridden via the headers option in [.request()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-request).




<docmeta name=”displayName” value=”io.sails”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # io.socket.off()

Unbind the specified event handler (opposite of [.on()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-on)).

`js
io.socket.off(eventIdentity, handlerFn);
`

> This method is here for completeness, but most apps should not need to use it.  See below for more information.

### Usage


| Argument   | Type         | Details |



|---|————|:------------:|:——–|
| 1 | eventIdentity | ((string))   | The unique event identity associated with a server-sent message, e.g. “recipe”.
| 2 | handlerFn     | ((function)) | The event handler function to unbind from the specified event.

### Notes

> + If you decide to use this method, be careful!  io.socket.off() does not stop the this client-side socket from receiving any server-sent messages, it just prevents the specified event handler from firing.  Usually, the desired effect is to prevent messages _from being sent altogether_, which is critical if your server-sent messages contain private data. This happens automatically when a socket disconnects, but there are also less-common use cases where it is necessary to unsubscribe sockets from rooms while they are still connected.  For example, consider a scenario where an admin user is banned from your system while viewing a realtime dashboard, and your app needs to prevent them from receiving all subsequent realtime updates. To force a client socket to stop receiving broadcasted messages, do not use this method.  Instead, unsubscribe the socket in your server-side code:
>   + If the room was joined using sails.sockets.join(), call sails.sockets.leave().
>   + If the room was joined using resourceful PubSub methods, call .unsubscribe() or .unwatch() as appropriate.
> + In order to use .off(), you will need to store the handlerFn argument you passed in to [.on()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-on) in a variable.

<docmeta name=”displayName” value=”io.socket.off()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # io.socket.on()

Start listening for socket events from Sails with the specified eventName.  Triggers the provided callback function when a matching event is received.

```js
io.socket.on(eventName, function (msg) {

// …

});

Usage

| Argument | Type | Details |

|---|————-|:------------:|:——–|
| 1 | eventName | ((string)) | The name of the socket event, e.g. ‘recipe’ or ‘welcome’.
| 2 | handlerFn | ((function)) | An event handler that will be called when the server broadcasts a notification to this socket. Will only be called if the incoming socket notification matches eventName.

Event handler

| Argument | Type | Details |

|---|:———-|:---------------:|:——–|
| 1 | msg | ((json)) | The data from the socket notification.

When is the event handler called?

This event handler is called when the client receives an incoming socket notification that matches the specified event name (e.g. ‘welcome’). This happens when the server broadcasts a message to this socket directly, or to a room of which it is a member. To broadcast a socket notification, you need to either use the [blueprint API](https://sailsjs.com/documentation/concepts/blueprints) or write some server-side code (e.g. in an action, helper, or even in a command-line script). This is typically achieved in one of the following ways:

Low-level socket methods (sails.sockets)
+ server blasts out a message to all connected sockets (see [sails.sockets.blast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/blast))
+ server broadcasts a message directly to a particular socket using its unique ID or to an entire room full of sockets (see [sails.sockets.broadcast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/broadcast))

Resourceful Pubsub Methods
+ server broadcasts a message about a record, which multiple sockets might be subscribed to (see [Model.publish()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/publish)
+ server broadcasts a message as part of the “Create” blueprint action _(only relevant if using [blueprints](https://sailsjs.com/documentation/concepts/blueprints))_

Example

Listen for the “order” event:

```javascript
io.socket.on(‘order’, function onServerSentEvent (msg) {


// msg => {…whatever the server broadcasted…}






});

##### Realtime cafeteria

Imagine you’re building an ordering system for a chain of restaurants:

```javascript
// In your frontend code…
// (This example uses jQuery and Lodash for simplicity. But you can use any library or framework you like.)

var ORDER_IN_LIST = _.template(‘<li data-id=”<%- order.id %>”><p><%- order.summary %></p>’);

$(function whenDomIsReady(){

// Every time we receive a relevant socket event…
io.socket.on(‘order’, function (msg) {

// Let’s see what the server has to say…
switch(msg.verb) {

case ‘created’: (function(){

// Render the new order in the DOM.
var newOrderHtml = ORDER_IN_LIST(msg.data);
$(‘#orders’).append(newOrderHtml);

})(); return;

case ‘destroyed’: (function(){

// Find any existing orders w/ this id in the DOM.
//
// > Remember: To prevent XSS attacks and bugs, never build DOM selectors
// > using untrusted provided by users. (In this case, we know that “id”
// > did not come from a user, so we can trust it.)
var $deletedOrders = $(‘#orders’).find(‘[data-id=”’+msg.id+’”]’);

// Then, if there are any, remove them from the DOM.
$deletedOrders.remove();

})(); return;

// Ignore any unrecognized messages
default: return;

}//< / switch >

});//< / io.socket.on() >

});//< / when DOM is ready >
```

> Note that this example assumes the backend calls [.publish()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/publish) or [.broadcast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/broadcast) at some point.  That might be through custom code, or via the [blueprint API](https://sailsjs.com/documentation/concepts/blueprints).

### The ‘connect’ event
By default, when the Sails socket client is loaded on a page, it begins connecting a socket for you automatically.  When using the default, auto-connecting socket (io.socket), you don’t have to wait for the socket to connect before using it.  In other words, you can listen for other socket events or call methods like [io.socket.get()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-get) immediately.  The Sails socket client will queue up anything you do in the meantime and then replay it automatically once the connection is live.

Consequently, direct usage of the ‘connect’ event is not necessary for most apps.  But in the spirit of completeness, it is worth mentioning that you can also bind your own ‘connect’ handler:

```javascript
io.socket.on(‘connect’, function onConnect(){

console.log(‘This socket is now connected to the Sails server.’);

});

The ‘disconnect’ event

If a socket’s connection to the server was interrupted—perhaps because the server was restarted, or the client had some kind of network issue—it is possible to handle disconnect events in order to display an error message or even to manually reconnect the socket again.

```javascript
io.socket.on(‘disconnect’, function onDisconnect(){


console.log(‘This socket lost connection to the Sails server’);






});

> Sockets can be configured to reconnect automatically.  However, as of Sails v1, the Sails socket client disables this behavior by default.  In practice, since your user interface might have missed socket notifications while disconnected, you’ll almost always want to handle any related custom logic by hand.  (For example, a “Check your internet connection” error message).

### Notes
>+ Remember that a socket only stays subscribed to a room for as long as it is connected&mdash;e.g. as long as the browser tab is open&mdash;or until it is manually unsubscribed on the server using [.unsubscribe()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/unsubscribe) or [.leave()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/leave).
>+ When listening for socket messages from resourceful PubSub calls and blueprints, the event name is always the same as the identity of the calling model.  For example, if you have a model named “UserComment”, the model’s identity (and therefore the socket event name used by [UserComment.publish()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub)) is “usercomment”.
>+ For context, socket notifications are also sometimes referred to as “server-sent events” or “[comet](http://en.wikipedia.org/wiki/Comet_(programming)) messages”.

<docmeta name=”displayName” value=”io.socket.on()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # io.socket

### Overview

When used in the browser, sails.io.js creates a global instance of the [SailsSocket](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket) class as soon as it loads and attempts to connect it to the server after waiting one event loop cycle (to allow for configuration options to be changed).  As with any [SailsSocket](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket), you can start using its properties and methods even before it connects to the server. Any requests or event bindings will be queued up and replayed once the connection is established.

### Configuration Options

Like any [SailsSocket](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket) instance, io.socket is affected by the global [io.sails](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails) settings.  The sails.io.js library waits for one event loop cycle before attempting to connect io.socket to the server, giving you a chance to change any settings first.

##### Example

Changing the server that io.socket connects to

`html
<script type="text/javascript" src="/js/dependencies/sails.io.js"></script>
<script type="text/javascript">
io.sails.url = "http://somesailsapp.com";
</script>
`

### Properties

See the [SailsSocket properties reference](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties) for a full list of properties available on io.socket.

### Methods

For basic server communication and event listening methods, see the other io.socket.* pages in this section.  For advanced methods involving server connection, see the [SailsSocket advanced methods reference](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/methods).

<docmeta name=”displayName” value=”io.socket”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # Socket client (sails.io.js)

> This section of the docs is about the Sails socket client SDK for the browser.  It is written in JavaScript, and is also usable on the server.
>
> There are also a handful of community projects implementing Sails/Socket.IO clients for native iOS, Android, and Windows Phone.

### Overview

The Sails socket client ([sails.io.js](https://github.com/balderdashy/sails.io.js)) is a tiny browser library that is bundled by default in new Sails apps.  It is a lightweight wrapper that sits on top of the Socket.IO client and whose purpose is to make sending and receiving messages from your Sails backend as simple as possible.

The main responsibility of sails.io.js is to provide a familiar, Ajax-like interface for communicating with your Sails app using WebSockets/Socket.IO.  That basically means providing .get(), .post(), .put(), and .delete() methods that allow you take advantage of realtime features while still reusing the same backend routes you’re using for the rest of your app.  In other words, running io.socket.post(‘/user’) in your browser will be routed within your Sails app in exactly the same way as an HTTP POST request to the same route.

### Basic usage (browser)

In the browser, all that is required to use sails.io.js is to include the library in a <SCRIPT> tag.  Sails adds the library to the assets/js/dependencies folder of all new apps, so you can write:

```html
<!–

This will import the sails.io.js library bundled in your Sails app by default.
The bundled version embeds minified code for the Socket.io client as well.
One tick of the event loop after importing this script, a new “eager” socket
will automatically be created begin connecting unless you configure it not to.

–>
<script type=”text/javascript” src=”/js/dependencies/sails.io.js”></script>
```

and then use io.socket as a global variable in subsequent inline or external scripts.  For detailed instructions and examples of everyday usage, see [io.socket](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket).

### Basic usage (Node.js)

To use the Sails socket client SDK in a Node.js script, you will need to install and require both the sails.io.js and socket.io-client libraries:

`javascript
// Initialize the sails.io.js library with the socket.io-client module,
// which will automatically create and connect a new socket as io.socket
// unless you configure it not to.
var io = require('sails.io.js')( require('socket.io-client') );
`

See the [sails.io.js GitHub repo](https://github.com/balderdashy/sails.io.js) for more information on using the Sails socket client from Node.js.

### Configuring the sails.io.js library

> This section focuses on the most common runtime environment for the JavaScript socket client: the browser.  See the [sails.io.js GitHub repository](https://github.com/balderdashy/sails.io.js) for help configuring the socket client for use in a Node.js script.

There are two ways to configure Sails’ socket client in the browser: using HTML attributes on the <script> tag or by programmatically modifying the io.sails object.

##### Basic configuration using HTML attributes

The easiest way to configure the four most common settings for the socket client (autoConnect, environment, headers, and url) is by sticking one or more HTML attributes on the script tag:

```html
<script src=”/js/dependencies/sails.io.js”

autoConnect=”false”
environment=”production”
headers=’{ “x-csrf-token”: “<%= typeof _csrf !== ‘undefined’ ? _csrf : ‘’ %>” }’

></script>
```

This example will disable the eager socket connection, force the client environment to “production” (which disables logs), and set an x-csrf-token header that will be sent in every socket request (unless overridden).  Note that composite values like the headers dictionary are wrapped in a pair of _single-quotes_. That’s because composite values specified this way must be _JSON-encoded_, meaning that their key names and value strings must be enclosed in double quotes (for a simlilar reason, the strings within the value string are enclosed in single quotes).

Any configuration that can be provided as an HTML attribute can alternately be provided prefixed with data- (e.g. data-autoConnect, data-environment, data-headers, data-url).  This is for folks who need to support browsers that have issues with nonstandard HTML attributes (or if the idea of using nonstandard HTML attributes just creeps you out). If both the standard HTML attribute and the data- prefixed HTML attribute are provided, the latter takes precendence.

> Note:
> In order to use this approach for configuring the socket client, if you are using the default Grunt asset pipeline (which automatically injects script tags), you will need to remove sails.io.js from your pipeline.js file, and instead include an explicit <script> tag, which imports it.

##### Programmatic configuration using io.sails

As of Sails v0.12.x, only the most basic configuration options may be set using HTML attributes.  If you want to configure any of the other options not mentioned above, you will need to interact with io.sails programmatically.  Fortunately, the approach described above is really just a convenient shortcut for doing just that!  Heres how it works:

When you load it on the page in a <script> tag, the sails.io.js library waits for one cycle of the event loop before _automatically connecting_ a socket (if io.sails.autoConnect is enabled, [see below](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails#?autoconnect)).  This allows any properties that you specify on io.sails to be set before the socket begins connecting.  However, in order to ensure that the io.sails properties are read before connection, you should put the code setting those properties immediately after the <script> tag that includes sails.io.js:

```html
<script src=”/js/dependencies/sails.io.js”></script>
<script type=”text/javascript”>

io.sails.url = ‘https://myapp.com’;

</script>
<!– …other scripts… –>
```

Normally, the socket client always connects to the server where the script is being served.  The example above will cause the eager (auto-connecting) socket to attempt a (cross-domain) socket connection to the Sails server running at https://myapp.com, instead.

> Note:
> If you are using the default Grunt asset pipeline (which automatically injects script tags), it is a good idea to exclude sails.io.js from your pipeline.js file, instead explicitly adding a <script> tag for it.  This ensures that your configuration will be applied _before_ the “eager” auto-connecting socket begins connecting, since it means that the inline <script> tag you are using for programmatic configuration (setting io.sails.url = ‘https://myapp.com’;, for example) is executed _immediately after_ the socket client.

### Advanced usage

You can also create and connect client sockets manually using [io.sails.connect](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails#?the-connect-method).  This returns an instance of the SailsSocket. For more information about use cases that are less common and more advanced, such as connecting multiple sockets, see [SailsSocket](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket).

##### Advanced configuration

The sails.io.js library and its individual client sockets have a handful of configuration options.  Global configuration lives in [io.sails](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails), which&mdash;among other things&mdash;allows you to disable the “eager” socket and default settings for new sockets.  Individual sockets can also be configured when they are manually connected&mdash;see [io.sails.connect()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails#?the-connect-method) for more information on that.

### Frequently asked questions

##### Can I use this with XYZ front-end framework?

Yes.  The Sails socket client can be used to great effect with any front-end framework, whether it’s Angular, React, Ember, Backbone, Knockout, jQuery, [FishBerry](https://mrsharpoblunto.github.io/foswig.js/), etc.

##### Do I have to use this?

No. The Sails socket client is extremely helpful when building realtime/chat features in a browser-based UI, but like the rest of the assets/ directory, it is probably not particularly useful if you are building a [native Android app](https://stackoverflow.com/questions/25081188/sending-socket-request-from-client-ios-android-to-sails-js-server/25081189#25081189) or an API with no user interface at all.

Fortunately, like every other boilerplate file and folder in Sails, the socket client is completely optional. To remove it, just delete assets/js/dependencies/sails.io.js.

##### How does this work?

Under the hood, the socket client (sails.io.js) emits Socket.IO messages with reserved names that, when interpreted by Sails, are routed to the appropriate policies/controllers/etc. according to your app’s routes and blueprint configuration.

##### How do I tell my Sails app _not_ to connect a socket with the current browser session?

By default, a socket connection will be linked to the current browser session (if any) using the cookie header that is sent with the initial socket handshake.  In order to turn off this behavior, add nosession=true to the [query property](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties#?advanced-properties) of the socket before it connects. For example:

`
<script src="/js/dependencies/sails.io.js"></script>
<script type="text/javascript">io.sails.query='nosession=true';</script>
`

##### Can I bypass this client and use Socket.IO directly?

It is possible to bypass the request interpreter in your Sails app and communicate with Socket.IO directly.  However, it is not reccommended, since it breaks the convention-over-configuration philosophy used elsewhere in the framework. The Sails socket client (sails.io.js) is unobtrusive:  it works by wrapping the native Socket.IO client and exposing a higher-level API that takes advantage of the virtual request interpreter in Sails to send simulated HTTP requests.  This makes your backend code more reusable, reduces the barrier to entry for developers new to using WebSockets/Socket.IO, and keeps your app easier to reason about.

> Note:
> In very rare circumstances (e.g. compatibility with an existing/legacy frontend using Socket.IO directly), bypassing the request interpreter is a _requirement_.  If you find yourself in this position, you can use the Socket.IO client, SDK, and then use sails.io on the backend to access the raw Socket.IO instance.  Please embark on this road only if you have extensive experience working directly with Socket.IO, and only if you have first reviewed the internals of the [sockets hook](https://github.com/balderdashy/sails-hook-sockets) (particularly the “admin bus” implementation, a Redis integration that sits on top of @sailshq/socket.io-redis and powers Sails’s multi-server support for joining/leaving rooms).

<docmeta name=”displayName” value=”Socket client”>



            

          

      

      

    

  

    
      
          
            
  # io.socket.delete()

Send a virtual DELETE request to a Sails server using Socket.IO.

```js
io.socket.delete(url, data, function (data, jwres){

// …

});

Usage

| Argument | Type | Details |

|---|————|:------------:|———|
| 1 | url | ((string)) | The destination URL path, e.g. “/checkout”.
| 2 | _data_ | ((json?)) | Optional request data. If provided, it will be URL-encoded and appended to url (existing query string params in url will be preserved).
| 3 | _callback_ | ((function?)) | Optional callback. If provided, it will be called when the server responds.

Callback

| Argument | Type | Details |

|---|———–|:------------:|———|
| 1 | resData | ((json)) | Data received in the response from the Sails server (=== jwres.body, equivalent to the HTTP response body).
| 2 | jwres | ((dictionary)) | A JSON WebSocket Response object. Has headers, a body, and a statusCode.

Example

```html
<script>
io.socket.delete(‘/users/9’, function (resData) {


resData; // => {id:9, name: ‘Timmy Mendez’, occupation: ‘psychic’}




});
</script>
```

Notes
> + Remember that you can communicate with _any of your routes_ using socket requests.
> + Need to customize request headers? Check out the slightly lower-level [io.socket.request()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-request) method. To set custom headers for _all_ outgoing requests, check out [io.sails.headers](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails).

<docmeta name=”displayName” value=”io.socket.delete()”>
<docmeta name=”pageType” value=”method”>

 # io.socket.get()

Send a socket request (virtual GET) to a Sails server using Socket.IO.

```js
io.socket.get(url, data, function (resData, jwres){


// …





});

### Usage


| Argument   | Type         | Details |



|---|:———–|:------------:|:——–|
| 1 | url        | ((string))   | The destination URL path, e.g. “/checkout”.
| 2 | _data_     | ((json?))        | Optional request data. If provided, it will be URL-encoded and appended to url (existing query string params in url will be preserved).
| 3 | _callback_ | ((function?)) | Optional callback. If provided, it will be called when the server responds.

##### Callback


| Argument  | Type            | Details |



|---|:———-|:---------------:|:——–|
| 1 | resData   | ((json))        | Data, if any, sent in the response from the Sails server.  This is the same thing as jwres.body.
| 2 | jwres     | ((dictionary))  | A JSON WebSocket response, which consists of headers (a ((dictionary))), body (((json))), and statusCode (a ((number))).

### Example

```html
<script>
io.socket.get(‘/users/9’, function (resData) {

// resData => {id:9, name: ‘Timmy Mendez’}

});
</script>
```

### Notes
> + Remember that you can communicate with _any of your routes_ using socket requests.
> + Need to customize request headers?  Check out the slightly lower-level [io.socket.request()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-request) method. To set custom headers for _all_ outgoing requests, check out [io.sails.headers](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails).

<docmeta name=”displayName” value=”io.socket.get()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # io.socket.patch()

Send a socket request (virtual PATCH) to a Sails server using Socket.IO.

```js
io.socket.patch(url, data, function (resData, jwres){

// …

});

Usage

| Argument | Type | Details |

|---|————|:------------:|———|
| 1 | url | ((string)) | The destination URL path, e.g. “/checkout”.
| 2 | _data_ | ((json?)) | Optional request data. If provided, it will be JSON-encoded and included as the virtual HTTP body.
| 3 | _callback_ | ((function?)) | Optional callback. If provided, it will be called when the server responds.

Callback

| Argument | Type | Details |

|---|———–|:------------:|———|
| 1 | resData | ((json)) | Data received in the response from the Sails server (=== jwres.body, equivalent to the HTTP response body).
| 2 | jwres | ((dictionary))| A JSON WebSocket Response object. Has headers, a body, and a statusCode.

Example

```html
<script>
io.socket.patch(‘/users/9’, { occupation: ‘psychic’ }, function (resData, jwr) {


resData.statusCode; // => 200




});
</script>
```

Notes
> + Remember that you can communicate with _any of your routes_ using socket requests.
> + Need to customize request headers? Check out the slightly lower-level [io.socket.request()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-request) method. To set custom headers for _all_ outgoing requests, check out [io.sails.headers](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails).

<docmeta name=”displayName” value=”io.socket.patch()”>
<docmeta name=”pageType” value=”method”>

 # io.socket.post()

Send a socket request (virtual POST) to a Sails server using Socket.IO.

```js
io.socket.post(url, data, function (resData, jwres){


// …





});

### Usage


| Argument   | Type         | Details |



|---|————|:------------:|———|
| 1 | url        | ((string))   | The destination URL path, e.g. “/checkout”.
| 2 | _data_     | ((json?))        | Optional request data. If provided, it will be JSON-encoded and included as the virtual HTTP body.
| 3 | _callback_ | ((function?)) | Optional callback. If provided, it will be called when the server responds.

##### Callback


| Argument  | Type         | Details |



|---|———–|:------------:|———|
| 1 | resData   | ((json))     | Data received in the response from the Sails server (=== jwres.body, and also equivalent to the HTTP response body).
| 2 | jwres     | ((dictionary))      | A JSON WebSocket Response object.  Has headers, a body, and a statusCode.

### Example

```html
<script>
io.socket.post(‘/users’, { name: ‘Timmy Mendez’ }, function (resData, jwRes) {

jwRes.statusCode; // => 200

});
</script>
```

### Notes
> + Remember that you can communicate with _any of your routes_ using socket requests.
> + Need to customize request headers?  Check out the slightly lower-level [io.socket.request()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-request) method. To set custom headers for _all_ outgoing requests, check out [io.sails.headers](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails).

<docmeta name=”displayName” value=”io.socket.post()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # io.socket.put()

Send a socket request (virtual PUT) to a Sails server using Socket.IO.

```js
io.socket.put(url, data, function (resData, jwres){

// …

});

Usage

| Argument | Type | Details |

|---|————|:------------:|———|
| 1 | url | ((string)) | The destination URL path, e.g. “/checkout”.
| 2 | _data_ | ((json?)) | Optional request data. If provided, it will be JSON-encoded and included as the virtual HTTP body.
| 3 | _callback_ | ((function?)) | Optional callback. If provided, it will be called when the server responds.

Callback

| Argument | Type | Details |

|---|———–|:------------:|———|
| 1 | resData | ((json)) | Data received in the response from the Sails server (=== jwres.body, equivalent to the HTTP response body).
| 2 | jwres | ((dictionary)) | A JSON WebSocket Response object. Has headers, a body, and a statusCode.

Example

```html
<script>
io.socket.put(‘/users/9’, { occupation: ‘psychic’ }, function (resData, jwr) {


resData.statusCode; // => 200




});
</script>
```

Notes
> + Remember that you can communicate with _any of your routes_ using socket requests.
> + Need to customize request headers? Check out the slightly lower-level [io.socket.request()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-request) method. To set custom headers for _all_ outgoing requests, check out [io.sails.headers](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails).

<docmeta name=”displayName” value=”io.socket.put()”>
<docmeta name=”pageType” value=”method”>

 # io.socket.request()

Send a virtual request to a Sails server using Socket.IO.

This function is very similar to [io.socket.get()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-get), [io.socket.post()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-post), etc. except that it provides lower-level access to the request headers, parameters, method, and URL of the request.

Using the automatically-created [io.socket](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket) instance:

```js
io.socket.request(options, function (resData, jwres)){


// …
// jwres.headers
// jwres.statusCode
// jwres.body === resData
// …





});

### Usage


Option   | Type         | Details |



|:-----------|:————:|:--------|
| method    | ((string))   | The HTTP request method; e.g. ‘GET’.
| url       | ((string))   | The destination URL path; e.g. “/checkout”.
| _data_    | ((json?))    | Optional. If provided, this request data will be JSON-encoded and included as the virtual HTTP body.
| _headers_ | ((dictionary?))   | Optional. If provided, this dictionary of string headers will be sent as virtual request headers.

##### Callback


| Argument  | Type         | Details |



|---|:———-|:------------:|:——–|
| 1 | resData | ((json))     | Data received in the response from the Sails server (=== jwres.body, and also equivalent to the HTTP response body).
| 2 | jwres   | ((dictionary))      | A JSON WebSocket Response object.  Has headers, a body, and a statusCode.

### Example

```javascript
io.socket.request({

method: ‘get’,
url: ‘/user/3/friends’,
data: {

limit: 15

},
headers: {

‘x-csrf-token’: ‘ji4brixbiub3’

}

	}, function (resData, jwres) {
	
	if (jwres.error) {
	console.log(jwres.statusCode); // => e.g. 403
return;

}

console.log(jwres.statusCode); // => e.g. 200

});

Notes
> + A helpful analogy might be to think of the difference between io.socket.get and this method as the difference between JQuery’s $.get and $.ajax.
> + Remember that you can communicate with _any of your routes_ using socket requests.
> + Need to set custom headers for _all_ outgoing requests? Check out [io.sails.headers](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails).

<docmeta name=”displayName” value=”io.socket.request()”>
<docmeta name=”pageType” value=”method”>

 # SailsSocket

By default, [sails.io.js](https://sailsjs.com/documentation/reference/web-sockets/socket-client) automatically connects a single socket (io.socket) almost immediately after it loads. This allows your client-side code to send socket requests to a particular Sails server and to receive events and data sent from that server. For 99% of apps, this is all you need.

However, for certain advanced use cases (including automated tests), it can be helpful to connect additional sockets from the same instance of the socket client (e.g. browser tab). For this reason, Sails exposes the SailsSocket class.

Overview

The sails.io.js library works by wrapping low-level [Socket.io](http://socket.io) clients in instances of the SailsSocket class. This class provides higher-level methods like [.get()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-get) and [.post()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-post) to your sockets, allowing you to communicate with your Sails app in a familiar way.

Creating a SailsSocket instance

Any web page that loads the sails.io.js will create a new SailsSocket instance on page load unless [io.sails.autoConnect](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails#?autoconnect) is set to false. This instance is then available as the global variable [io.socket](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket).

Additional SailsSocket instances can be created via calls to [io.sails.connect](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails#?the-connect-method):

`javascript
var newSailsSocket = io.sails.connect();
`

<docmeta name=”displayName” value=”SailsSocket”>
<docmeta name=”pageType” value=”class”>

 # SailsSocket methods

This section describes the methods available on each SailsSocket instance. Most of these methods can be called before the socket even connects to the server. In the case of request methods like .get() and .request(), calls will be queued up until the socket connects, at which time they will be executed in order.

Basic methods

The most common methods you will use with a SailsSocket instance are documented in the main Socket Client reference section. These include [.get()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-get), [.put()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-put), [.post()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-post), [.delete()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-delete), [.request()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-request), [.on()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-on) and [.off()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-off).

Advanced methods

In addition to the basic communication and event-listening methods, each SailsSocket instance (including io.socket) exposes several methods for dealing with server connections.

.isConnected()

Determines whether the SailsSocket instance is currently connected to a server; returns true if a connection has been established.

`js
io.socket.isConnected();
`

.isConnecting()

Determines whether the SailsSocket instance is currently in the process of connecting to a server; returns true if a connection is being attempted.

`js
io.socket.isConnecting();
`

.mightBeAboutToAutoConnect()

Detects when the SailsSocket instance has already loaded but is not yet fully configured or has not attempted to autoconnect.

The sails.io.js library waits one tick of the event loop before checking whether [autoConnect](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-sails#?iosailsautoconnect) is enabled and, if so, trying to connect. This allows you to configure the SailsSocket instance (for example, by setting io.sails.url) before an attempt is made to estabilish a connection. The mightBeAboutToAutoConnect() method returns true in the situation where sails.io.js has loaded, but the requisite tick of the event loop has not yet elapsed.

`js
io.socket.mightBeAboutToAutoConnect();
`

.disconnect()

Disconnects a SailsSocket instance from the server; throws an error if the socket is already disconnected.

`js
io.socket.disconnect();
`

.reconnect()

Reconnects a SailsSocket instance to a server after it’s been disconnected (either involuntarily or via a call to [.disconnect()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/methods#?disconnect)). The instance connects using its currently configured [properties](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties). .reconnect() throws an error if the socket is already connected to a server.

`js
io.socket.reconnect();
`

> When an instance is in a disconnected state, its properties may be changed. This means that an instance that has been disconnected from one server can be reconnected to another without losing its event bindings or queued requests.

.removeAllListeners()

Stops listening for any server-related events on a SailsSocket instance, including connect and disconnect.

`js
io.socket.removeAllListeners();
`

<docmeta name=”displayName” value=”Methods”>

 # SailsSocket properties

Overview

This page describes the properties available on each [SailsSocket instance](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket). These properties are set in the initial call to io.sails.connect, which creates the SailsSocket and cannot be changed while the socket is connected (with the exception of headers).

If the socket becomes disconnected (either involuntarily or as a result of a call to [.disconnect](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/methods#?disconnect)), its properties can be changed until the socket connects again. This means that an instance that has been disconnected from one server can be reconnected to another without losing its event bindings or queued requests.

Common properties

Property | Type | Default | Details

:——————-|------------|:———-|:————————
url | ((string)) | Value of [io.sails.url](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties#?iosails-defaults) | The URL to which the socket is connected or will attempt to connect.
transports | ((array)) | Value of [io.sails.transports](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties#?iosails-defaults) | The transports by which the socket will attempt to connect. Transports will be tried in order with upgrades allowed; that is, if you list both “polling” and “websocket”, then after establishing a long-polling connection, the server will attempt to upgrade it to a websocket connection. This setting should match the value of sails.config.sockets.transports in your Sails app.

headers | ((dictionary)) | Value of [io.sails.headers](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties#?iosails-defaults) | Dictionary of headers to be sent by default with every request from this socket after it connects. Can be overridden via the headers option in [.request()](https://sailsjs.com/documentation/reference/web-sockets/socket-client/io-socket-request). See initialConnectionHeaders below for information on setting headers for the initial socket handshake request.

Advanced properties

Property | Type | Default | Details

:—————— |----------|:——— |:——-
query | ((string)) | Value of [io.sails.query](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties#?iosails-defaults) | Query string to use with the initial connection to the server. In server code, this can be accessed via req.socket.handshake.query in controller actions or handshake._query in [socket lifecycle callbacks](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets). Note that information about the sails.io.js SDK version will be tacked onto whatever query string you specify. A common usage of query is to set nosession=true, indicating that the Sails app should _not_ associate the connecting socket with a browser session.
initialConnectionHeaders | ((dictionary)) | Value of [io.sails.initialConnectionHeaders](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties#?iosails-defaults) | _Node.js only—not available in browser._ Dictionary of headers to be sent with the _initial connection to the server_ (as opposed to the headers property above, which contains headers to be sent with every socket request made _after_ the initial connection). In server code, the initial connection headers can be accessed via req.socket.handshake.headers in controller actions or socket.handshake.headers in [socket lifecycle callbacks](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets). This is useful for (for example) sending a cookie header with the initial handshake, allowing a socket to connect to a previously-established Sails session.
useCORSRouteToGetCookie | ((boolean)) or ((string)) | Value of [io.sails.useCORSRouteToGetCookie](https://sailsjs.com/documentation/reference/web-sockets/socket-client/sails-socket/properties#?iosails-defaults) | Only relevant in browser environments and if you are relying on the default Sails session + session cookies for authentication. For cross-origin socket connections, use this property to choose a route to send an initial JSONP request in order to retrieve a cookie, so that the right session can be established. The route should respond with the string ‘_sailsIoJSConnect();’, which will allow the connection to continue. If useCORSRouteToGetCookie is true, the default /__getcookie route on the Sails server will be used. If it is false, no attempt will be made to contact the remote server before connecting the socket. Note: this strategy may fail on certain browsers (including certain versions of Safari) which block third-party cookies by default.

io.sails.* defaults

The io.sails object can be used to provide default values for new client sockets. For example, setting io.sails.url = “http://myapp.com:1234” will cause every new client socket to connect to http://myapp.com:1234, unless a url value is provided in the call to io.sails.connect().

The following are the default values for properties in io.sails:

Property | Default

:——————|:——-
url | In browser, the URL of the page that loaded the sails.io.js script. In Node.js, no default.
transports | [‘websocket’]

headers | {}
query | ‘’
initialConnectionHeaders | {}
useCORSRouteToGetCookie | true

<docmeta name=”displayName” value=”Properties”>

 # .addRoomMembersToRooms()

Subscribe all members of a room to one or more additional rooms.

`js
sails.sockets.addRoomMembersToRooms(sourceRoom, destRooms, cb);
`

Usage

| Argument | Type | Details |

|---|————|:-----------:|:——–|
| 1 | sourceRoom | ((string)) | The room from which to retrieve members.
| 2 | destRooms | ((string)), ((array)) | The room or rooms to which to subscribe the members of sourceRoom.
| 3 | cb | ((function?))| An optional callback, which will be called when the operation is complete on the current server (see notes below for more information) or if fatal errors were encountered. In the case of errors, it will be called with a single argument (err).

Example

In a controller action:

```javascript
subscribeFunRoomMembersToFunnerRooms: function(req, res) {



	sails.sockets.addRoomMembersToRooms(‘funRoom’, [‘greatRoom’, ‘awesomeRoom’], function(err) {
	if (err) {return res.serverError(err);}
res.json({


message: ‘Subscribed all members of funRoom to greatRoom and awesomeRoom!’




});





});





}

### Notes
> + In a multi-server environment, the callback function (cb) will be executed when the .addRoomMembersToRooms() call completes _on the current server_.  This does not guarantee that other servers in the cluster have already finished running the operation.

<docmeta name=”displayName” value=”.addRoomMembersToRooms()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # .blast()

Broadcast a message to all sockets connected to the server (or any server in the cluster, if you have a multi-server deployment using Redis).

`javascript
sails.sockets.blast(data);
`

or:
+ sails.sockets.blast(eventName, data);
+ sails.sockets.blast(data, socketToOmit);
+ sails.sockets.blast(eventName, data, socketToOmit);

### Usage


|         Argument           | Type                | Details                                                           |



|---|:————————– | ——————- |:—————————————————————– |
| 1 |        _eventName_         | ((string?))         | Optional. Defaults to ‘message’.
| 2 |        data                | ((json))            | The data to send in the message.
| 3 |       _socketToOmit_       | ((req?))            | Optional. If provided, the socket associated with this socket request will not receive the message blasted out to everyone else.  Useful when the broadcast-worthy event is triggered by a requesting user who doesn’t need to hear about it again.

### Example

In a controller action…

```javascript
sails.sockets.blast(‘user_logged_in’, {

msg: ‘User #’ + user.id + ‘ just logged in.’,
user: {

id: user.id,
username: user.username

}

}, req);
```

### Notes
> + Be sure to check that req.isSocket === true before passing in req to this method. For the socket to be omitted, the current req  must be from a socket request, not just any HTTP request.

<docmeta name=”displayName” value=”.blast()”>
<docmeta name=”pageType” value=”method”>



            

          

      

      

    

  

    
      
          
            
  # .broadcast()

Broadcast a message to all sockets in a room (or to a particular socket).

`javascript
sails.sockets.broadcast(roomNames, data);
`

_Or:_
+ sails.sockets.broadcast(roomNames, eventName, data);
+ sails.sockets.broadcast(roomNames, data, socketToOmit);
+ sails.sockets.broadcast(roomNames, eventName, data, socketToOmit);

### Usage


|          Argument           | Type                | Details



|---|:————————— | ——————- |:———–
| 1 |        roomNames              | ((string)), ((Array))          | The name of one or more rooms in which to broadcast a message (see [sails.sockets.join](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/join)).  To broadcast to individual sockets, use their IDs as room names.
| 2 |        _eventName_            | ((string?))          | Optional. The unique name of the event used by the client to identify this message.  Defaults to ‘message’.
| 3 |        data                   | ((json))          | The data to send in the message.
| 4 |        _socketToOmit_         | ((req?))          | Optional. If provided, the socket belonging to the specified socket request will not receive the message.  This is useful if you trigger the broadcast from a client, but don’t want that client to receive the message itself (for example, sending a message to everybody else in a chat room).

### Example

In an action, service, or arbitrary script on the server:

`javascript
sails.sockets.broadcast('artsAndEntertainment', { greeting: 'Hola!' });
`

On the client:

```javascript
io.socket.on(‘message’, function (data){

console.log(data.greeting);

});

Additional Examples

More examples of sails.sockets.brodcast() usage are [available here](https://gist.github.com/mikermcneil/0a4d05750768a99b4fcb), including broadcasting to multiple rooms, using a custom event name, and omitting the requesting socket.

Notes
> + sails.sockets.broadcast() is more or less equivalent to the functionality of .emit() and .broadcast() in Socket.IO.
> + Every socket is automatically subscribed to a room with its ID as the name, allowing direct messaging to a socket via [sails.sockets.broadcast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-broadcast)
> + Be sure to check that req.isSocket === true before passing in req as socketToOmit. For the requesting socket to be omitted, the request (req) must be from a socket request, not just any old HTTP request.
> + data must be JSON-serializable; i.e. it’s best to use plain dictionaries/arrays, and make sure your data does not contain any circular references. If you aren’t sure, build your broadcast data manually, or call something like [rttc.dehydrate(data,true,true)](https://github.com/node-machine/rttc/blob/master/README.md#dehydratevalue-allownullfalse-dontstringifyfunctionsfalse) on it first.

<docmeta name=”displayName” value=”.broadcast()”>
<docmeta name=”pageType” value=”method”>

 # .getId()

Parse the socket ID from an incoming socket request (req).

`javascript
sails.sockets.getId(req);
`

Usage

| Argument | Type | Details

|---| ————————— | ——————- | ———–
| 1 | req | ((req)) | A socket request (req).

Once acquired, the socket object’s ID can be used to send direct messages to that socket (see [sails.sockets.broadcast](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/broadcast)).

Example

```javascript
// Controller action
getSocketID: function(req, res) {



	if (!req.isSocket) {
	return res.badRequest();





}

var socketId = sails.sockets.getId(req);
// => “BetX2G-2889Bg22xi-jy”

sails.log(‘My socket ID is: ‘ + socketId);

return res.json(socketId);





}

### Notes
> + Be sure to check that req.isSocket === true before passing in req. This method does not work for HTTP requests!

<docmeta name=”displayName” value=”.getId()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # sails.sockets.id()

This method is an alias for [sails.sockets.getId()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/get-id) deprecated in Sails v0.12.  Please see the [v0.12 migration guide](https://sailsjs.com/documentation/concepts/upgrading/to-v-0-12) for more information.

<docmeta name=”displayName” value=”sails.sockets.id()”>
<docmeta name=”isDeprecated” value=”true”>



            

          

      

      

    

  

    
      
          
            
  # .join()

Subscribe a socket to a room.

`js
sails.sockets.join(socket, roomName);
`

or:


	sails.sockets.join(socket, roomName, cb);




### Usage


| Argument   | Type        | Details |



|---|————|:-----------:|:——–|
| 1 | socket     | ((string)), ((req)) | The socket to be subscribed.  May be specified by the socket’s ID or an incoming socket request (req).
| 2 | roomName   | ((string))  | The name of the room to which the socket will be subscribed.  If the room does not exist yet, it will be created.
| 3 | _cb_       | ((function?))| An optional callback, which will be called when the operation is complete on the current server (see notes below for more information), or if fatal errors were encountered.  In the case of errors, it will be called with a single argument (err).

### Example

In a controller action:

```javascript
subscribeToFunRoom: function(req, res) {

	if (!req.isSocket) {
	return res.badRequest();

}

var roomName = req.param(‘roomName’);
sails.sockets.join(req, roomName, function(err) {

	if (err) {
	return res.serverError(err);

}

	return res.json({
	message: ‘Subscribed to a fun room called ‘+roomName+’!’

});

});

}

Notes
> + sails.sockets.join() is more or less equivalent to the functionality of .join() in Socket.IO, but with additional built-in support for multi-server deployments. With [recommended production settings](https://sailsjs.com/documentation/concepts/deployment/scaling), sails.sockets.join() works as documented, no matter what server the code happens to be running on or the server to which the target socket is connected.
> + In a multi-server environment, when calling .join() with a socket ID argument, the callback function (cb) will be executed when the .join() call completes _on the current server_. This does not guarantee that other servers in the cluster have already finished running the operation.
> + Every socket is automatically subscribed to a room with its ID as the name, allowing direct messaging to a socket via [sails.sockets.broadcast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-broadcast)
> + Be sure to check that req.isSocket === true before passing in req as the target socket. For that to work, the provided req must be from a socket request, not just any old HTTP request.

<docmeta name=”displayName” value=”.join()”>
<docmeta name=”pageType” value=”method”>

 # .leave()

Unsubscribe a socket from a room.

`js
sails.sockets.leave(socket, roomName);
`

or:

	sails.sockets.leave(socket, roomName, cb);

Usage

| Argument | Type | Details |

|---|————|:-----------:|:——–|
| 1 | socket | ((string)), ((req)) | The socket to be unsubscribed. May be either the incoming socket request (req) or the ID of another socket.
| 2 | roomName | ((string)) | The name of the room to which the socket will be unsubscribed.
| 3 | _cb_ | ((function?))| An optional callback, which will be called when the operation is complete on the current server (see notes below for more information), or if fatal errors were encountered. In the case of errors, it will be called with a single argument (err).

Example

In a controller action, unsubscribe the requesting socket from the specified room:

```javascript
leaveFunRoom: function(req, res) {



	if ( _.isUndefined(req.param(‘roomName’)) ) {
	return res.badRequest(’roomName is required.’);





}


	if (!req.isSocket) {
	return res.badRequest(‘This endpoints only supports socket requests.’);





}

var roomName = req.param(‘roomName’);
sails.sockets.leave(req, roomName, function(err) {


if (err) {return res.serverError(err);}
return res.json({


message: ‘Left a fun room called ‘+roomName+’!’




});




});





}

##### Additional Examples

More examples of sails.sockets.leave() usage are [available here](https://gist.github.com/mikermcneil/971b4e92d833211a0243), including unsubscribing other sockets by ID, deeper integration with the database, usage within a service, and usage with the async library.

### Notes
> + sails.sockets.leave() is more or less equivalent to the functionality of .leave() in Socket.IO, but with additional built-in support for multi-server deployments.  With [recommended production settings](https://sailsjs.com/documentation/concepts/deployment/scaling), sails.sockets.leave() works as documented no matter what server the code happens to be running on or the server to which the target socket is connected.
> + In a multi-server environment, when calling .leave() with a socket ID argument, the callback function (cb) will be executed when the .leave() call completes _on the current server_.  This does not guarantee that other servers in the cluster have already finished running the operation.
> + Be sure to check that req.isSocket === true before passing in req as the socket to be unsubscribed.  For that to work, the provided req must be from a socket request, not just any old HTTP request.

<docmeta name=”displayName” value=”.leave()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # .leaveAll()

Unsubscribe all members of a room (e.g. chatroom7) from that room _and_ every other room they are currently subscribed to, except the automatic room associated with their socket ID.

`javascript
sails.sockets.leaveAll(roomName, cb);
`

### Usage


| Argument   | Type        | Details |



|---|:———–|:-----------:|:——–|
| 1 | roomName   | ((string)) | The room to evactuate.  Note that this room’s members will be forced to leave _all of their rooms_, not just this one.
| 2 | cb         | ((function?))| An optional callback, which will be called when the operation is complete _on the current server_ (see notes below for more information), or if fatal errors were encountered.  In the case of errors, it will be called with a single argument (err).

### Example

In a controller action:

```javascript
unsubscribeFunRoomMembersFromEverything: function(req, res) {

	sails.sockets.leaveAll(‘funRoom’, function(err) {
	if (err) { return res.serverError(err); }

// Unsubscribed all sockets in “funRoom” from “funRoom”.
// And… from every other room too.

return res.ok();

});

}

Notes
> + In a multi-server environment, the callback function (cb) will be executed when the .leaveAll() call completes _on the current server_. This does not guarantee that other servers in the cluster have already finished running the operation.

<docmeta name=”displayName” value=”.leaveAll()”>
<docmeta name=”pageType” value=”method”>

 # .removeRoomMembersFromRooms()

Unsubscribe all members of a room from one or more other rooms.

`js
sails.sockets.removeRoomMembersFromRooms(sourceRoom, destRooms, cb);
`

Usage

| Argument | Type | Details |

|---|—————-|:----------------------------:|:——–|
| 1 | sourceRoom | ((string)) | The room from which to retrieve members.
| 2 | destRooms | ((string)), ((array)) | The room or rooms from which to unsubscribe the members of sourceRoom.
| 3 | cb | ((function?)) | An optional callback, which will be called when the operation is complete _on the current server_ (see notes below for more information), or if fatal errors were encountered. In the case of errors, it will be called with a single argument (err).

Example

In a controller action:

```javascript
unsubscribeFunRoomMembersFromFunnerRooms: function(req, res) {



	sails.sockets.removeRoomMembersFromRooms(‘funRoom’, [‘greatRoom’, ‘awesomeRoom’], function(err) {
	if (err) {return res.serverError(err);}
res.json({


message: ‘Unsubscribed all members of funRoom from greatRoom and awesomeRoom!’




});





});





}

### Notes
> + In a multi-server environment, the callback function (cb) will be executed when the .removeRoomMembersFromRooms() call completes _on the current server_.  This does not guarantee that other servers in the cluster have already finished running the operation.

<docmeta name=”displayName” value=”.removeRoomMembersFromRooms()”>
<docmeta name=”pageType” value=”method”>




            

          

      

      

    

  

    
      
          
            
  # Sockets (sails.sockets)

### Overview

Sails exposes several methods (sails.sockets.*) that provide a simple interface for [realtime communication](https://sailsjs.com/documentation/concepts/realtime) with connected socket clients.  These are useful for pushing events and data to connected clients in realtime, rather than waiting for their HTTP requests.  These methods are available regardless of whether a client socket was connected from a browser tab, an iOS app, or your favorite household IoT appliance.

These methods are implemented using a built-in instance of [Socket.IO](http://socket.io), which is available directly as [sails.io](https://sailsjs.com/documentation/reference/application/advanced-usage#?sailsio).  However, you should _almost never_ use sails.io directly.  Instead, you should call the methods available on sails.sockets.*.  In addition, for certain use cases, you might also want to take advantage of [resourceful PubSub methods](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub), which access a higher level of abstraction and are used by Sails’ built-in [blueprint API](https://sailsjs.com/documentation/reference/blueprint-api).

### Methods


Method                             | Description                                              |



|:-----------------------------------|:———————————————————|
| [.addRoomMembersToRooms()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/add-room-members-to-rooms)        | Subscribe all members of a room to one or more additional rooms.
| [.blast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/blast)        | Broadcast a message to all sockets connected to the server.
| [.broadcast()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/broadcast)        | Broadcast a message to all sockets in a room.
| [.getId()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/get-id)        | Parse the socket ID from an incoming socket request (req).
| [.join()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/join)        | Subscribe a socket to a room.
| [.leave()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/leave)        | Unsubscribe a socket from a room.
| [.leaveAll()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/leave-all)        | Unsubscribe all members of one room from that room _and_ from every other room they are currently subscribed to, except the automatic room with the same name as each socket ID.
| [.removeRoomMembersFromRooms()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/remove-room-members-from-rooms)        | Unsubscribe all members of a room from one or more other rooms.

> Don’t see a method you’re looking for above?  A number of sails.sockets methods were deprecated in Sails v0.12, either because a more performant alias was already available, or for performance and scalability reasons.  Please see the [v0.12 migration guide](https://sailsjs.com/documentation/concepts/upgrading/to-v-0-12) for more information.

<docmeta name=”displayName” value=”sails.sockets”>
<docmeta name=”pageType” value=”property”>



            

          

      

      

    

  

    
      
          
            
  # docs/security

This section contains the official policy for disclosing security vulnerabilities in Sails or our dependencies.  It is made available at https://sailsjs.com/security-policy.

### Notes
> - This README file is not compiled to HTML for the website.  It is just here to explain what you’re looking at.
> - Depending on what branch of sails you are currently viewing, the domain may vary. See the top-level documentation README file for information about working with the markdown files in this repo, and to understand the branching/versioning strategy.

<docmeta name=”notShownOnWebsite” value=”true”>



            

          

      

      

    

  

    
      
          
            
  # Security policy

Sails is committed to providing a secure framework, and quickly responding to any suspected security vulnerabilities.  Contributors work carefully to ensure best practices, but we also rely heavily on the community when it comes to discovering, reporting, and remediating security issues.

### Reporting a security issue in Sails

If you believe you’ve found a security vulnerability in Sails, Waterline, or one of the other modules maintained by the Sails core team, please send an email to critical at sailsjs dot com.  In the spirit of [responsible disclosure](https://en.wikipedia.org/wiki/Responsible_disclosure), we ask that you privately report any security vulnerability at that email address, and give us time to patch the issue before publishing the details</em>.

### What is a security vulnerability?

A security vulnerability is any major bug or unintended consequence that could compromise a Sails.js app in production.

For example, an issue where Sails crashes in a development environment when using non-standard Grunt tasks is _not a security vulnerability_.  On the other hand, if it was possible to perform a trivial DoS attack on a Sails cluster running in a production environment and using documented best-practices (a la the [Express/Connect body parser issue](http://expressjs-book.com/index.html%3Fp=140.html)), that _is a security vulnerability_ and we want to know about it.

> Note that this definition includes any such vulnerability that exists due to one of our dependencies.  In this case, an upgrade to a different version of the dependency is not always necessary: for example, when Express 3 deprecated multipart upload support in core, Sails.js dealt with the feature mismatch by implementing a wrapper around the multiparty module called [Skipper](https://github.com/balderdashy/skipper#history).

### What should be included in the email?


	The name and NPM version string of the module where you found the security vulnerability (e.g. Sails, Waterline, other core module).


	A summary of the vulnerability


	The code you used when you discovered the vulnerability or a code example of the vulnerability (whichever is shorter).


	Whether you want us to make your involvement public.  If you want such a reference the name and link you wish to be referred (e.g. Jane Doe’s link to her GitHub account)




> Please respect the core team’s privacy and do not send bugs resulting from undocumented usage, questions, or feature requests to this email address.

### The process
When you report a vulnerability, one of the project members will respond to you within a maximum of 72 hours.  This response will most likely be an acknowledgement that we’ve received the report and will be investigating it immediately.  Our target patching timeframe for most security vulnerabilities is 14 days.

Based upon the nature of the vulnerability, and the amount of time it would take to fix, we’ll either send out a patch that disables the broken feature, provide an estimate of the time it will take to fix, and/or document best practices to follow to avoid production issues.

You can expect follow-up emails outlining the progression of a solution to the vulnerability along with any other questions we may have regarding your experience.

##### When a solution is achieved we do the following:


	notify you


	release a patch on NPM


	coordinate with [Node Security](http://nodesecurity.io) to issue an [advisory](https://nodesecurity.io/advisories?search=sails), crediting you (unless you expressly asked not to be identified)


	publicize the release via our [newsgroup](https://groups.google.com/forum/#!forum/sailsjs)




### Is this an SLA?

No. The Sails framework is available under the [MIT license](https://sailsjs.com/license), which does not include a service level agreement.  However, the core team and contributors care deeply about Sails, and all of us have websites and APIs running on Sails in production.  We will _always_ publish a fix for any serious security vulnerability as soon as possible– not just out of the kindness of our hearts, but because it could affect our apps (and our customer’s apps) too.

> For more support options, see https://sailsjs.com/support.



            

          

      

      

    

  

    
      
          
            
  # Using CoffeeScript in a Sails app

The recommended language for building Node.js+Sails apps is JavaScript.

But Sails also supports using CoffeeScript to write your custom app code (like [actions](http://www.sailsjs.com/documentation/concepts/actions-and-controllers) and [models](http://www.sailsjs.com/documentation/concepts/core-concepts-table-of-contents/models-and-orm)).  You can enable this support in three steps:


	Run npm install coffee-script –save in your app folder.




2. Add the following line at the top of your app’s app.js file:
`javascript
require('coffee-script/register');
`
3. Start your app with node app.js instead of sails lift.

### Using CoffeeScript generators


	If you want to use CoffeeScript to write your controllers, models or config files, just follow these steps:
	
	Install the generators for CoffeeScript (optional): <br/>`npm install –save-dev sails-generate-controller-coffee sails-generate-model-coffee`


	To generate scaffold code, add –coffee when using one of the supported generators from the command-line:








`bash
sails generate api <foo> --coffee
# Generate api/models/Foo.coffee and api/controllers/FooController.coffee
sails generate model <foo> --coffee
# Generate api/models/Foo.coffee
sails generate controller <foo> --coffee
# Generate api/controllers/FooController.coffee
`

<docmeta name=”displayName” value=”Using CoffeeScript”>



            

          

      

      

    

  

    
      
          
            
  # Full-stack JavaScript with Sails

This video tutorial is an in-depth guide to building your first Node.js/Sails.js app, taught by [the creator of the framework](https://twitter.com/mikermcneil), and following the best practices and conventions our team uses for all our projects. We walk you through setting up your development environment and building our demo app, [Ration](https://ration.io).

#### Links
+ [Take the course](https://platzi.com/cursos/sails-js/)
+ [Try out the demo app (Ration)](https://ration.io)
+ [Download the source code](https://github.com/mikermcneil/ration) for the demo app

<docmeta name=”displayName” value=”Full-stack JavaScript with Sails”>



            

          

      

      

    

  

    
      
          
            
  # Low-level MySQL usage (advanced)

This tutorial steps through how to access the raw MySQL connection instance from the [mysql package](https://www.npmjs.com/package/mysql).  This is useful for getting access to low level APIs available only in the raw client itself.

> Note: Many Node.js / Sails apps using MySQL will never need the kind of low-level usage described here.  If you find yourself running up against the limitations of the ORM, there is usually a workaround that does not involve writing code for the underlying database.  Even then, if you’re just looking to use custom native SQL queries, read no further– instead, check out [sendNativeQuery()](/documentation/reference/waterline-orm/datastores/send-native-query) instead.
>
> Also, before we proceed, make sure you have a datastore configured to use a functional MySQL database.

### Get access to an active MySQL connection

To obtain an active connection from the MySQL package you can call the [.leaseConnection()](/documentation/reference/waterline-orm/datastores/lease-connection) method of a registered datastore object (RDI).


	Get the registered datastore instance for the connection:




```javascript
// Get the named datastore
var rdi = sails.getDatastore(‘default’);

// Get the datastore configured for a specific model
var rdi = Product.getDatastore();
```


	Call the leaseConnection() method to obtain an active connection:




```javascript
rdi.leaseConnection(function(connection, proceed) {

	db.query(‘SELECT * from user;’, function(err, results, fields) {
	
	if (err) {
	return proceed(err);

}

proceed(undefined, results);

});

	}, function(err, results) {
	// Handle results here after the connection has been closed

})

Get access to the low-level driver

To get access to the low-level driver and MySQL package in a Sails app, you can grab them from the registered datastore object (RDI).

	Get the registered datastore instance for the connection:


```javascript
// Get the named datastore
var rdi = sails.getDatastore(‘default’);

// Get the datastore configured for a specific model
var rdi = Product.getDatastore();
```


	Get the driver from the datastore instance which contains the MySQL module:

`javascript
var mysql = rdi.driver.mysql;
`

	You can now use the module to make native requests and call other function native to the MySQL module:


```javascript
// Get the named datastore
var rdi = sails.getDatastore(‘default’);

// Grab the MySQL module from the datastore instance
var mysql = rdi.driver.mysql;

// Create a new connection
var connection = mysql.createConnection({


host     : ‘localhost’,
user     : ‘root’,
password : ‘password’,
database: ‘example_database’




});

// Make a query and pipe the results
connection.query(‘SELECT * FROM posts’)


.stream({highWaterMark: 5})
.pipe(…);




```

<docmeta name=”displayName” value=”Low-level MySQL usage (advanced)”>

 # Using MongoDB with Node.js/Sails.js

Sails supports the popular [MongoDB database](https://www.mongodb.com/) via the [sails-mongo adapter](https://www.npmjs.com/package/sails-mongo).

> First, make sure you have access to a running MongoDB server, either on your development machine or in the cloud. Below, ‘mongodb://root@localhost/foo’ refers to a locally-installed MongoDB using “foo” as the database name. Be sure to replace that [connection URL](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores#?the-connection-url) with the appropriate string for your database.

Developing locally with MongoDB

To use MongoDB in your Node.js/Sails app during development:

	Run npm install sails-mongo in your app folder.

	In your config/datastores.js file, edit the default datastore configuration:


```js
default: {


adapter: ‘sails-mongo’,
url: ‘mongodb://root@localhost/foo’









	In your config/models.js file, edit the default id attribute to have the appropriate type and columnName for MongoDB’s primary keys:


```js
attributes: {

id: { type: ‘string’, columnName: ‘_id’ },
//…

That’s it! Lift your app again and you should be good to go.

Case-sensitivity

After configuring your project to use MongoDB, you may notice that your Waterline [queries](https://sailsjs.com/documentation/reference/waterline-orm/queries) are now case-sensitive by default. To do case-insensitive queries, you can use [.meta({makeLikeModifierCaseInsensitive: true})](https://sailsjs.com/documentation/reference/waterline-orm/queries/meta).

Deploying your app with MongoDB

To use MongoDB in production, edit your adapter setting in config/env/production.js:

`js
adapter: 'sails-mongo',
`

You may also configure your [connection URL](https://sailsjs.com/documentation/reference/configuration/sails-config-datastores#?the-connection-url) – but many developers prefer not to check sensitive credentials into version control. Another option is to use an environment variable:

`
sails_datastores__default__url=mongodb://heroku_12345678:random_password@ds029017.mLab.com:29017/heroku_12345678
`

> To use MongoDB in your staging environment, edit config/env/staging.js. Depending on your application, it may be acceptable to check in your staging database credentials to version control, since they are less of a security risk.

Low-level MongoDB usage (advanced)

As with all of the [Sails database adapters](https://sailsjs.com/documentation/concepts/extending-sails/adapters/available-adapters), you can use any of the [Waterline model methods](https://sailsjs.com/documentation/reference/waterline-orm/models) to interact with your models when using sails-mongo.

For many apps, that’s all you’ll need– from “hello world” to production. Even if you run into limitations, they can usually be worked around without writing Mongo-specific code. However, for situations when there is no alternative, it is possible to use the Mongo driver directly in your Sails app.

To access the lower-level “native” MongoDB client directly, use the [.manager](https://sailsjs.com/documentation/reference/waterline-orm/datastores/manager) property of the [datastore instance](https://sailsjs.com/documentation/reference/application/sails-get-datastore).

As of sails-mongo v2.0.0 and above, you can access the [MongoClient](https://mongodb.github.io/node-mongodb-native/3.5/api/MongoClient.html) object via manager.client. This gives you access to the latest MongoDB improvements, like [ClientSession](https://mongodb.github.io/node-mongodb-native/3.5/api/ClientSession.html),
and with it, transactions, [change streams](https://mongodb.github.io/node-mongodb-native/3.5/api/ChangeStream.html), and other new features.

```js
var mongoClient = Pet.getDatastore().manager.client;

var results = await mongoClient.db(‘test’)
.collection(‘pet’)
.find({}, { name: 1 })
.toArray();

console.log(results);
```

For a full list of methods available in the native MongoDB client, see the [Node.js MongoDB Driver API reference](https://mongodb.github.io/node-mongodb-native/3.5/api/Collection.html).

<docmeta name=”displayName” value=”Using MongoDB”>

 # Tutorials

Here you can find step-by-step guides for dealing with a few specific Sails use cases. There’s a wealth of great information and tutorials about Sails across the web; these are just a few that have been personally vetted by members of the core team. Currently, the objective of this section of the docs is to cover some less common scenarios that users have asked about, but that would add unnecessary complexity to the reference & conceptual documentation if they were included there. In the future, we hope to also address some common _”How do I …?”_ questions that we hear from newcomers to the framework.

If you have a use case you would like to see addressed here, and/or are interested in writing a tutorial yourself, we appreciate your input! Just take a look at our [contribution guide](https://sailsjs.com/documentation/contributing) if you haven’t already, then open an issue in the [sails](https://github.com/balderdashy/sails/issues/new) repo with a proposal for the tutorial you’d like to see/write.

<docmeta name=”displayName” value=”Tutorials”>
<docmeta name=”isOverviewPage” value=”true”>

 # Using TypeScript in a Sails app

The recommended language for building Node.js+Sails apps is JavaScript.

But Sails also supports using TypeScript to write your custom app code (like [actions](http://www.sailsjs.com/documentation/concepts/actions-and-controllers) and [models](https://sailsjs.com/documentation/concepts/models-and-orm)). You can enable this support in just a few steps:

	Run npm install typescript ts-node –save in your app folder.

	Install the necessary typings for your app. At the very least you’ll probably want to:
`
npm install @types/node --save
npm install @types/express --save
`

3. Add the following line at the top of your app’s app.js file:
`javascript
require('ts-node/register');
`
4. Start your app with node app.js instead of sails lift.

To get you started, here’s an example of a traditional Sails [controller](https://sailsjs.com/documentation/concepts/actions-and-controllers) written in Typescript, courtesy of [@oshatrk](https://github.com/oshatrk):

```typescript
// api/controllers/SomeController.ts
declare var sails: any;


	export function hello(req:any, res:any, next: Function):any {
	res.status(200).send(‘Hello from Typescript!’);






}

To try that example out, configure a route so that its target points at SomeController.hello, relift, and then visit the route in your browser or with a tool like Postman.

<docmeta name=”displayName” value=”Using TypeScript”>




            

          

      

      

    

  

    
      
          
            
  # Upgrading to Sails v0.10

For the most part, running sails lift in an existing v0.9 project should just work. The core contributors have taken a number of steps to make the upgrade as easy as possible, and if you follow the deprecation messages in the console, you should do just fine.

Sails v0.10 comes with some big changes. The sections below provide a high level overview of what’s changed, major bug fixes, enhancements and new features, as well as a basic tutorial on how to upgrade your v0.9.x Sails app to v0.10.

## File uploads

The Connect multipart middleware [will soon be officially deprecated](http://www.senchalabs.org/connect/multipart.html). But since this module was used as the built-in HTTP body parser in Sails v0.9 and Express v3, this is a breaking change for v0.9 Sails projects relying on req.files.

By default in v0.10, Sails includes [skipper](https://github.com/balderdashy/skipper), a body parser which allows for streaming file uploads without buffering tmp files to disk. For run-of-the-mill file upload use cases, Skipper comes with bundled support for uploads to local disk (via skipper-disk), but streaming uploads can be plugged in to any of its supported adapters.

For examples/documentation, please see the Skipper repository as well as the Sails documentation on req.file().

### Why?

A body parser’s job is to parse the “body” of incoming multipart HTTP requests. Sometimes, that “body” includes text parameters, but sometimes, it includes file uploads.

Connect multipart is great code, and it supports both file uploads AND text parameters in multipart requests. But like most modules of its kind, it accomplishes this by buffering file uploads to disk. This can quickly overwhelm a server’s available disk space, and in many cases exposes a serious DoS attack vulnerability.

Skipper is unique in that it supports streaming file uploads, but also maintains support for metadata in the request body (i.e. JSON/XML/urlencoded request body parameters). It uses a handful of heuristics to make sure only the files you’re expecting get plugged in and received by the blob adapter, and other (potentially malicous) file fields are ignored.

> #### ** Important!**
> For Skipper to work, you _must include all text parameters BEFORE file parameters_ in file upload requests to the server. Once Skipper sees the first file field, it stops waiting for text parameters (this is to avoid unnecessary/unsafe buffering of file data).

### Configuring a different body parser

As with most things in Sails, you can use any Connect/Express/Sails-compatible bodyparser you like. To switch back to connect-multipart, or any other body parser (like formidable or busboy), change your app’s http configuration.

## Blueprints

A new blueprint action (findOne) has been added. For instance, if you have a FooController and Foo model, then send a request to /foo/5, the findOne action in your FooController will run. If you don’t have a findOne action, the findOne blueprint action will be used in its stead. Requests sent to /foo will still run the find controller/blueprint action.

## Policies

Policies work exactly as they did in v0.9- however there is a new consideration you should take into account: Due to the introduction of the more specific findOne() blueprint action mentioned above, you will want to make sure you’re handling it explicitly in your policy mapping configuration.

For example, let’s say you have a v0.9 app whose policies.js configuration prevents access to the find action in your DoveController:

```
module.exports.policies = {

‘*’: true,
DoveController: {

find: false

}

};

Assuming rest blueprint routes are enabled, this would prevent access to requests like both /dove and /dove/14. But now in v0.10, since /dove/14 will actually run the findOne action, we must handle it explicitly:

```
module.exports.policies = {


‘*’: true,
DoveController: {


find: false,
findOne: false




}






};

## Pubsub

### Summary
+ message socket (i.e. “comment”) event on client is now modelIdentity (where “modelIdentity” is different depending on the model that the publish*() method was called from.
+ Clients are no longer subscribed to model-creation events by the blueprint routes. To listen for creation events, use Model.watch().
+ The events that were formerly create, update, and destroy are now created, updated, and destroyed.

### Details
The biggest change to pubsub is that Socket.io events are emitted under the name of the model emitting them. Previously, your client listened for the message event and then had to determine which model it came from based on the included data:

```
socket.on(‘message’, function(cometEvent) {

	if (cometEvent.model == ‘user’) {
	// Handle inbound messages related to a user record

}
else if (cometEvent.model === ‘product’) {

// Handle inbound messages related to a product record

}
// …

}

Now, you subscribe to the identity of the model:
```
socket.on(‘user’, function(cometEvent) {


// Handle inbound messages related to a user record




});


	socket.on(‘product’, function (cometEvent) {
	// Handle inbound messages related to a product record







});

This helps to structure your front end code.

The way you subscribe clients to models has also changed. Previously, you specified whether you were subscribing to the model class (class room) or one or more model instances based on the parameters that you passed to Model.subscribe. It was effectively one method to do two very different things.

Now, you use Model.subscribe() to subscribe only to model instances (records). You can also specify event “contexts”, or types, that you’d like to hear about. For example, if you only wanted to get messages about updates to an instance, you would call User.subscribe(req, myUser, ‘update’). If no context is given in a call to .subscribe(), then all contexts specified by the model class’s autosubscribe property will be used.

To subscribe to model creation events, you can now use Model.watch(). Upon subscription, your clients will receive messages every time a new record is created on that model using the blueprint routes, and will automatically be subscribed to the new instance as well.

Remember, when working with blueprints, clients are no longer auto subscribed to the class room. This must be done manually.

Finally, if you want to see all pubsub messages from all models, you can access the firehose, a development-only tool that broadcasts messages about _everything_ that happens to your models. You can subscribe to the firehose using sails.sockets.subscribeToFirehose(socket), or on the front end by making a socket request to /firehose. The firehose will broadcast a firehose event whenever a model is created, updated, destroyed, added to, removed from or messaged. This effectively replaces the message event used in previous Sails versions.

To see examples of the new pubsub methods in action, see [SailsChat](https://github.com/balderdashy/sailschat).

## Arguments to lifecycle callbacks are now typecasted

Previously, with schema: true, if you sent an attribute value to a .create() or .update() that did not match the expected type declared in the model’s attributes, the value you passed in would still be accessible in your model’s lifecycle callbacks.

In Sails/Waterline v0.10, this is no longer the case. Values passed to .create() and .update() are type-casted before your lifecycle callbacks run. Affected lifecycle callbacks include beforeUpdate(), beforeCreate(), and beforeValidate().

## beforeValidation() is now beforeValidate()

If you were using the beforeValidation or afterValidation model lifecycle callbacks in any of your models, you should change them to beforeValidate or afterValidate. This change was made in Waterline to match the style of the other lifecycle callbacks (e.g. beforeCreate, afterUpdate, etc.).

## .done() vs. .exec()

** The old (/confusing?) meaning of .done() has been deprecated.**

In Sails <= v0.8, the syntax for executing an ORM query was Model. [ … ] .done( cb ). In v0.9, when promise support was added, the Model. [ … ] .exec( cb ) became the recommended replacement, since .done() has a special meaning in the promise spec. However, the original usage of .done() was left untouched to make upgrading from v0.8 to v0.9 easier.

But as of Sails/Waterline v0.10, the original meaning of .done() has been officially deprecated to allow for a more robust promise implementation going forward, and pluggable promise library support (e.g. choose Q or Bluebird etc.).

## Associations

Sails v0.10 introduces associations between data models. Since the work we’ve done on associations is largely additive, your existing models should still just work. That said, this is a powerful new feature that allows you to write less code and makes your app more maintainable, so we suggest taking advantage of it! To learn about how to use associations in Sails, check out the docs.

Associations (or “relations”) are really just special attributes. Instead of string or integer values, you can specify an instance of a model or a collection of model instances. You can think about this kind of like an object ({…}) or an array ([{…}, {…}]) you might store as JSON in a NoSQL database. The difference is, in Sails, this works with any of the supported databases, and even allows you to populate (i.e. join) across different databases and types of databases.

## Generators

Sails has had support for generating code for a while now (e.g. sails generate controller foo) but in v0.10, we wanted to make this feature more extensible, open, and accessible to everybody in the Sails community. With that in mind, v0.10 comes with a complete rewrite of the command-line tool, and pluggable generators. Want to be able to run sails generate blog foo to make a new blog built on Sails? Create a blog generator (run sails generate generator blog), add your templates, and configure the generator to copy the new templates over. Then you can release it to the community by publishing an npm module called sails-generate-blog. Compatibility with Yeoman generators is also in our roadmap.

## Command-line tool

The big change here is how you create a new api. In the past you called sails generate new_api. This would generate a new controller and model called new_api in the appropriate places. This is now done using sails generate api new_api.

You can still generate models and controllers seperately using the same CLI Commands.

Also, –linker switch is no longer available. In previous version, if –linker switch was provided, it created a myApp/assets/linker folder, with js, styles and templates folders inside. In this new version, the myApp/assets/linker folder is not created. Compiling CoffeeScript and Less is the default behavior now, right from the myApp/assets/js and myApp/assets/scripts folders.

## Custom server responses

In v0.10, you can now generate your own custom server responses.

Like before, there are a few that we automatically create for you. Instead of generating myApp/config/500.js and other .js responses in the config directory, they are now generated in myApp/api/responses/.

To migrate, you will need to create a new v0.10 project and copy the myApp/api/responses directory into your existing app. You will then modify the appropriate .js file to reflect any customization you made in your response logic files (500.js,etc).

## Legacy data stored in the temporary sails-disk database

sails-disk, used by default in new Sails projects, now stores data a bit differently. If you have some temporary data stored in a 0.9.x project, you’ll want to wipe it out and start fresh. To do this:

From your project’s root directory:

`
$ rm .tmp/disk.db
`

## Adapter/Database Configuration

config.adapters (in myApp/config/adapters.js) is now config.connections (in new projects, this is generated in myApp/config/connections.js). Also, config.model is now config.models.

Your app’s default connection (i.e. database) should now be configured as a string config.models.connection used by default for model. New projects are generated with a /config/models.js file that includes the default connection.

To configure a model to use specific adapters, you must now specify them in the connection key instead of adapters.

For example:
```
module.exports = {

connection: [‘someMongoDatabase’],

	attributes: {
	
	name:{
	type : ‘string’,
required : true

}

}

};

Blueprints/Controller configuration

The object literal describing controller configuration overrides for controller blueprints should change from:
```
…
_config: {



	blueprints: {
	rest: true,
…





}






}



to:

…
_config: {


rest: true,
…






}

## Layout paths:
In Sails v0.9, you could use the following syntax to specify auth/someLayout.ejs as a custom layout when rendering a view:
```
return res.view(‘auth/login’,{

layout: ‘someLayout’

});

However in Sails v0.10, all layout paths are relative to your app’s views path. In other words, the relative path of the layout is no longer resolved from the view’s own path– it is now always resolved from the views path. This makes it easier to understand which file is being used, particularly when layout files have similar names:
```
return res.view(‘auth/login’, {


layout: ‘auth/someLayout’






});

<docmeta name=”displayName” value=”To v.0.10”>
<docmeta name=”version” value=”0.10.0”>




            

          

      

      

    

  

    
      
          
            
  # Upgrading to Sails v0.11

tldr;

v0.11 comes with many minor improvements, as well as some internal cleanup in core.  The biggest change is that Sails core is now using Socket.io v1.

Almost none of this should affect the existing code in project, but there are a few important differences and new features to be aware of.  We’ve listed them below.

## Differences

#### Upgrade the Socket.io / Sails.io browser client

Old v0.9 socket.io client will no longer work, so consequently you’ll need to upgrade your sails.io.js client from v0.9 or v0.10 to v0.11.

To do this, just remove your sails.io.js client and install the new one.  We’ve bundled a new generator that will do this for you, assuming your sails.io.js client is in the conventional location at assets/js/dependencies/sails.io.js (i.e. if you haven’t moved or renamed it):

`sh
sails generate sails.io.js --force
`

####  onConnect lifecycle callback

> tldr;
>
> Remove your onConnect function from config/sockets.js.

The onConnect lifecycle callback has been deprecated.  Instead, if you need to do something when a new socket is connected, send a request from the newly-connected client to do so.  The purpose of onConnect was always for optimizing performance (eliminating the need to do this initial extra round-trip with the server), yet its use can lead to confusion and race conditions. If you desperately need to eliminate the server roundtrip, you can bind a handler directly on sails.io.on(‘connect’, function (newlyConnectedSocket){}) in your bootstrap function (config/bootstrap.js). However, note that this is discouraged.  Unless you’re facing _true_ production performance issues, you should use the strategy mentioned above for your “on connection” logic (i.e. send an initial request from the client after the socket connects).  Socket requests are lightweight, so this doesn’t add any tangible overhead to your application, and it will help make your code more predictable.

####  onDisconnect lifecycle callback

The onDisconnect lifecycle callback has been deprecated in favor of afterDisconnect.

If you were using onDisconnect previously, you might have had to change the session, then call session.save() manually.  In v0.11, this works in almost exactly the same way, except that afterDisconnect receives an additional 3rd argument: a callback function.  This way, you can just call the provided callback when your afterDisconnect logic has finished, so that Sails can persist any changes you’ve made to the session automatically.  Finally, as you might expect, you won’t need to call session.save() manually anymore- it is now taken care of for you (just like req.session in a normal route, action, or policy.)

> tldr;
> Rename your onDisconnect function in config/sockets.js with the following:
>
```
afterDisconnect: function (session, socket, cb) {

// Be sure to call the callback
return cb();

}

Other configuration in config/sockets.js

Many of the configuration options in Socket.io v1 have changed, so you’ll want to update your config/sockets.js file accordingly.

	if you haven’t customized any of the options in config/sockets.js for your app, you can safely remove or comment out the entire file and let the Sails defaults do their magic. Otherwise, refer to the new [Sails sockets documentation](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets) to ensure that your configuration is still valid and avoid unwanted hair loss.

	if you are scaling to multiple servers in an environment that does not support sticky sessions (this includes Heroku), you’ll need to set your transports to [‘websocket’] in both config/socket.js and your client–see [our Scaling doc](https://sailsjs.com/documentation/concepts/deployment/scaling#?preparing-your-app-for-a-clustered-deployment) for more info.

	if you were using a custom authorization function to restrict socket connections, you’ll now want to use beforeConnect. authorization was deprecated by Socket.io v1, but beforeConnect (which maps to the allowRequest option from Engine.io) works just the same way.

	if you were using other low-level socket configuration that was passed directly to socket.io v1, be sure and check out the [reference page on sailsjs.com](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets) where all of the new configuration options are covered in detail.

The “firehose”

	The “firehose” feature for testing with sockets has been deprecated. If you don’t know what that means, you have nothing to worry about. The basic usage will continue to work for a while, but it will soon be removed from core and should not be relied upon in your app. This also applies to the following methods:
	
	sails.sockets.subscribeToFirehose()

	sails.sockets.unsubscribeFromFirehose()

	sails.sockets.drink()

	sails.sockets.spit()

	sails.sockets.squirt()

> If you want the “firehose” back, let [Mike know on twitter](http://twitter.com/mikermcneil) (it can be brought back as a separate hook).

Config files in subfolders

It has always been the intention that files in the Sails config folder have no precedence over each other, and that the filenames and subfolders (with the exception of local.js and the env and locale subfolders) be used merely for organization. However, in previous Sails versions, saving config files in subfolders would have the effect that the filename would be added as a key in sails.config, so that if you saved some config in config/foo/bar.js, then that config would be namespaced under sails.config.bar. This was unintentional and potentially confusing as 1) the directory name is ignored, and 2) moving the file would change the config key. This has been fixed in v0.11.x: config files in subfolders will be treated the same as those in the root config folder. If you are for some reason relying on the old behavior, you may set dontFlattenConfig to true in your .sailsrc file, but we would strongly recommend that you instead just namespace the config yourself by setting the desired key on module.exports; for example module.exports.foo = {…}. See [issue #2544](https://github.com/balderdashy/sails/issues/2544) for more details.

Waterline now uses Bluebird

As of v0.11, Waterline now supports Bluebird (instead of q) for promises. If you are using .exec() you won’t be affected– only if you are using .then(). See https://github.com/balderdashy/sails/issues/1186 for more information.

New features

Sails v0.11 also comes with some new stuff that we thought you’d like to know about:

User-level hooks

Hooks can now be installed directly from NPM.

This means you can now install hooks with a single command in your terminal. For instance, consider the [autoreload hook](https://github.com/sgress454/sails-hook-autoreload) by [@sgress454](https://twitter.com/sgress454), which watches for changes to your backend code so you don’t need to kill and re-lift the server every time you change your controllers, routes, models, etc.

To install the autoreload hook, run:

`sh
npm install sails-hook-autoreload
`

This is just one example of what’s possible. As you might already know, hooks are the lowest-level pluggable abstraction in Sails. They allow authors to tap into the lift process, listen for events, inject custom “shadow” routes, and, in general, take advantage of raw access to the sails runtime.
Most of the features you’re familiar with in Sails have actually already been implemented as “core” hooks for over a year, including:

	blueprints _(which provides the blueprint API)_

	sockets _(which provides socket.io integration)_

	grunt _(which provides Grunt integration)_

	orm _(which provides integration with the Waterline ORM, and imports your projects adapters, models, etc.)_

	http _(which provides an HTTP server)_

	and 16 others.

You can read more about how to write your own hooks in the [new and improved “Extending Sails” documentation](https://sailsjs.com/documentation/concepts/extending-sails) on https://sailsjs.com.

Socket.io v1.x

The upgrade to Socket.io v1.0 shouldn’t actually affect your app-level code, provided you are using the layer of abstraction provided by Sails itself; everything from the sails.sockets.* wrapper methods and “up” (resourceful pubsub, blueprints)
If you are using underlying socket.io methods in your apps, or are just curious about what changed in Socket.io v1.0, be sure and check out the [complete Socket.io 1.0 migration guide](http://socket.io/docs/migrating-from-0-9/) from Guillermo and the socket.io team.

Ever-increasing modularity

As part of the upgrade to Socket.io v1.0, we pulled out the core sockets hook into a separate repository. This allowed us to write some modular, hook-specific tests for the socket.io interpreter, which will make things easier to maintain, customize, and override.
This also allows the hook to grow at its own pace, and puts related issues in one place.

Consider this a test of the pros and cons of pulling other hooks out of the sails core repo over the next few months. This will make Sails core lighter, faster, and more extensible, with fewer core dependencies, shorter “lift” time for most apps, and faster `npm install`s.

Testing, the “virtual” request interpreter, and the sails.request() method

In the process of pulling the sockets hook _out_ of core, the logic which interprets requests has been normalized and is now located _in_ Sails core. As a result, the sails.request() method is much more powerful.

This method allows you to communicate directly with the request interpreter in Sails without lifting your server onto a port. It’s the same mechanism that Sails uses to map incoming messages from Socket.io to “virtual requests” that have the familiar req and res streams.

The primary use case for sails.request() is in writing faster-running unit and integration tests, but it’s also handy for proxying to mounted apps (or “sub-apps”).

For instance, here is an example (using mocha) of how you might test one of your app’s routes:

```js
var assert = require(‘assert’);
var Sails = require(‘sails’).Sails;

before(function beforeRunningAnyTests (done){


// Load the app (no need to “lift” to a port)
sails.load({



	log: {
	level: ‘warn’





},
hooks: {


grunt: false




}





	}, function whenAppIsReady(err){
	if (err) return done(err);

// At this point, the sails global is exposed, although we
// could have disabled it above with our config overrides to
// sails.load(). In fact, you can actually use this technique
// to set any configuration setting you like.
return done();





});




});


	after(function afterTestsFinish (done) {
	sails.lower(done);





});

describe(‘GET /hotpockets’, function (){


it(‘should respond with a 200 status code’, function (done){



	sails.request({
	method: ‘get’,
url: ‘/hotpockets’,
params: {


limit: 10,
sort: ‘price ASC’




}



	}, function (err, clientRes, body) {
	if (err) return done(err);

assert.equal(clientRes.statusCode, 200);
return done();





});




});






});

#### config/env/ subfolders

In v0.10.x, we added the config/env folder (thanks to [@clarkorz](https://github.com/clarkorz)), where you can add config files that will be loaded only in the appropriate environment (e.g. config/env/production.js for production environment, config/env/development for development, etc.).  In v0.11.x we’ve added the ability to specify whole subfolders per-environment.  For example, all config files saved to the config/env/production will be loaded and merged on top of other configuration when the environment is set to production.  Note that if both a config/env/production folder and a config/env/production.js file are present, the config/env/production.js settings will take precedence.  And, as always, local.js is merged on top of all other files, and .sailsrc rules them all.

## Questions?

As always, if you run into issues upgrading, or if any of the notes above don’t make sense, let us know and we’ll do what we can to clarify.

Finally, to those of you that have contributed to the project since the v0.10 release in August: we can’t stress enough how much we value your continued support and encouragement.  There is a pretty massive stream of issues, pull requests, documentation tweaks, and questions, but it always helps to know that we’re in this together :)

Thanks.

-[@mikermcneil](https://github.com/mikermcneil/), [@sgress454](https://github.com/sgress454/) and [@particlebanana](https://github.com/particlebanana/)

<docmeta name=”displayName” value=”To v0.11”>
<docmeta name=”version” value=”0.11.0”>




            

          

      

      

    

  

    
      
          
            
  # Upgrading to Sails v0.12

Sails v0.12 comes with an upgrade to Socket.io and Express, as well as many bug fixes and performance enhancements. While you should find that this version is mostly backwards compatible with Sails v0.11, there are some major changes to sails.sockets.* methods which may affect your app. Those changes are addressed in the migration guide below, so if you are upgrading an existing app from v0.11 and are using sails.sockets methods, please be sure and carefully read the information below. Aside from those changes, running sails lift in an existing project should just work.

The sections below provide a high-level overview of what’s changed, major bug fixes, enhancements and new features, as well as a basic tutorial on how to upgrade your v0.11.x Sails app to v0.12.

## Installing the update

Run the following command from the root of your Sails app:

`bash
npm install sails@~0.12.0 --force --save
`

The –force flag will override the existing Sails dependency installed in your node_modules/ folder with the latest patch release of Sails v0.12, and the –save flag will update your package.json file so that future npm installs will also use the new version.

## Things to do immediately after upgrading



	If your app uses the socket.io-redis adapter, upgrade to at least version 1.0.0 (npm install –save socket.io-redis@^1.0.0).


	If your app is using the Sails socket client (e.g. assets/js/dependencies/sails.io.js) on the front end, also install the newest version (sails generate sails.io.js –force).







## Overview of changes in v0.12

> For a full list of changes, see the changelog file for [Sails](https://github.com/balderdashy/sails/blob/master/CHANGELOG.md), as well as those for [Waterline](https://github.com/balderdashy/waterline/blob/master/CHANGELOG.md), [sails-hook-sockets](https://github.com/balderdashy/sails-hook-sockets/blob/master/CHANGELOG.md) and [sails.io.js](https://github.com/balderdashy/sails.io.js/blob/master/CHANGELOG.md).


	Security enhancements: updated several dependencies with potential vulnerabilities.


	Reverse routing functionality is now built into Sails core via the new [sails.getRouteFor()](https://sailsjs.com/documentation/reference/application/sails-get-route-for) and [sails.getUrlFor()](https://sailsjs.com/documentation/reference/application/sails-get-url-for) methods.


	Generally improved multi-node support (and therefore scalability) of low-level sails.socket.* methods, and made additional adjustments and improvements related to the latest socket.io upgrade.  Added a much tighter Redis integration that sits on top of socket.io-redis, using a Redis client to implement cross-server communication rather than an additional socket client.


	Cleaned up the API for sails.socket.* methods, normalizing overloaded functions and deprecating methods which cause problems in multiserver deployments (more on that below).


	Added a few brand new sails.sockets methods: .leaveAll(), .addRoomMembersToRooms(), and .removeRoomMembersFromRooms().


	sails.sockets.id() is now sails.sockets.getId() (backwards compatible with deprecation message).


	New Sails apps are now generated with the updated version of sails.io.js (the JavaScript Sails socket client).  This upgrade bundles the latest version of socket.io-client, as well as some more advanced functionality (including the ability to specify common headers for all virtual socket requests).


	Upgraded to latest trusted versions of grunt-contrib-* dependencies (eliminates many NPM deprecation warnings and provides better error messages from NPM).


	If you are using NPM v3, running sails new will now run npm install instead of symlinking your new app’s initial dependencies.  This is slower than you may be used to, but it is a necessary change due to changes in the way NPM handles nested dependencies.  The core maintainers are [working on](https://github.com/npm/npm/issues/10013#issuecomment-178238596) a better long-term solution, but in the meantime if you frequently run sails new and the slowdown is bugging you, consider temporarily downgrading to an earlier version of NPM (v2.x).  If the installed version of NPM is prior to version 3, Sails will continue to take advantage of the classic symlinking strategy.




## Socket Methods

Without question, the biggest change in Sails v0.12 is to the API of the low-level sails.sockets methods exposed by the sockets hook.  In order to ensure that Sails apps perform flawlessly in a [multi-server (aka “multi-node” or “clustered”) environment](https://sailsjs.com/documentation/concepts/realtime/multi-server-environments), several [low-level methods](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) have been deprecated and some new ones have been added.

The following sails.sockets methods have been deprecated:



	[.emit()](https://0.12.sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-emit)


	[.id()](https://0.12.sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-id) (renamed to [.getId()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/get-id))


	[.socketRooms()](https://0.12.sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-socket-rooms)


	[.rooms()](https://0.12.sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-rooms)


	[.subscribers()](https://0.12.sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-subscribers)







If you are using any of those methods in your app, they will still work in v0.12 but _you should replace them as soon as possible_ as they may be removed from Sails in the next version.  See the individual doc pages for each method for more information.

## Resourceful PubSub Methods

The [.subscribers()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribers) resourceful PubSub method has been deprecated for the same reasons as [sails.sockets.subscribers()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-subscribers).  Follow the guidelines in the docs for replacing this method if you are using it in your code.

## Waterline (ORM) Updates

Sails v0.12 comes with the latest version of the Waterline ORM (v0.11.0).  There are two API changes to be aware of:

##### .save() no longer provides a second argument to its callback

The callback to the .save() instance method no longer receives a second argument.  While requiring the second argument was convenient, it made .save() less performant, especially for apps working with millions of records.  This change resolves those issues by eliminating the need to build redundant queries, and preventing your database from having to process them.

If there are places in your app where you have code like this:
```javascript
sierra.save(function (err, modifiedSierra){

if (err) { /* … */ return; }

// …

});

You should replace it with:
```javascript
sierra.save(function (err){


if (err) { /* … */  return; }

// …






});

##### Custom column/field names for built-in timestamps

You can now configure a custom column name (i.e. field name, for Mongo/Redis folks) for the built-in createdAt and updatedAt attributes.  In the past, the top-level autoCreatedAt and autoUpdatedAt model settings could be specified as false to disable the automatic injection of createdAt and updatedAt altogether.  That _still works as it always has_, but now you can also specify string values for one or both of these settings instead.  If a string is specified, it will be understood as the custom column (/field) name to use for the automatic timestamp.

```javascript
{

attributes: {},
autoCreatedAt: ‘my_cool_created_when_timestamp’,
autoUpdatedAt: ‘my_cool_updated_at_timestamp’

}

If you were using the [workaround suggested by @sgress454 here](http://stackoverflow.com/a/24562385/486547), you may want to take advantage of this simpler approach instead.

SQL Adapter Performance

[Sails-PostgreSQL](https://github.com/balderdashy/sails-postgresql) and [Sails-MySQL](https://github.com/balderdashy/sails-mysql) recieved patch updates that significantly improved performance when populating associations. Thanks to [@jianpingw](https://github.com/jianpingw) for digging into the source and finding a bug that was processing database records too many times. If you are using either of these adapters, upgrading to sails-postgresql@0.11.1 or sails-mysql@0.11.3 will give you a significant performance boost.

Contributing

While not technically part of the release, Sails v0.12 is accompanied by some major improvements to the tools and resources available to contributors. More core hooks are now fully documented ([controllers](https://github.com/balderdashy/sails/tree/master/lib/hooks/controllers)|[grunt](https://github.com/balderdashy/sails/tree/master/lib/hooks/grunt)|[logger](https://github.com/balderdashy/sails/tree/master/lib/hooks/logger)|[cors](https://github.com/balderdashy/sails/tree/master/lib/hooks/cors)|[responses](https://github.com/balderdashy/sails/tree/master/lib/hooks/responses)|[orm](https://github.com/balderdashy/sails/tree/master/lib/hooks/orm)), and the team has put together a [Code of Conduct](https://github.com/balderdashy/sails/blob/master/CODE-OF-CONDUCT.md) for contributing to the Sails project.

The biggest change for contributors is the [updated contribution guide](https://github.com/balderdashy/sails/blob/master/CONTRIBUTING.md), which contains the new, streamlined process for feature/enhancement proposals and for merging features, enhancements, and patches into core. As the Sails framework has grown (both the code base and the user base), it’s become necessary to establish clearer processes for how issue contributions, code contributions, and contributions to the documentation are reviewed and merged.

Documentation

This release also comes with a deep clean of the official reference documentation, and some minor usability improvements to the online docs at https://sailsjs.com/documentation. The entire Sails website is now available in [Japanese](http://sailsjs.jp/), and four other [translation projects](https://github.com/balderdashy/sails/tree/master/docs#in-other-languages) are underway for Korean, Brazillian Portugese, Taiwanese Mandarin, and Spanish.

In addition, the Sails.js project (finally) has an [official blog](http://blog.sailsjs.com). The Sails.js blog is the new source for all longform updates and announcements about Sails, as well as for our related projects like Waterline, Skipper, and the machine specification.

Need Help?

If you run into an unexpected issue upgrading your Sails app to v0.12.0, please review our contribution guide and [submit an issue in the Sails GitHub repo](https://github.com/balderdashy/sails/blob/master/CONTRIBUTING.md).

<docmeta name=”displayName” value=”To v0.12”>
<docmeta name=”version” value=”0.12.0”>

 # Upgrading to Sails v1.0

Sails v1.0 is here! Keep reading for a high-level overview of what’s changed in this release, and to learn about some new features you might want to take advantage of in your app.

A note about breaking changes
While working on this version of Sails, a lot of the decisions we made favored a better developer experience over backwards compatibility. Because of this, the upgrade to Sails 1.0 will involve dealing with more breaking changes than previous versions. But when you’re finished, there’ll be a much better chance that the features you’re using in Sails are things that its author and maintainers understand thoroughly and use almost every day.

For more about the philosophy behind many of the breaking changes in 1.0, you can read Mike McNeil’s in-depth explanation [here](https://gitter.im/balderdashy/sails?at=5a1d8fcd3a80a84b5b907099).

Upgrading an existing app using the automated tool

Ready to upgrade your existing v0.12.x Sails app to version 1.0? To get started, we recommend using the Sails 1.0 upgrade tool, which will help with some of the most common migration tasks. To use the tool, first install Sails 1.0 globally with npm install -g sails@^1.0.0 and then run sails upgrade. After the tool runs, it will create a report for you with a list of remaining items that need to be manually upgraded.

Upgrading an existing app manually

The checklist below covers the changes most likely to affect the majority of apps.

If your app still has errors or warnings on startup after following this checklist, or if you’re seeing something unexpected, head back to this document and take a look further down the page. (One of the guides for covering various app components will probably be applicable.)

> We’ve done a lot of work to make the upgrade process as seamless as possible, particularly when it comes to the errors and warnings you’ll see on the console. But if you’re stumped or have lingering questions about any of the changes below, feel free to [drop by the Sails community Gitter channel](https://sailsjs.com/support). (If your company is using Sails Flagship, you can also chat directly with the Sails core team [here](https://flagship.sailsjs.com/ask).)

tl;dr checklist: things you simply _must_ do when upgrading to version 1.0

The upgrade tool does its best to help with some of these items, but it won’t change your app-specific code for you!

	Step 0: Check your Node version

	Step 1: Install hooks & update dependencies

	Step 2: Update configuration

	Step 3: Modify client-side code for the new blueprint API

	Step 4: Adopt the new release of Waterline ORM

Step 0: Check your Node version!

If your app needs to support Node versions earlier than v4, you will not be able to upgrade to Sails 1.0, as Sails 1.0 no longer supports Node v0.x. The earliest version of Node supported by Sails 1.0 is Node 4.x.

Step 1: Install hooks & update dependencies
Sails v1 introduces [custom builds](https://github.com/balderdashy/sails/pull/3504). This means that certain core hooks are now installed as direct dependencies of your app, giving you more control over your dependencies and making npm install sails run _considerably_ faster. So, the first thing you’ll need to do is install the core hooks you’re using. (And while you’re at it, be sure to update the other dependencies mentioned in the list below.)

	Install the `sails-hook-orm` package into your app with npm install –save sails-hook-orm, unless your app has the ORM hook disabled.

	Install the `sails-hook-sockets` package into your app with npm install –save sails-hook-sockets, unless your app has the sockets hook disabled.

	Install the `sails-hook-grunt` package into your app with npm install –save sails-hook-grunt, unless your app has the Grunt hook disabled.

	Install the latest version of your database adapter. For example, if you’re using sails-mysql, do npm install –save sails-mysql@latest.

	Upgrade your `sails.io.js` websocket client with sails generate sails.io.js. See the [“Websockets” section below](https://sailsjs.com/documentation/upgrading/to-v-1-0/#?websockets) for more details.

Step 2: Update configuration
Sails v1 comes with several improvements in app configuration. For example, automatic install of lodash and async can now be customized to any version, and view engine configuration syntax is now consistent with that of Express v4+. The most significant change to configuration, however, is related to one of the most exciting new features in Sails v1: [datastores](https://sailsjs.com/documentation/reference/waterline-orm/datastores). To make sure you correctly upgrade the configuration for your database(s) and other settings, be sure to carefully read through the steps below and apply the necessary changes.

	Update your `config/globals.js` file (unless your app has sails.config.globals set to false)
+ Set models and sails to have boolean values (true or false).
+ Set async and lodash to either have require(‘async’) and require(‘lodash’) respectively, or else false. You may need to npm install –save lodash and npm install –save async, as well.

	Comment out any database configuration your aren’t using in config/connections.js. Unlike previous versions, Sails 1.0 will load _all_ database adapters that are referenced in config files, regardless of whether they are actually used by a model. See the [migration guide section on database configuration](https://sailsjs.com/documentation/upgrading/to-v-1-0/#?changes-to-database-configuration) for more info.

	The `/csrfToken` route is no longer provided to all apps by default when using CSRF. If you’re utilizing this route in your app, you’ll need to manually add it to config/routes.js as ‘GET /csrfToken’: { action: ‘security/grant-csrf-token’ }.

	If your app relies on [action shadow routes](https://sailsjs.com/documentation/concepts/blueprints/blueprint-routes#?action-routes) (where every custom controller action is automatically mapped to a route), you’ll need to update your config/blueprints.js file and set actions to true. This setting is now false by default.

	If your app uses CoffeeScript or TypeScript see the [CoffeeScript](https://sailsjs.com/documentation/tutorials/using-coffee-script) and [TypeScript](https://sailsjs.com/documentation/tutorials/using-type-script) tutorials for update information.

	If your app uses a view engine other than EJS, you’ll need to configure it yourself in the config/views.js file, and you’ll likely need to run npm install –save consolidate for your project. See the “Views” section below for more details.

	If your `api` or `config` folders and subfolders contain any non-source files, they’ll need to be moved. The exception is for Markdown (.md) and text (.txt) files, which will continue to be ignored. Sails will attempt to read all other files in those folders as code, allowing for more flexibility in choosing between Javascript dialects (see the notes about CoffeeScript and TypeScript above).

Step 3: Modify client-side code for the new blueprint API
As well as having been expanded to include a new endpoint, there also are a couple of minor—but breaking—changes to the blueprint API that may require you to make changes to your client-side code.

	If your app uses blueprint routes, be aware that a couple of implicit “shadow” routes have had their HTTP method (aka verb) changed:
+ the RESTful blueprint route address for [add](https://sailsjs.com/documentation/reference/blueprint-api/add-to) has changed from POST to PUT.
+ the RESTful blueprint route address for [update](https://sailsjs.com/documentation/reference/blueprint-api/update) has changed from PUT to PATCH.

	If your app relies on the default socket notifications from blueprint actions, be aware that there have been some performance-related upgrades that change the structure of these messages somewhat:
+ Sails no longer publishes separate addedTo notifications, one for each new member of a collection. Those individual notifications are now rolled up into a single notification, and the new message contains an array of ids (addedIds) instead of just one.
+ Sails no longer publishes separate removedFrom notifications, one for each former member of a collection. Sails now rolls those up into a single notification, and the new message now contains an array of ids (removedIds) instead of just one.

Step 4: Adopt the new release of Waterline ORM
The new release of Waterline ORM (v0.13) introduces full support for SQL transactions, the ability to include or omit attributes in result sets (aka “projections”), dynamic database connections, and more extensive granular control over query behavior. It also includes a major stability and performance overhaul, which comes with a few breaking changes to usage. The bullet points below cover the most common issues you’re likely to run into with the Waterline upgrade.

	If your app relies on getting records back from `.create()`, `.createEach()`, `.update()`, or `.destroy()` calls, you’ll need to update your model settings to indicate that you want those methods to fetch records (or chain a .fetch() to individual calls). See the [migration guide section on create(), .createEach(), .update(), and .destroy() results](https://sailsjs.com/documentation/upgrading/to-v-1-0/#?changes-to-create-createeach-update-and-destroy-results) for more info.

	If your app relies on using the `.add()`, `.remove()`, and `.save()` methods to modify collections, you will need to update them to use the new [.addToCollection](https://sailsjs.com/documentation/reference/waterline-orm/models/add-to-collection), [.removeFromCollection](https://sailsjs.com/documentation/reference/waterline-orm/models/remove-from-collection), and [.replaceCollection](https://sailsjs.com/documentation/reference/waterline-orm/models/replace-collection) model methods.

	Waterline queries will now rely on the database for case sensitivity. This means that in most adapters your queries will now be case-sensitive, whereas before they were not. This may have unexpected consequences if you are used to having case-insensitive queries. For more information on how to manage this for databases such as MySQL, see the [case sensitivity docs](https://sailsjs.com/documentation/concepts/models-and-orm/models#?case-sensitivity).

	Waterline no longer supports nested creates or updates, and this change extends to the related blueprints. If your app relies on these features, see the [migration guide section on nested creates and updates](https://sailsjs.com/documentation/upgrading/to-v-1-0/#?nested-creates-and-updates) for more info.

	If your app sets a model attribute to `null` using .create(), .findOrCreate() or .update(), you’ll need to change the type of that attribute to json, or use the base value for the existing attribute type, instead of null (e.g. 0 for numbers). See [the validations docs](https://sailsjs.com/documentation/concepts/models-and-orm/validations#?null-and-empty-string) for more info.

	The `create` blueprint response is now fully populated, just like responses from find, findOne, update and destroy. To suppress population of records, add a parseBlueprintOptions to your blueprints config or to a specific route. See the [blueprints configuration reference](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints#?using-parseblueprintoptions) for more information.

	If you’re using `createEach` to insert large numbers of rows into a database, keep in mind that the Sails 1.0-compatible versions of most adapters now optimize the createEach method to use a single query, instead of using one query per row. Depending on your database, per-request data size limits may apply. See the [notes at the bottom of the .createEach() reference page](https://sailsjs.com/documentation/reference/waterline-orm/models/create-each#?notes) for more information.

	The `size` property for attributes is no longer supported. Instead, you may indicate column size using [the columnType property](https://sailsjs.com/documentation/concepts/models-and-orm/attributes#?columntype).

	The `defaultsTo` property for attributes may no longer be defined as a function. Instead, you will either need to hard-code a default value, or remove the defaultsTo entirely and update your code to determine the appropriate value for the attribute before creating new records. (This can either be handled before calls to .create()/.createEach() in your actions, or in the model’s [beforeCreate](https://sailsjs.com/documentation/concepts/models-and-orm/lifecycle-callbacks#?lifecycle-callbacks-on-create)).

Other breaking changes

The upgrade guide above provides for the most common upgrade issues that Sails contributors have encountered when upgrading various apps between version 0.12 and version 1.0. Every app is different, though, so we recommend reading through the points below, as well. Not all of the changes discussed will necessarily apply to your app, but some might.

	Several properties and methods on `req` now work a little differently:
* req.accepted has been replaced with [req.accepts()](https://sailsjs.com/documentation/reference/request-req/req-accepts)
* req.acceptedLanguages and req.acceptsLanguage() have been replaced with [req.acceptsLanguages()](https://sailsjs.com/documentation/reference/request-req/req-accepts-languages)
* req.acceptedCharsets and req.acceptsCharset() have been replaced with [req.acceptsCharsets()](https://sailsjs.com/documentation/reference/request-req/req-accepts-charsets)

	Several `req.options` properties related to blueprints are no longer supported. Instead, the new parseBlueprintOptions method can be used to give you complete control over blueprint behavior. See the [blueprints configuration reference](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints#?using-parseblueprintoptions) for more information.

	The `defaultLimit` and `populate` blueprint configuration options are no longer supported. Instead, the new parseBlueprintOptions method can be used to give you complete control over blueprint behavior. See the [blueprints configuration reference](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints#?using-parseblueprintoptions) for more information.

	The `.findOne()` query method no longer supports `sort` and `limit` modifiers, and will throw an error if the given criteria match more than one record. If you want to find a single record using anything besides a unique attribute (like the primary key) as criteria, use .find(<criteria>).limit(1) instead (keeping in mind that this will return an array of one item).

	`autoPk`, `autoCreatedAt` and `autoUpdatedAt` are no longer supported as top-level model properties. See the [migration guide section on model config changes](https://sailsjs.com/documentation/upgrading/to-v-1-0/#?changes-to-model-configuration) for more information.

	Dynamic finders (such as User.findById()) are no longer added to your models automatically. You can implement these yourself as [custom model methods](https://sailsjs.com/documentation/concepts/models-and-orm/models#?custom-model-methods).

	Model Instance Methods are no longer supported. This allows records returned from find queries to be plain JavaScript objects instead of model record instances.

	Custom `.toJSON()` instance methods are no longer supported. Instead, add a [customToJSON method](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?customtojson) to the model class (outside of the attributes dictionary). See the [model settings documentation](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings) for more information.

	The `.toObject()` instance method is no longer added to every record. When implementing [customToJSON](https://sailsjs.com/documentation/concepts/models-and-orm/model-settings#?customtojson) for a model, be sure to clone the record using _.omit(), _.pick() or _.clone().

	`autoUpdatedAt` timestamps can now be manually updated in calls to .update() (previously, the passed-in attribute value would be ignored). The previous behavior faciliated the use of .save(), which is no longer supported. Now, you can update the updatedAt if you need to (but generally you should let Sails do this for you!)

	`beforeValidate` and `afterValidate` lifecycle callbacks no longer exist. Use one of the [many other lifecycle callbacks](https://sailsjs.com/documentation/concepts/models-and-orm/lifecycle-callbacks) to tap into the query.

	`afterDestroy` lifecycle callback now receives a single record. It has been normalized to work the same way as the afterUpdate callback and call the function once for each record that has been destroyed rather than once with all the destroyed records.

	Many resourceful PubSub methods have changed (see the PubSub section below for the full list). If your app only uses the automatic RPS functionality provided by blueprints (and doesn’t call RPS methods directly), no updates are required.

	The `.find()` model method no longer automatically coerces constraints that are provided for unrecognized attributes. For example, if you execute Purchase.find({ amount: ‘12’ }), e.g. via blueprints (http://localhost:1337/purchase?amount=12), and there is no such “amount” attribute, then even if the database contains a record with the numeric equivalent (12), it will not be matched. (This is only relevant when using MongoDB and sails-disk.) If you are running into problems because of this, either define the attribute as a number or (if you’re using blueprints) use an explicit where clause instead (e.g. http://localhost.com:1337/purchase?where={“amount”:12}).

	Custom blueprints and the associated blueprint route syntax have been removed. This functionality can be replicated using custom actions, helpers, and routes. See the “Replacing custom blueprints” section below for more information.

	Blueprint action shadow routes no longer include `/:id?` at the end – that is, if you have a UserController.js with a tickle action, you will no longer get a /user/tickle/:id? route (instead, it will be just /user/tickle). Apps relying on those routes should add them manually to their config/routes.js file.

	`sails.getBaseUrl`, deprecated in v0.12.x, has been removed. See the [v0.12 docs for getBaseUrl](http://0.12.sailsjs.com/documentation/reference/application/sails-get-base-url) for more information on why it was removed and how you should replace it.

	`req.params.all()`, deprecated in v0.12.x, has been removed. Use req.allParams() instead.

	`sails.config.dontFlattenConfig`, deprecated in v0.12.x, has been removed. See the [original notes about dontFlattenConfig](https://sailsjs.com/documentation/upgrading/to-v-0-11#?config-files-in-subfolders) for details.

	The order of precedence for `req.param()` and `req.allParams()` has changed. It is now consistently path > body > query (that is, url path params override request body params, which override query string params).

	`req.validate()` has been removed. Use [actions2](https://sailsjs.com/documentation/concepts/actions-and-controllers#?actions-2) instead.

	The default `res.created()` response has been removed. If you’re calling res.created() directly in your app, and you don’t have an api/responses/created.js file, you’ll need to create one.

	On a related note, the [Blueprint create action](https://sailsjs.com/documentation/reference/blueprint-api/create) will now return a 200 status code upon success, instead of 201.

	The default `notFound` and `serverError` responses no longer accept a `pathToView` argument. They will only attempt to serve a 404 or 500 view. If you need to be able to call these responses with different views, you can customize the responses by adding api/responses/notFound.js or api/responses/serverError.js files to your app.

	The default `badRequest` or `forbidden` responses no longer display views. If you don’t already have the api/responses/badRequest.js and api/responses/forbidden.js files, you’ll need add them yourself and write custom code if you want them to display view files.

	The `connect-flash` middleware has been removed (so req.flash() will no longer be available by default). If you wish to continue using req.flash(), run npm install –save connect-flash in your app folder and [add the middleware manually](https://sailsjs.com/documentation/concepts/middleware).

	The `POST /:model/:id` blueprint RESTful route has been removed. If your app is relying on this route, you’ll need to add it manually to config/routes.js and bind it to a custom action.

	The `handleBodyParserError` middleware has been removed; in its place, the Skipper body parser now has its own onBodyParserError method.
+ If you have customized the [middleware order](https://sailsjs.com/documentation/concepts/middleware#?adding-or-overriding-http-middleware), you’ll need to remove handleBodyParserError from the array.
+ If you’ve overridden handleBodyParserError, you’ll need to instead override bodyParser with your own customized version of Skipper, including your error-handling logic in the onBodyParserError option.

	The `methodOverride` middleware has been removed. If your app utilizes this middleware:
+ npm install –save method-override
+ Make sure your sails.config.http.middleware.order array (in config/http.js) includes methodOverride somewhere before router
+ Add methodOverride: require(‘method-override’)() to sails.config.http.middleware.

	The `router` middleware is no longer overrideable. Instead, the Express 4 router is used for routing both external and internal (aka “virtual”) requests. It’s still important to have a router entry in sails.config.http.middleware.order to delimit which middleware should be added before and after the router.

	The query modifiers `lessThan`, `lessThanOrEqual`, `greaterThan`, and `greaterThanOrEqual` have been removed. Use the shorthand versions instead (<, <=, >, >=).

	The [`find one`](https://sailsjs.com/documentation/reference/blueprint-api/find-one) and [`find`](https://sailsjs.com/documentation/reference/blueprint-api/find-where) blueprint actions now accept a populate=false rather than populate= to specify that no attributes should be populated.

	The [`add`](https://sailsjs.com/documentation/reference/blueprint-api/add-to) and [`remove`](https://sailsjs.com/documentation/reference/blueprint-api/remove-from) blueprint actions now require that the primary key of the child record to add or remove be supplied as part of the URL, rather than allowing it to be passed on the query string or in the body.

	The [`destroy`](https://sailsjs.com/documentation/reference/blueprint-api/destroy) blueprint action now requires that the primary key of the record to destroy be supplied as part of the URL, rather than allowing it to be passed on the query string or in the body.

	The `sails.config.session.routesDisabled` setting has changed to sails.config.session.isSessionDisabled(), a function. See the [config/session.js docs](https://sailsjs.com/documentation/reference/configuration/sails-config-session) for more information on configuring isSessionDisabled().

	The experimental “switchback-style” usage for Waterline methods is no longer supported. Only function callbacks may be used with Waterline model methods.

	The experimental `create` auto-migration scheme is no longer supported. It is highly recommended that you use a migration tool such as [Knex](http://knexjs.org/#Migrations) to handle migrations of your production database.

	The experimental `forceLoadAdapter` datastore setting is no longer supported. Instead, all adapters referenced in config/datastores.js (formerly config/connections.js) are automatically loaded whenever Sails lifts.

	The experimental `usage` route option has been removed. It is recommended that you perform any route parameter validation in your controller code.

	The experimental “associated-item” blueprint shadow routes have been removed. These were routes like GET /user/1/pets/2, whose functionality can be replicated by simply using the much-clearer route GET /pets/2.

	The experimental `.validate()` method in model classes (e.g. User.validate()) is now fully supported, but its usage has changed. See the [.validate() docs](https://sailsjs.com/documentation/reference/waterline-orm/models/validate) for more information.

	The ordering of attributes in the internal representation of model classes has changed (association attributes are now sorted at the bottom). This has the effect of causing tables created using migrate: ‘alter’ to have their columns in a different order than in previous versions of Waterline, so be aware of this if column ordering is important in your application. As a reminder, auto-migrations are intended to help you design your schema as you build your app. They are not guaranteed to be consistent regarding any details of your physical database columns besides setting the column name, type (including character set / encoding if specified) and uniqueness.

	Using `_config` to link a controller to a model will no longer work. This was never a supported feature, but it was used in some projects to change the URLs that were mapped to the blueprint actions for a model. Please use [restPrefix](https://sailsjs.com/documentation/reference/configuration/sails-config-blueprints#?properties) instead.

	The `find()`, `destroy()`, and `update()` methods ignore undefined attributes. These methods will strip undefined attributes from their search criteria, e.g. User.update({id: undefined}).with({ firstName: ‘Finn’}) would update every user record. Read more about this in [this Github issue](https://github.com/balderdashy/sails/issues/4639#issuecomment-320369193)

Changes to database configuration

	The sails.config.connections setting has been deprecated in favor of sails.config.datastores. If you lift an app that still has sails.config.connections configured, you’ll get a warning which you can avoid by simply changing module.exports.connections in config/connections.js to module.exports.datastores. For your own sanity, it’s recommended that you also change the filename to config/datastores.js.

	The sails.config.models.connection setting has been deprecated in favor of sails.config.models.datastore. As above, changing the name of the property in config/models.js should be sufficient to turn off any warnings.

	Every app now has a default datastore (appropriately named default) that is configured to use a built-in version of the [sails-disk adapter](https://github.com/balderdashy/sails-disk). In Sails 1.0, the default value of sails.config.models.datastore is default (rather than localDiskDb). The recommended approach to setting the default datastore for your models is to simply to add the desired configuration under the default key in config/datastores.js, and leave the datastore key in config/models.js undefined, rather than the previous approach of setting datastore to (for example) myPostgresqlDb and then adding a myPostgresqlDb key to config/datastores.js. This makes it a lot easier to change the datastore used by different environments (for instance, by changing the configuration of the default datastore in config/env/production.js).

	All datastores that are configured in an app will be loaded at runtime (rather than only loading datastores that were being used by at least one model). This has the benefit of allowing the use of a datastore outside the context of an individual model, but it does mean that if you don’t want to connect to a certain database when Sails lifts, you should comment out that datastore connection config!

Nested creates and updates

	The [.create()](https://sailsjs.com/documentation/reference/waterline-orm/models/create), [.update()](https://sailsjs.com/documentation/reference/waterline-orm/models/update) and [.add()](https://sailsjs.com/documentation/reference/waterline-orm/models/find) model methods no longer support creating a new “child” record to link immediately to a new or existing parent. For example, given a User model with a singular association to an Animal model through an attribute called pet, it is not possible to set pet to a dictionary representing values for a brand new Animal (aka a “nested create”). Instead, create the new Animal first and use its primary key to set pet when creating the new User.

	Similarly, the [create](https://sailsjs.com/documentation/reference/blueprint-api/create), [update](https://sailsjs.com/documentation/reference/blueprint-api/update) and [add](https://sailsjs.com/documentation/reference/blueprint-api/add-to) blueprint actions no longer support nested creates.

	The [.update()](https://sailsjs.com/documentation/reference/waterline-orm/models/update) model method and its associated [blueprint action](https://sailsjs.com/documentation/reference/blueprint-api/update) no longer support replacing an entire plural association. If a record is linked to one or more other records via a [“one-to-many”](https://sailsjs.com/documentation/concepts/models-and-orm/associations/one-to-many) or [“many-to-many”](https://sailsjs.com/documentation/concepts/models-and-orm/associations/many-to-many) association and you wish to link it to an entirely different set of records, use the [.replaceCollection() model method](https://sailsjs.com/documentation/reference/waterline-orm/models/replace-collection) or the [replace blueprint action](https://sailsjs.com/documentation/reference/blueprint-api/replace).

Changes to model configuration

tl;dr

Remove any autoPK, autoCreatedAt and autoUpdatedAt properties from your models, and add the following to your config/models.js file:


	```javascript
	
	attributes: {
	createdAt: { type: ‘number’, autoCreatedAt: true, },
updatedAt: { type: ‘number’, autoUpdatedAt: true, },
id: { type: ‘number’, autoIncrement: true}, // <– for SQL databases
id: { type: ‘string’, columnName: ‘_id’}, // <– for MongoDB





}





```

The autoPK top-level property is no longer supported

This property was formerly used to indicate whether or not Waterline should create an id attribute as the primary key for a model. Starting with Sails v1.0 / Waterline 0.13, Waterline will no longer create any attributes in the background. Instead, the id attribute must be defined explicitly. There is also a new top-level model property called primaryKey, which can be set to the name of the attribute that should be used as the model’s primary key. This value defaults to id for every model, so in general you won’t have to set it yourself.

The autoUpdatedAt and autoCreatedAt model settings are now attribute-level properties

	These properties were formerly used to indicate whether or not Waterline should create createdAt and updatedAt timestamps for a model. Starting with Sails v1.0 / Waterline 0.13, Waterline will no longer create these attributes in the background. Instead, the createdAt and updatedAt attributes must be defined explicitly if you want to use them. By adding autoCreatedAt: true or autoUpdatedAt: true to an attribute definition, you can instruct Waterline to set that attribute to the current timestamp whenever a record is created or updated. Depending on the type of these attributes, the timestamps will be generated in one of two formats:
	
	For type: ‘string’, these timestamps are stored in the same way as they were in Sails 0.12: as timezone-agnostic ISO 8601 JSON timestamp strings (e.g. ‘2017-12-30T12:51:10Z’). So if any of your front-end code is relying on the timestamps as strings it’s important to set this to string.

	For type: ‘number’, these timestamps are stored as JS timestamps (the number of milliseconds since Jan 1, 1970 at midnight UTC).

Furthermore, for any attribute, if you pass new Date() as a constraint within a Waterline criteria’s where clause, or as a new record, or within the values to set in a .update() query, then these same rules are applied based on the type of the attribute. If the attribute is type: ‘json’, it uses the latter approach.

<!– TODO: finish filling in the gaps for this section:
Changes to built-in data types

As of Sails v1.0 / Waterline 0.13, we’ve made changes to the way that data types and type safety work in the ORM. This allows us to do more as far as type validation/coercion, which makes your app more future-proof and less error-prone[1]()[2]()[3](). As a result, we’ve narrowed down the type options to the following:

	‘string’

	‘number’

	‘boolean’

	‘json’

	`’ref’` _(advanced: do not use unless you have personally inspected the source code of your adapter to understand how it handles data of this type - this is a direct channel between the adapter and your app.)_

This means that the following types are no longer supported (but can be simulated in most cases by including columnType and/or validation rules in your attribute definition):

	‘text’ _(use type: ‘string’ and columnType: ‘TEXT’)_

	‘integer’ _(use type: ‘number’, columnType: ‘INT’ and isInteger: true)_

	‘float’ _(use type: ‘number’ and columnType: ‘FLOAT’)_

	‘date’

	‘datetime’

	‘binary’

	‘array’ _(use type: ‘json’)_

	‘mediumtext’ _(use type: ‘string’ and columnType: ‘MEDIUMTEXT’)_

	‘longtext’ _(use type: ‘string’ and columnType: ‘LONGTEXT’)_

	‘objectid’

	‘email’ _(use type: ‘string’ and isEmail: true)_

–>

Changes to .create(), .createEach(), .update(), and .destroy() results

As of Sails v1.0 / Waterline 0.13, the default result from .create(), .createEach(), .update(), and .destroy() has changed.

To encourage better performance and easier scalability, .create() no longer sends back the created record. Similarly, .createEach() ` no longer sends back an array of created records, `.update() no longer sends back an array of _updated_ records, and .destroy() no longer sends back _destroyed_ records. Instead, the second argument to the .exec() callback is now undefined (or the first argument to .then(), if you’re using promises).

This makes your app more efficient by removing unnecessary find queries, and it makes it possible to use .update() and .destroy() to modify many different records in large datasets, rather than falling back to lower-level native queries.

You can still instruct the adapter to send back created or modified records for a single query by using the fetch method. For example:

```js
Article.update({


category: ‘health-and-wellness’,
status: ‘draft’




})
.set({


status: ‘live’




})
.fetch()
.exec(function(err, updatedRecords){


//…





});

> If the prospect of changing all of your app’s queries seems daunting, there is a temporary convenience you might want to take advantage of.
> To ease the process of upgrading an existing app, you can tell Sails/Waterline to fetch created/updated/destroyed records for ALL of your app’s .create()/.createEach()/.update()/.destroy() queries.  Just edit your app-wide model settings in config/models.js:
>
> `js
> fetchRecordsOnUpdate: true,
> fetchRecordsOnDestroy: true,
> fetchRecordsOnCreate: true,
> fetchRecordsOnCreateEach: true,
> `
>
> That’s it!  Still, to improve performance and future-proof your app, you should go through all of your .create(), .createEach(), .update(), and .destroy() calls and add .fetch() when you can.  Support for these model settings will eventually be removed in Sails v2.

### Changes to Waterline criteria usage
* For performance reasons, as of Sails v1.0 / Waterline 0.13, criteria passed into Waterline’s model methods will now be mutated in-place in most situations (whereas in Sails/Waterline v0.12, this was not necessarily the case).
* Aggregation clauses (sum, average, min, max, and groupBy) are no longer supported in criteria.  Instead, see new model methods [.sum()](https://sailsjs.com/documentation/reference/waterline-orm/models/sum) and [.avg()](https://sailsjs.com/documentation/reference/waterline-orm/models/avg).
* Changes to limit and skip:



	limit: 0 no longer does the same thing as `limit: undefined`.  Instead of matching ∞ results, it now matches 0 results.


	Avoid specifying a limit of < 0.  It is still ignored, and acts like limit: undefined, but it now logs a deprecation warning to the console.


	skip: -20 no longer does the same thing as `skip: undefined`.  Instead of skipping zero results, it now refuses to run with an error.


	Limit must be < Number.MAX_SAFE_INTEGER (…with one exception: for compatibility/convenience, Infinity is tolerated and normalized to Number.MAX_SAFE_INTEGER automatically.)


	Skip must be < Number.MAX_SAFE_INTEGER







##### Change in support for mixed where clauses
Criteria dictionaries with a mixed where clause are no longer supported. For example, instead of:
```javascript
{

username: ‘santaclaus’,
limit: 4,
select: [‘beardLength’, ‘lat’, ‘long’]

}

you should use:
```javascript
{


where: { username: ‘santaclaus’ },
limit: 4,
select: [‘beardLength’, ‘lat’, ‘long’]






}

> Note that you can still do { username: ‘santaclaus’ } as shorthand for { where: { username: ‘santaclaus’ } }, you just can’t mix other top-level criteria clauses (like limit) alongside constraints (e.g. username).
>
> For places where you’re using Waterline’s chainable deferred object to build criteria, don’t worry about this&mdash;it’s already taken care of for you.

### Security

New apps created with Sails 1.0 will contain a config/security.js file instead of individual config/cors.js and config/csrf.js files. Apps migrating from earlier versions can keep their existing files, as long as they perform the following upgrades:


	Change module.exports.cors to module.exports.security.cors in config/cors.js


	Change CORS config settings names to match the newly documented names in [Reference > Configuration > sails.config.security](https://sailsjs.com/documentation/reference/configuration/sails-config-security#?sailsconfigsecuritycors)


	Change module.exports.csrf to module.exports.security.csrf in config/csrf.js.  This value is now simply true or false; no other CSRF options are supported (see below).


	sails.config.csrf.routesDisabled is no longer supported. Instead, add csrf: false to any route in config/routes.js that you wish to be unprotected by CSRF, for example:




`js
'POST /some-thing': { action: 'do-a-thing', csrf: false },
`


	sails.config.csrf.origin is no longer supported. Instead, you can add any custom CORS settings directly to your CSRF token route configuration, for example:




```js
‘GET /csrfToken’: {

action: ‘security/grant-csrf-token’,
cors: {

allowOrigins: [’http://foobar.com’, ‘https://owlhoot.com’]

}

}

	sails.config.csrf.grantTokenViaAjax is no longer supported. This setting was used to turn the CSRF token-granting route on or off. In Sails 1.0, you add that route manually in your config/routes.js file (see above). If you don’t want to grant CSRF tokens via AJAX, just leave that route out of config/routes.js.

Views

For maximum flexibility, Consolidate is no longer bundled with Sails. If you are using a view engine besides EJS, you’ll probably want to install Consolidate as a direct dependency of your app. You can then configure the view engine in config/views.js, like so:

```javascript
extension: ‘swig’,
getRenderFn: function() {


// Import consolidate.
var cons = require(‘consolidate’);
// Return the rendering function for Swig.
return cons.swig;






}

Adding custom configuration to your view engine is a lot easier in Sails 1.0:

```javascript
extension: ‘swig’,
getRenderFn: function() {

// Import consolidate.
var cons = require(‘consolidate’);
// Import swig.
var swig = require(‘swig’);
// Configure swig.
swig.setDefaults({tagControls: [‘{?’, ‘?}’]});
// Set the module that Consolidate uses for Swig.
cons.requires.swig = swig;
// Return the rendering function for Swig.
return cons.swig;

}

Note that the [built-in support for layouts](https://sailsjs.com/documentation/concepts/views/layouts) still works for the default EJS views, but layout support for other view engines (e.g. Handlebars or Ractive) is not bundled with Sails 1.0.

Resourceful PubSub

	Removed deprecated backwardsCompatibilityFor0.9SocketClients setting.

	Removed deprecated .subscribers() method.

	Removed deprecated “firehose” functionality.

	Removed support for 0.9.x socket client API.

	The following resourceful pubsub methods have also been removed:
* .publishAdd()
* .publishCreate()
* .publishDestroy()
* .publishRemove()
* .publishUpdate()
* .watch()
* .unwatch()
* .message()

In place of the removed methods, you should use the new .publish() method, or the low-level [sails.sockets](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) methods. Keep in mind that unlike .message(), .publish() does _not_ wrap your data in an envelope containing the record ID, so—if it’s important—you’ll need to include the ID yourself as part of the data. For example, in Sails v0.12.x, User.message(123, {owl: ‘hoot’}) would have resulted in the following notification being broadcasted to clients:

```
{


verb: ‘messaged’,
id: 123,
data: {


owl: ‘hoot’




}






}

By contrast, in Sails v1.0, User.publish(123, {owl: ‘hoot’}) will simply broadcast:
```
{

owl: ‘hoot’

}

Replacing custom blueprints

Out of the box, it is no longer possible to add a file to api/blueprints/ that will automatically be used as a blueprint action for all models. However, this behavior can easily be replicated by installing [sails-hook-custom-blueprints](https://www.npmjs.com/package/sails-hook-custom-blueprints).

<!–
Another way is to add a route like ‘POST /:model’: ‘SharedController.create’ to the bottom of your config/routes.js file, and then add the custom create blueprint to a api/controllers/SharedController.js file (or a api/controllers/shared/create.js standalone action).

Yet another option would be to add a api/helpers/create.js helper which takes a model name and dictionary of values as inputs (see [Concepts > Helpers](https://sailsjs.com/documentation/concepts/helpers)), and call that helper from the related action for each model (e.g. UserController.create).
–>

Express 4

Sails 1.0 comes with an update to the internal Express server from version 3 to version 4 (thanks to some great work by [@josebaseba](http://github.com/josebaseba)). This change is mainly about maintainability for the Sails framework and should be transparent to your app. However, there are a couple of differences worth noting:

	The 404, 500 and startRequestTimer middleware are now built-in to every Sails app, and have been removed from the sails.config.http.middleware.order array. If your app has an overridden 404 or 500 handler, you should instead override api/responses/notFound.js and api/responses/serverError.js respectively.

	Session middleware that was designed specifically for Express 3 (e.g. very old versions of connect-redis or connect-mongo) will no longer work, so you’ll need to upgrade to more recent versions.

	The sails.config.http.customMiddleware feature is deprecated in Sails 1.0. It will still work for now, but may be removed in a later release. Instead of using customMiddleware to modify the Express app directly, use regular (req, res, next) middleware instead. For instance, you can replace something like:


```
customMiddleware: function(app) {


var passport = require(‘passport’);
app.use(passport.initialize());
app.use(passport.session());






}

with something like:
```
var passport = require(‘passport’);
middleware: {

passportInit: passport.initialize(),
passportSession: passport.session()

},

being sure to insert passportInit and passportSession into your middleware.order array in config/http.js.

	### Response methods
	
	.jsonx() is deprecated. If you have files in api/responses that you haven’t customized at all, you can just delete them and let the Sails default responses work their magic. If you have files in api/responses that you’d like to keep, replace any occurences of res.jsonx() in those files with res.json().

	res.negotiate() is deprecated. Use res.serverError(), res.badRequest(), or a [custom response](https://sailsjs.com/documentation/concepts/extending-sails/custom-responses) instead.

i18n

Sails 1.0 switches from using the [i18n](http://npmjs.org/package/i18n) to the lighter-weight [i18n-2](http://npmjs.org/package/i18n-2) module. The overwhelming majority of users should see no difference in their apps. However, if you’re using the sails.config.i18n.updateFiles option, be aware that this is no longer supported; instead, locale files will _always_ be updated in development mode, and _never_ in production mode. If this is a problem or you’re missing some other feature from the i18n module, you can install [sails-hook-i18n](http://npmjs.org/package/sails-hook-i18n) to revert to pre-Sails-1.0 functionality.

> If your 0.12 application is running into issues during upgrade due to its use of i18n features, see [#4343](https://github.com/balderdashy/sails/issues/4343) for more troubleshooting tips.

WebSockets

All Sails 1.0 projects that use websockets must install the latest sails-hook-sockets dependency (npm install –save sails-hook-sockets). This version of sails-hook-sockets differs from previous ones in a couple of ways:

	The default transports setting is simply [‘websocket’]. In the majority of production deployments, restricting your app to the websocket transport (rather than using [‘polling’, ‘websocket’]) avoids problems with sessions (see the pre-1.0 [scaling guide notes](https://github.com/balderdashy/sails-docs/blob/1038b38cb34fd945086480ee45325a1ac95a0950/concepts/Deployment/Scaling.md#notes) for details). If you’re using the sails.io.js websocket client, the easiest way to make your app compatible with the new websocket settings is to install the new sails.io.js version with sails generate sails.io.js. The latest version of that package also defaults to the “websocket-only” transport strategy. If you’ve customized the transports setting in your front-end code and config/sockets.js file, then you’ll just need to continue to ensure that the values in both places match.

	The latest sails-hook-sockets hook uses a newer version of Socket.io. See the [Socket.io changelog](https://github.com/socketio/socket.io/blob/master/History.md#150–2016-10-06 [https://github.com/socketio/socket.io/blob/master/History.md#150--2016-10-06]) for a full update, but keep in mind that socket IDs no longer have /# prepended to them by default.

Grunt

The Grunt task-management functionality that was formerly part of the Sails core has now been moved into the separate sails-hook-grunt module. Existing apps simply need to npm install –save sails-hook-grunt to continue using Grunt. However, with a modification to your app’s Gruntfile.js, you can take advantage of the fact that sails-hook-grunt includes all of the grunt-contrib modules that previously had to be installed at the project level. The new Gruntfile.js contains:

```
module.exports = function(grunt) {


var loadGruntTasks = require(‘sails-hook-grunt/accessible/load-grunt-tasks’);

// Load Grunt task configurations (from tasks/config/) and Grunt
// task registrations (from tasks/register/).
loadGruntTasks(__dirname, grunt);






};

Assuming that you haven&rsquo;t customized the Gruntfile in your app, you can replace Gruntfile.js with that code and then safely run:

`
npm uninstall --save grunt-contrib-clean
npm uninstall --save grunt-contrib-coffee
npm uninstall --save grunt-contrib-concat
npm uninstall --save grunt-contrib-copy
npm uninstall --save grunt-contrib-cssmin
npm uninstall --save grunt-contrib-jst
npm uninstall --save grunt-contrib-less
npm uninstall --save grunt-contrib-uglify
npm uninstall --save grunt-contrib-watch
npm uninstall --save grunt-sails-linker
npm uninstall --save grunt-sync
npm uninstall --save grunt-cli
`

to remove those dependencies from your project.

### Troubleshooting

##### Still displaying v0.12 at launch?

Make sure you have sails installed locally in your project, and that you’re using the v1 version of the command-line tool.

To install the v1.0 globally, run npm install sails@^1.0.0 -g. To install it for a particular Sails app, cd into that app’s directory, then run npm install sails@^1.0.0 –save.  (After installing locally, be sure to also install the necessary hooks – see above.)

<docmeta name=”displayName” value=”To v.1.0”>
<docmeta name=”version” value=”1.0.0”>




            

          

      

      

    

  

    
      
          
            
  # Upgrading

Like most Node packages, Sails respects [semantic versioning](http://semver.org/).  For example, if you are using Sails v0.11.3, and then upgrade to Sails v0.11.4, you shouldn’t need to change your application code.  This is called a patch release.  On the other hand, if you upgrade from Sails v0.11.3 to v1.0.0, you can expect some _breaking changes_, meaning that you will need to change your Sails app’s code in order to use the new version.  With any framework or tool, _some_ breaking changes are inevitable over time, but you can expect to see these kinds of changes less often as the APIs in Node and Sails continue to stabilize.  In the meantime, the core maintainers strive to minimize breaking changes and maintain backwards compatibility where possible.

### Version notes

For details about changes between versions, as well as a migration guide to assist you in making an necessary changes to your app, please refer to the appropriate page:


	[v1.x](https://sailsjs.com/documentation/upgrading/to-v-1-0)


	[v0.12.x](https://sailsjs.com/documentation/concepts/upgrading/to-v-0-12)


	[v0.11.x](https://sailsjs.com/documentation/concepts/upgrading/to-v-0-11)


	[v0.10.x](https://sailsjs.com/documentation/concepts/upgrading/to-v-0-10)




### Notes

> - Like Node.js, minor version bumps in Sails versions prior to v1.0 included breaking changes&mdash;e.g. upgrading from v0.11.3 to v0.12.0 might force you to make some changes to your code.  But from v1.0.0 and on, minor version (the second number) releases should be fully backwards compatible.  For example, v1.1.0 to v1.2.0 should not force you to make changes to your code, whereas upgrading to v2.0.0 might.
> - If you are more than one version behind the latest release and run into difficulties, consider updating your app one step at a time. The migration guides are written with a particular version diff in mind, and it’s best to isolate as many variables as possible.  For instance, if you are running Sails v0.11 and trying to upgrade to Sails v1.5.18 but having trouble, try first upgrading to Sails v0.11, then v0.12, _then_ v1.5.18.

<docmeta name=”displayName” value=”Upgrading”>
<docmeta name=”isOverviewPage” value=”true”>



            

          

      

      

    

  

    
      
          
            
  <docmeta name=”displayName” value=”0.10.x”>
<docmeta name=”version” value=”0.10.0”>



            

          

      

      

    

  

    
      
          
            
  # 0.10.0-rc9 Changelog


	Associations
+ Adapter-level support for optimized joins (SQL databases and Mongo)
+ Built-in support for in-memory joins.  Allows for cross-database and even cross-adapter joins! (e.g. a User in Mongo has many Messages in a MySQL database called legacy_messages, and also a Role in a MySQL database called myapp.  These can be automatically joined together using the same ORM syntax as normal.)


	Better Error Handling in Waterline


	Revamped Sails CLI
+ Generators w/ support for coffeescript
+ Support for dry runs (–dry) for sails generate and sails new
+ Experimental support for custom generators


	API Blueprints
+ Blueprints are injected into project, allowing the built-in API to be customized.
+ Dramatic simplification of how blueprints are injected– by implicitly including them in the routes file.
+ Backwards compatibility for blueprints on <=v0.9 apps can be achieved by plugging in a simple config to re-enable the traditional support and configurations.
+ Blueprint routes automatically take associations into account, e.g.:



	GET /user/2/dogs – get dogs belonging to user #2


	GET /user/2/dad – get dad belonging to user #2


	PUT /user/2/dogs – add a dog to user #2


	DELETE /user/2/dogs/2 – remove dog #5 from user #2









	PubSub
+ Simplified dramatically- removed concept of class rooms (most of the time, this isn’t exactly what you want anyways)
+ Blueprints still work the same way by introspecting your app’s schema and taking advantage of information about assocations to create logical publish/subscribe dependencies, relying on the global channel in cases where a shared instance doesn’t exist.
+ Reduced to a handful of simple methods:



	SomeModel.publish() – publish to model instance


	SomeModel.subscribe() – subscribe socket to model instance


	SomeModel.unsubscribe() – unsubscribe socket from model instance


	sails.publish() – publish to global channel


	sails.subscribe() – subscribe socket to global channel


	sails.unsubscribe() – unsubscribe socket to global channel









	Error Negotiation Shortcuts
+ Automatically content-negotiate a response– configurable in 500.js, 404.js, 400.js, 403.js
+ res.serverError( msgOrObj )
+ res.notFound()
+ res.forbidden( msgOrObj )
+ res.badRequest( msgOrObj )




# Deprecated
### Overview
The following features are considered deprecated and should at some point be removed from the codebase

# Dynamic Finder Methods


	.findOneBy`<attribute>`In()


	.findOneBy`<attribute>`Like()


	.findBy`<attribute>`In()


	.findBy`<attribute>`Like()


	.countBy`<attribute>`In()


	.countBy`<attribute>`Like()


	.`<attribute>`Contains()




# CRUD Class Methods
- .findAll()
- .findOneLike()
- .findLike()
- .contains()
- .join()
- .select()
- .findOrCreateEach()
- .join()
- .startsWith()
- .endsWith()

<docmeta name=”displayName” value=”0.10.0-rc9 Changelog”>
<docmeta name=”version” value=”0.10.0”>



            

          

      

      

    

  

    
      
          
            
  # Upgrading to v0.10

For the most part, running sails lift in an existing v0.9 project should just work. The core contributors have taken a number of steps to make the upgrade as easy as possible, and if you follow the deprecation messages in the console, you should do just fine.

Sails v0.10 comes with some big changes. The sections below provide a high level overview of what’s changed, major bug fixes, enhancements and new features, as well as a basic tutorial on how to upgrade your v0.9.x Sails app to v0.10.

## File uploads

The Connect multipart middleware [will soon be officially deprecated](http://www.senchalabs.org/connect/multipart.html). But since this module was used as the built-in HTTP body parser in Sails v0.9 and Express v3, this is a breaking change for v0.9 Sails projects relying on req.files.

By default in v0.10, Sails includes [skipper](https://github.com/balderdashy/skipper), a body parser which allows for streaming file uploads without buffering tmp files to disk. For run-of-the-mill file upload use cases, Skipper comes with bundled support for uploads to local disk (via skipper-disk), but streaming uploads can be plugged in to any of its supported adapters.

For examples/documentation, please see the Skipper repository as well as the Sails documentation on req.file().

### Why?

A body parser’s job is to parse the “body” of incoming multipart HTTP requests. Sometimes, that “body” includes text parameters, but sometimes, it includes file uploads.

Connect multipart is great code, and it supports both file uploads AND text parameters in multipart requests. But like most modules of its kind, it accomplishes this by buffering file uploads to disk. This can quickly overwhelm a server’s available disk space, and in many cases exposes a serious DoS attack vulnerability.

Skipper is unique in that it supports streaming file uploads, but also maintains support for metadata in the request body (i.e. JSON/XML/urlencoded request body parameters). It uses a handful of heuristics to make sure only the files you’re expecting get plugged in and received by the blob adapter, and other (potentially malicous) file fields are ignored.

> #### ** Important!**
> For Skipper to work, you _must include all text parameters BEFORE file parameters_ in file upload requests to the server. Once Skipper sees the first file field, it stops waiting for text parameters (this is to avoid unnecessary/unsafe buffering of file data).

### Configuring a different body parser

As with most things in Sails, you can use any Connect/Express/Sails-compatible bodyparser you like. To switch back to connect-multipart, or any other body parser (like formidable or busboy), change your app’s http configuration.

## Blueprints

A new blueprint action (findOne) has been added. For instance, if you have a FooController and Foo model, then send a request to /foo/5, the findOne action in your FooController will run. If you don’t have a findOne action, the findOne blueprint action will be used in its stead. Requests sent to /foo will still run the find controller/blueprint action.

## Policies

Policies work exactly as they did in v0.9- however there is a new consideration you should take into account: Due to the introduction of the more specific findOne() blueprint action mentioned above, you will want to make sure you’re handling it explicitly in your policy mapping configuration.

For example, let’s say you have a v0.9 app whose policies.js configuration prevents access to the find action in your DoveController:

```javascript
module.exports.policies = {

‘*’: true,
DoveController: {

find: false

}

};

Assuming rest blueprint routes are enabled, this would prevent access to requests like both /dove and /dove/14. But now in v0.10, since /dove/14 will actually run the findOne action, we must handle it explicitly:

```javascript
module.exports.policies = {


‘*’: true,
DoveController: {


find: false,
findOne: false




}






};

## Pubsub

### Summary
+ message socket (i.e. “comment”) event on client is now modelIdentity (where “modelIdentity” is different depending on the model that the publish*() method was called from.
+ Clients are no longer subscribed to model-creation events by the blueprint routes. To listen for creation events, use Model.watch().
+ The events that were formerly create, update, and destroy are now created, updated, and destroyed.

### Details
The biggest change to pubsub is that Socket.io events are emitted under the name of the model emitting them. Previously, your client listened for the message event and then had to determine which model it came from based on the included data:

```javascript
socket.on(‘message’, function(cometEvent) {

	if (cometEvent.model == ‘user’) {
	// Handle inbound messages related to a user record

}
else if (cometEvent.model === ‘product’) {

// Handle inbound messages related to a product record

}
// …

}

Now, you subscribe to the identity of the model:
```javascript
socket.on(‘user’, function(cometEvent) {


// Handle inbound messages related to a user record




});


	socket.on(‘product’, function (cometEvent) {
	// Handle inbound messages related to a product record







});

This helps to structure your front end code.

The way you subscribe clients to models has also changed. Previously, you specified whether you were subscribing to the model class (class room) or one or more model instances based on the parameters that you passed to Model.subscribe. It was effectively one method to do two very different things.

Now, you use Model.subscribe() to subscribe only to model instances (records). You can also specify event “contexts”, or types, that you’d like to hear about. For example, if you only wanted to get messages about updates to an instance, you would call User.subscribe(req, myUser, ‘update’). If no context is given in a call to .subscribe(), then all contexts specified by the model class’s autosubscribe property will be used.

To subscribe to model creation events, you can now use Model.watch(). Upon subscription, your clients will receive messages every time a new record is created on that model using the blueprint routes, and will automatically be subscribed to the new instance as well.

Remember, when working with blueprints, clients are no longer auto subscribed to the class room. This must be done manually.

Finally, if you want to see all pubsub messages from all models, you can access the firehose, a development-only tool that broadcasts messages about _everything_ that happens to your models. You can subscribe to the firehose using sails.sockets.subscribeToFirehose(socket), or on the front end by making a socket request to /firehose. The firehose will broadcast a firehose event whenever a model is created, updated, destroyed, added to, removed from or messaged. This effectively replaces the message event used in previous Sails versions.

To see examples of the new pubsub methods in action, see [SailsChat](https://github.com/balderdashy/sailschat).

## Arguments to lifecycle callbacks are now typecasted

Previously, with schema: true, if you sent an attribute value to a .create() or .update() that did not match the expected type declared in the model’s attributes, the value you passed in would still be accessible in your model’s lifecycle callbacks.

In Sails/Waterline v0.10, this is no longer the case. Values passed to .create() and .update() are type-casted before your lifecycle callbacks run. Affected lifecycle callbacks include beforeUpdate(), beforeCreate(), and beforeValidate().

## beforeValidation() is now beforeValidate()

If you were using the beforeValidation or afterValidation model lifecycle callbacks in any of your models, you should change them to beforeValidate or afterValidate. This change was made in Waterline to match the style of the other lifecycle callbacks (e.g. beforeCreate, afterUpdate, etc.).

## .done() vs. .exec()

** The old (/confusing?) meaning of .done() has been deprecated.**

In Sails <= v0.8, the syntax for executing an ORM query was Model. [ … ] .done( cb ). In v0.9, when promise support was added, the Model. [ … ] .exec( cb ) became the recommended replacement, since .done() has a special meaning in the promise spec. However, the original usage of .done() was left untouched to make upgrading from v0.8 to v0.9 easier.

But as of Sails/Waterline v0.10, the original meaning of .done() has been officially deprecated to allow for a more robust promise implementation going forward, and pluggable promise library support (e.g. choose Q or Bluebird etc.).

## Associations

Sails v0.10 introduces associations between data models. Since the work we’ve done on associations is largely additive, your existing models should still just work. That said, this is a powerful new feature that allows you to write less code and makes your app more maintainable, so we suggest taking advantage of it! To learn about how to use associations in Sails, check out the docs.

Associations (or “relations”) are really just special attributes. Instead of string or integer values, you can specify an instance of a model or a collection of model instances. You can think about this kind of like an object ({…}) or an array ([{…}, {…}]) you might store as JSON in a NoSQL database. The difference is, in Sails, this works with any of the supported databases, and even allows you to populate (i.e. join) across different databases and types of databases.

## Generators

Sails has had support for generating code for a while now (e.g. sails generate controller foo) but in v0.10, we wanted to make this feature more extensible, open, and accessible to everybody in the Sails community. With that in mind, v0.10 comes with a complete rewrite of the command-line tool, and pluggable generators. Want to be able to run sails generate blog foo to make a new blog built on Sails? Create a blog generator (run sails generate generator blog), add your templates, and configure the generator to copy the new templates over. Then you can release it to the community by publishing an npm module called sails-generate-blog. Compatibility with Yeoman generators is also in our roadmap.

## Command-line tool

The big change here is how you create a new api. In the past you called sails generate new_api. This would generate a new controller and model called new_api in the appropriate places. This is now done using sails generate api new_api.

You can still generate models and controllers seperately using the same CLI Commands.

Also, –linker switch is no longer available. In previous version, if –linker switch was provided, it created a myApp/assets/linker folder, with js, styles and templates folders inside. In this new version, the myApp/assets/linker folder is not created. Compiling CoffeeScript and Less is the default behavior now, right from the myApp/assets/js and myApp/assets/scripts folders.

## Custom server responses

In v0.10, you can now generate your own custom server responses.

Like before, there are a few that we automatically create for you. Instead of generating myApp/config/500.js and other .js responses in the config directory, they are now generated in myApp/api/responses/.

To migrate, you will need to create a new v0.10 project and copy the myApp/api/responses directory into your existing app. You will then modify the appropriate .js file to reflect any customization you made in your response logic files (500.js,etc).

## Legacy data stored in the temporary sails-disk database

sails-disk, used by default in new Sails projects, now stores data a bit differently. If you have some temporary data stored in a 0.9.x project, you’ll want to wipe it out and start fresh. To do this:

From your project’s root directory:

`
$ rm .tmp/disk.db
`

## Adapter/Database Configuration

config.adapters (in myApp/config/adapters.js) is now config.connections (in new projects, this is generated in myApp/config/connections.js). Also, config.model is now config.models.

Your app’s default connection (i.e. database) should now be configured as a string config.models.connection used by default for model. New projects are generated with a /config/models.js file that includes the default connection.

To configure a model to use specific adapters, you must now specify them in the connection key instead of adapters.

For example:
```javascript
module.exports = {

connection: [‘someMongoDatabase’],

	attributes: {
	
	name:{
	type : ‘string’,
required : true

}

}

};

Blueprints/Controller configuration

The object literal describing controller configuration overrides for controller blueprints should change from:
```
…
_config: {



	blueprints: {
	rest: true,
…





}






}



to:

…
_config: {


rest: true,
…






}

## Layout paths:
In Sails v0.9, you could use the following syntax to specify auth/someLayout.ejs as a custom layout when rendering a view:
```javascript
return res.view(‘auth/login’,{

layout: ‘someLayout’

});

However in Sails v0.10, all layout paths are relative to your app’s views path. In other words, the relative path of the layout is no longer resolved from the view’s own path– it is now always resolved from the views path. This makes it easier to understand which file is being used, particularly when layout files have similar names:
```javascript
return res.view(‘auth/login’, {


layout: ‘auth/someLayout’






});

<docmeta name=”displayName” value=”0.10.0 Migration Guide”>
<docmeta name=”version” value=”0.10.0”>




            

          

      

      

    

  

    
      
          
            
  <docmeta name=”displayName” value=”0.11.x”>
<docmeta name=”version” value=”0.11.0”>



            

          

      

      

    

  

    
      
          
            
  # v0.11 Migration Guide

tldr;

v0.11 comes with many minor improvements, as well as some internal cleanup in core.  The biggest change is that Sails core is now using Socket.io v1.

Almost none of this should affect the existing code in project, but there are a few important differences and new features to be aware of.  We’ve listed them below.

## Differences

#### Upgrade the Socket.io / Sails.io browser client

Old v0.9 socket.io client will no longer work, so consequently you’ll need to upgrade your sails.io.js client from v0.9 or v0.10 to v0.11.

To do this, just remove your sails.io.js client and install the new one.  We’ve bundled a new generator that will do this for you, assuming your sails.io.js client is in the conventional location at assets/js/dependencies/sails.io.js (i.e. if you haven’t moved or renamed it):

`sh
sails generate sails.io.js --force
`

####  onConnect lifecycle callback

> tldr;
>
> Remove your onConnect function from config/sockets.js.

The onConnect lifecycle callback has been deprecated.  Instead, if you need to do something when a new socket is connected, send a request from the newly-connected client to do so.  The purpose of onConnect was always for optimizing performance (eliminating the need to do this initial extra round-trip with the server), yet its use can lead to confusion and race conditions. If you desperately need to eliminate the server roundtrip, you can bind a handler directly on sails.io.on(‘connect’, function (newlyConnectedSocket){}) in your bootstrap function (config/bootstrap.js). However, note that this is discouraged.  Unless you’re facing _true_ production performance issues, you should use the strategy mentioned above for your “on connection” logic (i.e. send an initial request from the client after the socket connects).  Socket requests are lightweight, so this doesn’t add any tangible overhead to your application, and it will help make your code more predictable.

####  onDisconnect lifecycle callback

The onDisconnect lifecycle callback has been deprecated in favor of afterDisconnect.

If you were using onDisconnect previously, you might have had to change the session, then call session.save() manually.  In v0.11, this works in almost exactly the same way, except that afterDisconnect receives an additional 3rd argument: a callback function.  This way, you can just call the provided callback when your afterDisconnect logic has finished, so that Sails can persist any changes you’ve made to the session automatically.  Finally, as you might expect, you won’t need to call session.save() manually anymore- it is now taken care of for you (just like req.session in a normal route, action, or policy.)

> tldr;
> Rename your onDisconnect function in config/sockets.js with the following:
>
> `
> afterDisconnect: function (session, socket, cb) {
>   // Be sure to call the callback
>   return cb();
> }
> `

####  Other configuration in config/sockets.js

Many of the configuration options in Socket.io v1 have changed, so you’ll want to update your config/sockets.js file accordingly.


	if you haven&rsquo;t customized any of the options in config/sockets.js for your app, you can safely remove or comment out the entire file and let the Sails defaults do their magic.  Otherwise, refer to the new [Sails sockets  documentation](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets) to ensure that your configuration is still valid and avoid unwanted hair loss.


	if you are scaling to multiple servers in an environment that does not support sticky sessions, you’ll need to set your transports to [‘websocket’] in both config/socket.js and your client–see [our Scaling doc](https://sailsjs.com/documentation/concepts/deployment/scaling#?preparing-your-app-for-a-clustered-deployment) for more info.


	if you were using a custom authorization function to restrict socket connections, you’ll now want to use beforeConnect.  authorization was deprecated by Socket.io v1, but beforeConnect (which maps to the allowRequest option from Engine.io) works just the same way.


	if you were using other low-level socket configuration that was passed directly to socket.io v1, be sure and check out the [reference page on sailsjs.com](https://sailsjs.com/documentation/reference/configuration/sails-config-sockets) where all of the new configuration options are covered in detail.




#### The “firehose”


	The “firehose” feature for testing with sockets has been deprecated.  If you don’t know what that means, you have nothing to worry about. The basic usage will continue to work for a while, but it will soon be removed from core and should not be relied upon in your app.  This also applies to the following methods:
	
	sails.sockets.subscribeToFirehose()


	sails.sockets.unsubscribeFromFirehose()


	sails.sockets.drink()


	sails.sockets.spit()


	sails.sockets.squirt()








> If you want the “firehose” back, let [Mike know on twitter](http://twitter.com/mikermcneil) (it can be brought back as a separate hook).

#### Config files in subfolders

It has always been the intention that files in the Sails config folder have no precedence over each other, and that the filenames and subfolders (with the exception of local.js and the env and locale subfolders) be used merely for organization.  However, in previous Sails versions, saving config files in subfolders would have the effect that the filename would be added as a key in sails.config, so that if you saved some config in config/foo/bar.js, then that config would be namespaced under sails.config.bar.  This was unintentional and potentially confusing as 1) the directory name is ignored, and 2) moving the file would change the config key.  This has been fixed in v0.11.x: config files in subfolders will be treated the same as those in the root config folder.  If you are for some reason relying on the old behavior, you may set dontFlattenConfig to true in your .sailsrc file, but we would strongly recommend that you instead just namespace the config yourself by setting the desired key on module.exports; for example module.exports.foo = {…}.  See [issue #2544](https://github.com/balderdashy/sails/issues/2544) for more details.

#### Waterline now uses Bluebird

As of v0.11, Waterline now supports Bluebird (instead of q) for promises.  If you are using .exec() you won’t be affected– only if you are using .then().  See https://github.com/balderdashy/sails/issues/1186 for more information.

## New features

Sails v0.11 also comes with some new stuff that we thought you’d like to know about:

#### User-level hooks

Hooks can now be installed directly from NPM.

This means you can now install hooks with a single command in your terminal.  For instance, consider the [autoreload hook](https://github.com/sgress454/sails-hook-autoreload) by [@sgress454](https://twitter.com/sgress454), which watches for changes to your backend code so you don’t need to kill and re-lift the server every time you change your controllers, routes, models, etc.

To install the autoreload hook, run:

`sh
npm install sails-hook-autoreload
`

This is just one example of what’s possible.  As you might already know, hooks are the lowest-level pluggable abstraction in Sails.  They allow authors to tap into the lift process, listen for events, inject custom “shadow” routes, and, in general, take advantage of raw access to the sails runtime.
Most of the features you’re familiar with in Sails have actually already been implemented as “core” hooks for over a year, including:


	blueprints _(which provides the blueprint API)_


	sockets    _(which provides socket.io integration)_


	grunt      _(which provides Grunt integration)_


	orm        _(which provides integration with the Waterline ORM, and imports your projects adapters, models, etc.)_


	http       _(which provides an HTTP server)_


	and 16 others.




You can read more about how to write your own hooks in the [new and improved “Extending Sails” documentation](https://sailsjs.com/documentation/concepts/extending-sails) on https://sailsjs.com.

#### Socket.io v1.x

The upgrade to Socket.io v1.0 shouldn’t actually affect your app-level code, provided you are using the layer of abstraction provided by Sails itself; everything from the sails.sockets.* wrapper methods and “up” (resourceful pubsub, blueprints)
If you are using underlying socket.io methods in your apps, or are just curious about what changed in Socket.io v1.0, be sure and check out the [complete Socket.io 1.0 migration guide](http://socket.io/docs/migrating-from-0-9/) from Guillermo and the socket.io team.

#### Ever-increasing modularity

As part of the upgrade to Socket.io v1.0, we pulled out the core sockets hook into a separate repository.  This allowed us to write some modular, hook-specific tests for the socket.io interpreter, which will make things easier to maintain, customize, and override.
This also allows the hook to grow at its own pace, and puts related issues in one place.

Consider this a test of the pros and cons of pulling other hooks out of the sails core repo over the next few months.  This will make Sails core lighter, faster, and more extensible, with fewer core dependencies, shorter “lift” time for most apps, and faster `npm install`s.

#### Testing, the “virtual” request interpreter, and the sails.request() method

In the process of pulling the sockets hook _out_ of core, the logic which interprets requests has been normalized and is now located _in_ Sails core.  As a result, the sails.request() method is much more powerful.

This method allows you to communicate directly with the request interpreter in Sails without lifting your server onto a port.  It’s the same mechanism that Sails uses to map incoming messages from Socket.io to “virtual requests” that have the familiar req and res streams.

The primary use case for sails.request() is in writing faster-running unit and integration tests, but it’s also handy for proxying to mounted apps (or “sub-apps”).

For instance, here is an example (using mocha) of how you might test one of your app’s routes:

```js
var assert = require(‘assert’);
var Sails = require(‘sails’).Sails;

before(function beforeRunningAnyTests (done){

// Load the app (no need to “lift” to a port)
sails.load({

	log: {
	level: ‘warn’

},
hooks: {

grunt: false

}

	}, function whenAppIsReady(err){
	if (err) return done(err);

// At this point, the sails global is exposed, although we
// could have disabled it above with our config overrides to
// sails.load(). In fact, you can actually use this technique
// to set any configuration setting you like.
return done();

});

});

	after(function afterTestsFinish (done) {
	sails.lower(done);

});

describe(‘GET /hotpockets’, function (){

it(‘should respond with a 200 status code’, function (done){

	sails.request({
	method: ‘get’,
url: ‘/hotpockets’,
params: {

limit: 10,
sort: ‘price ASC’

}

	}, function (err, clientRes, body) {
	if (err) return done(err);

assert.equal(clientRes.statusCode, 200);
return done();

});

});

});

config/env/ subfolders

In v0.10.x, we added the config/env folder (thanks to [@clarkorz](https://github.com/clarkorz)), where you can add config files that will be loaded only in the appropriate environment (e.g. config/env/production.js for production environment, config/env/development for development, etc.). In v0.11.x we’ve added the ability to specify whole subfolders per-environment. For example, all config files saved to the config/env/production will be loaded and merged on top of other configuration when the environment is set to production. Note that if both a config/env/production folder and a config/env/production.js file are present, the config/env/production.js settings will take precedence. And, as always, local.js is merged on top of all other files, and .sailsrc rules them all.

Questions?

As always, if you run into issues upgrading, or if any of the notes above don’t make sense, let us know and we’ll do what we can to clarify.

Finally, to those of you that have contributed to the project since the v0.10 release in August: we can’t stress enough how much we value your continued support and encouragement. There is a pretty massive stream of issues, pull requests, documentation tweaks, and questions, but it always helps to know that we’re in this together :)

Thanks.

-[@mikermcneil](https://github.com/mikermcneil/), [@sgress454](https://github.com/sgress454/) and [@particlebanana](https://github.com/particlebanana/)

<docmeta name=”displayName” value=”0.10 to 0.11 Migration Guide”>
<docmeta name=”version” value=”0.11.0”>

 <docmeta name=”displayName” value=”0.12.x”>
<docmeta name=”version” value=”0.12.0”>

 # Upgrading to Sails v0.12

Sails v0.12 comes with an upgrade to Socket.io and Express, as well as many bug fixes and performance enhancements. You will find that this version is mostly backwards compatible with Sails v0.11, however there are some major changes to sails.sockets.* methods which may or may not affect your app. Most of the migration guide below deals with those changes, so if you are upgrading an existing app from v0.11 and are using sails.sockets methods, please be sure and carefully read the information below in case it affects your app. Other than that, running sails lift in an existing project should just work.

The sections below provide a high level overview of what’s changed, major bug fixes, enhancements and new features, as well as a basic tutorial on how to upgrade your v0.11.x Sails app to v0.12.

Installing the update

Run the following command from the root of your Sails app:

`bash
npm install sails@0.12.0 --force --save
`

The –force flag will override the existing Sails dependency installed in your node_modules/ folder with Sails v0.12, and the –save flag will update your package.json file so that future npm installs will also use the new version.

Things to do immediately after upgrading

	If your app uses the socket.io-redis adapter, upgrade to at least version 1.0.0 (npm install –save socket.io-redis@^1.0.0).

	If your app is using the Sails socket client (e.g. assets/js/dependencies/sails.io.js) on the front end, also install the newest version (sails generate sails.io.js –force)

Overview of changes in v0.12

> For a full list of changes, see the changelog file for [Sails](https://github.com/balderdashy/sails/blob/master/CHANGELOG.md), as well as those for [Waterline](https://github.com/balderdashy/waterline/blob/master/CHANGELOG.md), [sails-hook-sockets](https://github.com/balderdashy/sails-hook-sockets/blob/master/CHANGELOG.md) and [sails.io.js](https://github.com/balderdashy/sails.io.js/blob/master/CHANGELOG.md).

	Security enhancements: updated several dependencies with potential vulnerabilities

	Reverse routing functionality is now built in to Sails core via the new [sails.getRouteFor()](https://sailsjs.com/documentation/reference/application/sails-get-route-for) and [sails.getUrlFor()](https://sailsjs.com/documentation/reference/application/sails-get-url-for) methods

	Generally improved multi-node support (and therefore scalability) of low-level sails.socket.* methods, and made additional adjustments and improvements related to the latest socket.io upgrade. Added a much tighter Redis integration that sits on top of socket.io-redis, using a Redis client to implement cross-server communication rather than an additional socket client.

	Cleaned up the API for sails.socket.* methods, normalizing overloaded functions and deprecating methods which cause problems in multiserver deployments (more on that below).

	Added a few brand new sails.sockets methods: .leaveAll(), .addRoomMembersToRooms(), and .removeRoomMembersFromRooms()

	sails.sockets.id() is now sails.sockets.getId() (backwards compatible w/ deprecation message)

	New Sails apps are now generated with the updated version of sails.io.js (the JavaScript Sails socket client). This upgrade bundles the latest version of socket.io-client, as well as some more advanced functionality (including the ability to specify common headers for all virtual socket requests)

	Upgraded to latest trusted versions of grunt-contrib-* dependencies (eliminates many NPM deprecation warnings and provides better error messages from NPM).

	If you are using NPM v3, running sails new will now run npm install instead of symlinking your new app’s initial dependencies. This is slower than you may be used to, but is a necessary change due to changes in the way NPM handles nested dependencies. The core maintainers are [working on](https://github.com/npm/npm/issues/10013#issuecomment-178238596) a better long-term solution, but in the mean time if you run sails new a lot and the slowdown is bugging you, consider temporarily downgrading to an earlier version of NPM (v2.x). If the installed version of NPM is < version 3, Sails will continue to take advantage of the classic symlinking strategy.

Socket Methods

Without question, the biggest change in Sails v0.12 is to the API of the low-level sails.sockets methods exposed by the sockets hook. In order to ensure that Sails apps perform flawlessly in a [multi-server (aka “multi-node” or “clustered”) environment](https://sailsjs.com/documentation/concepts/realtime/multi-server-environments), several [low-level methods](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets) have been deprecated, and some new ones have been added.

The following sails.sockets methods have been deprecated:

	[.emit()](https://0.12.sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-emit)

	[.id()](https://0.12.sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-id) (renamed to [.getId()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/get-id))

	[.socketRooms()](https://0.12.sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-socket-rooms)

	[.rooms()](https://0.12.sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-rooms)

	[.subscribers()](https://0.12.sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-subscribers)

If you are using any of those methods in your app, they will still work in v0.12 but _you should replace them as soon as possible_ as they may be removed from Sails in the next version. See the individual doc pages for each method for more information.

Resourceful PubSub Methods

The [.subscribers()](https://sailsjs.com/documentation/reference/web-sockets/resourceful-pub-sub/subscribers) resourceful pubsub method has been deprecated for the same reasons as [sails.sockets.subscribers()](https://sailsjs.com/documentation/reference/web-sockets/sails-sockets/sails-sockets-subscribers). Follow the guidelines in the docs for replacing this method if you are using it in your code.

Waterline (ORM) Updates

Sails v0.12 comes with the latest version of the Waterline ORM (v0.11.0). There are two API changes to be aware of:

.save() no longer provides a second argument to its callback

The callback to the .save() instance method no longer receives a second argument. While convenient, the requirement of providing this second argument made .save() less performant, especially for apps working with millions of records. This change resolves those issues by eliminating the need to build redundant queries, and preventing your database from having to process them.

If there are places in your app where you have code like this:
```javascript
sierra.save(function (err, modifiedSierra){


if (err) { /* … */  return; }

// …





});

You should replace it with:
```javascript
sierra.save(function (err){

if (err) { /* … */ return; }

// …

});

Custom column/field names for built-in timestamps

You can now configure a custom column name (i.e. field name for Mongo/Redis folks) for the built-in createdAt and updatedAt attributes. In the past, the top-level autoCreatedAt and autoUpdatedAt model settings could be specified as false to disable the automatic injection of createdAt and updatedAt altogether. That _still works as it always has_, but now you can also specify string values for one or both of these settings instead. If a string is specified, it will be understood as the custom column (/field) name to use for the automatic timestamp.

```javascript
{


attributes: {},
autoCreatedAt: ‘my_cool_created_when_timestamp’,
autoUpdatedAt: ‘my_cool_updated_at_timestamp’






}

If you were using the [workaround suggested by @sgress454 here](http://stackoverflow.com/a/24562385/486547), you may want to take advantage of this simpler approach instead.

## SQL Adapter Performance

[Sails-PostgreSQL](https://github.com/balderdashy/sails-postgresql) and [Sails-MySQL](https://github.com/balderdashy/sails-mysql) recieved patch updates that significantly improved performance when populating associations. Thanks to [@jianpingw](https://github.com/jianpingw) for digging into the source and finding a bug that was processing database records too many times. If you are using either of these adapters, upgrading to sails-postgresql@0.11.1 or sails-mysql@0.11.3 will give you a significant performance boost.

## Contributing

While not technically part of the release, Sails v0.12 is accompanied by some major improvements to the tools and resources available to contributors.  More core hooks are now fully documented ([controllers](https://github.com/balderdashy/sails/tree/master/lib/hooks/controllers)|[grunt](https://github.com/balderdashy/sails/tree/master/lib/hooks/grunt)|[logger](https://github.com/balderdashy/sails/tree/master/lib/hooks/logger)|[cors](https://github.com/balderdashy/sails/tree/master/lib/hooks/cors)|[responses](https://github.com/balderdashy/sails/tree/master/lib/hooks/responses)|[orm](https://github.com/balderdashy/sails/tree/master/lib/hooks/orm)), and the team has put together a [Code of Conduct](https://github.com/balderdashy/sails/blob/master/CODE-OF-CONDUCT.md) for contributing to the Sails project.

The biggest change for contributors is the [updated contribution guide](https://github.com/balderdashy/sails/blob/master/CONTRIBUTING.md), which contains the new, streamlined process for feature/enhancement proposals and for merging features, enhancements, and patches into core.  As the Sails framework has grown (both the code base and the user base), it’s become necessary to establish clearer processes for how issue contributions, code contributions, and contributions to the documentation are reviewed and merged.

## Documentation

This release also comes with a deep clean of the official reference documentation, and some minor usability improvements to the online docs at [https://sailsjs.com/documentation](https://sailsjs.com/documentation). The entire Sails website is now available in [Japanese](http://sailsjs.jp/), and four other [translation projects](https://github.com/balderdashy/sails/tree/master/docs#in-other-languages) are underway for Korean, Brazilian Portugese, Taiwanese Mandarin, and Spanish.

In addition, the Sails.js project (finally) has an [official blog](http://blog.sailsjs.com).  The Sails.js blog is the new source for all longform updates and announcements about Sails, as well as for our related projects like Waterline, Skipper and the machine specification.

## Need Help?

If you run into an unexpected issue upgrading your Sails app to v0.12.0, please review our contribution guide and [submit an issue in the Sails GitHub repo](https://github.com/balderdashy/sails/blob/master/CONTRIBUTING.md).

<docmeta name=”displayName” value=”0.12 Migration Guide”>
<docmeta name=”version” value=”0.12.0”>




            

          

      

      

    

  

    
      
          
            
  <docmeta name=”displayName” value=”0.8.x”>
<docmeta name=”version” value=”0.8.0”>



            

          

      

      

    

  

    
      
          
            
  # Changelog 0.8.7x
### 0.8.79


	Adapter definitions are no longer functions– instead the direct definition object is accepted. This makes it easier, cleaner, and more declarative to create adapters.


	Merged waterline into main Sails repo.


	Brought in sails-util and sails-moduleloader, moved watelrine tests into top level.


	Attribute values in models in result sets from Waterline are now cast to numbers, if they are number-looking strings.


	Substantial refactoring of waterline model-augmentation logic.


	Added TODO for asynchronous module loading for future.


	Upgraded waterline-dirty dep.




### 0.8.77


	Patch updates the waterline-dirty dependency to deal with an issue with that adapter returning objects which map directly to the in-memory database (was causing changes made to found models to be persisted without calling .save())




<docmeta name=”displayName” value=”0.8.7x Changelog”>
<docmeta name=”version” value=”0.8.7”>



            

          

      

      

    

  

    
      
          
            
  # Changelog 0.8.8x
### 0.8.80
+ Refactored app layout to make it a bit more straightforward. To check out the the new folder structure, make a new project with sails new foo
+ Added robot.txt in new app generation
+ Bound all methods in adapter to have the right context.

### 0.8.82
_Sunday, February 24, 2013_
+ Bootstrap function fires warning if callback not triggered after a few seconds (thanks [@virpool](https://github.com/virpool))
+ Bug fixes w/ pubsub/model convenience methods.

### 0.8.83
_Saturday, March 2, 2013_
+ Support for streaming large datasets from models (e.g. User.stream().pipe(res);)
+ Bug fix for chains of multiple policies (thanks [@themouette](https://github.com/themouette))
+ Jade template support (thanks [@valinorsgatekeeper](https://github.com/valinorsgatekeeper)
+ AssetRack integration for more robust css/js/template/LESS management, replaces Rigging (thanks [@techpines](https://github.com/techpines))
+ Fixed some docs /refactored (thanks @slantzjr)
+ Bundled excruciatingly simple “authenticated” policy in new projects
+ Made “redirect” work in API scaffolds
+ Renamed waterline-* adapter modules as sails-*. Added backwards compat.
+ Added .gitkeep in all directories when generating new projects to make sure they get committed
+ Bootstrap and log config now available in project template
+ View config now available in new projects as ‘config/views.js’
+ Better error checking in the sails CLI
+ Docs
+ Added app.js file back in, but this time hidden as ‘.app.js’. It can be run however you like, or you can use npm debug to debug it. To run daemonized, you can use forever start .app.js
+ Added notion of sails.explicitHost to track whether a host was explicitly specified. If it was not, Express takes the approach of accepting all connections via INADDR_ANY (see [http://expressjs.com/2x/guide.html#app.listen()](http://expressjs.com/2x/guide.html#app.listen())) Now, if you specify sails.config.host, sails.explicitHost gets set, and Express will start the server deliberately using the host you specify. In certain PaaS deployments, this is required. For instance, this was causing problems in an Openshift deployment environment (big thanks to @hypereive for figuring that out).

### 0.8.84
_Saturday, March 2, 2013_
+ Bug fixes: (explicit hosts, and included an additional file in new app generation)

### 0.8.85
_Sunday, March 3, 2013_
+ Check for and warn if port is currently being used on lift, with support for explicit hosts [https://github.com/balderdashy/sails/issues/197](https://github.com/balderdashy/sails/issues/197))
+ Model.stream() support over socket.io [https://github.com/balderdashy/sails/issues/196](https://github.com/balderdashy/sails/issues/196))

### 0.8.86
_Monday, March 4, 2013_
+ Patch to allow for easier SSL configuration.

### 0.8.87
_Monday, March 4, 2013_
+ Patch fixes updates sails-dirty version which fixes sorting by date

### 0.8.88
+ Adds coffeescript support on the front-end in dev and production environments via [asset-rack](https://github.com/techpines/asset-rack) [@techpines](thanks https://github.com/techpines)!)

### 0.8.892
+ Front-end CoffeeScript support in AssetRack (thanks [@techpines](https://github.com/techpines)!)
+ Chained policy support
+ New styles for default home page (thanks [@egdelwonk](https://github.com/egdelwonk)!)
+ Windows compat. fix (thanks [@feroc1ty](https://github.com/feroc1ty)!)
+ Support for string IDs (thanks [@tedkulp](https://github.com/tedkulp)!)
+ Attribute scaffolding for model generation (thanks [@Tidwell](https://github.com/Tidwell))
+ Support for big int string conversion in ID normalization (thanks [@d4mn](https://github.com/d4mn)!)

### 0.8.895
+ Policies: Fixed the “*” route for controllers.
+ Policies: The “*” policy can now be set to false
+ Collections: Type restrictions are cleaner
+ Adapters: Default was changed to memory due to an issue with node-dirty
+ Log: sails.config.log.level is passed to socket.io
+ Assets: Bug fixed: not calling next when compiling LESS with syntax (thanks vicapow)
+ Assets: Typescript supported on front-end (thanks Diullei)
+ Assets: Meaningful LESS errors were added (thanks vicapow)

<docmeta name=”displayName” value=”0.8.8x Changelog”>
<docmeta name=”version” value=”0.8.8”>



            

          

      

      

    

  

    
      
          
            
  # Changelog 0.8.9
_April 9, 2013_
+ Controllers must now also be generated to use the default API (they can be empty)
+ Haml template support on back-end for new projects (thanks [@dcbartlett](https://github.com/dcbartlett))
+ default values in models (defaultsTo)
+ Chained policies fixed
+ Removed all reference to blueprints as “scaffolds”. Blueprints are more than temporary placeholders– they are the preferred method of serving an API from your app.
+ Refactored most of the code base
+ Removed CRUD synonyms
+ Main: Compatibility with Node v0.10.0 (patches node-dirty)
+ Main: Fixed crash that happened when absolute path was given as appPath
+ Assets: Added more logging features for LESS.
+ Assets: Reset.css now in mixins
+ Assets: LESS assets are deligated to Rack.LessAsset
+ Assets: LESS assets served from asset-rack will have their extensions changed to css
+ Policies: Implemented the controller syntax for defining a policy.
+ Naming: scaffolds is now known as blueprints
+ Naming: blueprints is now known as boilerplates
+ Routing: Added controller.action syntax
+ Routing: Removed CRUD Synonyms– now you must explicitly use find, findAll, create, destroy, update (can’t use get, detail, delete, edit, etc. to indicate the same thing. Turns out this was actually annoying, not helpful)
+ Routing: Fix in API blueprint for regression around PUT/DELETE automatic RESTful routes
+ Routing: Fix for resourceful routing. /model/[id] didn’t work with verbs. It now does.
+ Config: _ and async no longer have to be global (but they are by default) They are configurable with sails.config.globals._ and sails.config.globals.async (thanks [@particlebanana](https://github.com/particlebanana)!)
+ New sails project can now be created in the current dir with sails new . (thanks [@collinwren](https://github.com/collinwren)!)
+ More tests (thanks [@collinwren](https://github.com/collinwren) and [@benrudolph](https://github.com/benrudolph))
+ Travis CI integration (thanks [@collinwren](https://github.com/collinwren)!)

<docmeta name=”displayName” value=”0.8.9 Changelog”>
<docmeta name=”version” value=”0.8.9”>



            

          

      

      

    

  

    
      
          
            
  # Changelog &#60;0.8.77


	I wasn’t keeping good notes, sorry. :(


	Check out <a target=”_blank” href=”https://github.com/balderdashy/sails/commits/master”>https://github.com/balderdashy/sails/commits/master</a> if you want to dive in.




<docmeta name=”displayName” value=”Pre-0.8.77 Changelog”>
<docmeta name=”version” value=”0.8.0”>



            

          

      

      

    

  

    
      
          
            
  <docmeta name=”displayName” value=”0.9.x”>
<docmeta name=”version” value=”0.9.0”>



            

          

      

      

    

  

    
      
          
            
  # Changelog 0.9.0
_July 10, 2013_
### Sails.js
+ Main: Express 3.x has been integrated.
+ Main: CSRF Attack Protection was added as part of the core. Uses express-csrf, plus a token-based approach for SPAs and embedded apps (Chrome extensions, JavaScript plugins).
+ Main: Most of the core has been refactored for performance, code clarity, and simplicity to make contributions easier.
+ Main: Most of the core has been pulled into hooks. In a subsequent patch release for 0.9.x, this process will make Socket.io optional.
+ Controllers: Automatic routing is now disable-able.
+ Assets: Grunt integration replaces Asset Rack.
+ Assets: Public folder removed from new projects.
+ Assets: Temporary ‘public’ folder is automatically built on lift, using the contents of the assets folder.
+ Assets: Static assets can be compiled with “sails build” for external hosting of front-end assets
+ Assets: Grunt ecosystem allows for a [wide variety](https://github.com/gruntjs/grunt-contrib) of front-end template/css/js preprocessor support (sass, hbs, stylus, dust, typescript, etc.)
+ Routing: Automatic 404 and 500 routing is replaced.
+ Assets: Asset bundling is now disabled by default, use sails new foo –linker to enable it
+ Config: Most configuration is now also explicit in new projects. Defaults are still provided underneath.
+ Sockets: Socket.IO can now be configured with the options detailed in config/sockets.js.
+ Sockets: Built-in support for Redis MQ– allows you to scale realtime apps to a multi-instance deployment without necessitating sticky sessions at your load balancer.
+ Views: Express 3 killed support for layouts/view partials. Sails has been extended to maintain support for them with ejs and jade, but otherwise you are limited to what is supported by the engine itself.
+ Views: Automatic routing to views is now disable-able.
+ Sessions: Built-in support for Redis and Mongo sessions for scaling your app to multi-instance deployments.

### Waterline
+ ORM: Waterline has been pulled out of Sails.js… Again. (See [Waterline](https://github.com/balderdashy/waterline))
+ ORM: Model attributes now support validations. (See [Anchor](https://github.com/balderdashy/anchor))
+ ORM: Custom instance methods can now be defined on models as virtual attributes.
+ ORM: Lifecycle Callbacks have been added. (See [Lifecycle Callbacks](https://github.com/balderdashy/sails-docs/tree/0.9))
+ ORM: findAll() has been replaced with find().
+ ORM: find() has been replaced with findOne().
+ ORM: .done() promise now works on all ORM methods
+ ORM: Complete support for the Promise specificiation has been added.

### Anchor
+ Validations: Too many added to list, see [Validations](https://github.com/balderdashy/sails-docs/tree/0.9)

<docmeta name=”displayName” value=”0.9.0 Changelog”>
<docmeta name=”version” value=”0.9.0”>



            

          

      

      

    

  

    
      
          
            
  # Changelog 0.9.16
_December 16, 2013_


	[@sgress454](https://github.com/sgress454) Hotfix for CORS issue when no Origin header is present. … f42da3c


	[@mikermcneil](https://github.com/mikermcneil) Update README.md 1bf1d15


	[@bicherele](https://github.com/bicherele) Update es.json … ddb9a07


	[@andyzhau](https://github.com/andyzhau) Fix the join room variable reference error. 57783a3


	[@mikermcneil](https://github.com/mikermcneil) Use npm version of linker 5459119


	[@mikermcneil](https://github.com/mikermcneil) Update CHANGELOG.md aae737f


	[@devel-pa](https://github.com/devel-pa) lodash library updated to last version available (2.4.1) c71ce81


	[@mikermcneil](https://github.com/mikermcneil) Hot fix to protect connect cookie parsing. e181656


	[@mikermcneil](https://github.com/mikermcneil) Rebased from #1012 as hotfix for windows view issue. 031ebe1




<docmeta name=”displayName” value=”0.9.16 Changelog”>
<docmeta name=”version” value=”0.9.16”>



            

          

      

      

    

  

    
      
          
            
  # Changelog 0.9.4
_September 5, 2013_
+ Improved CSRF prevention support (thanks to [@sgress454](https://github.com/sgress454))
+ Support for CORS (thanks to [@sgress454](https://github.com/sgress454))
+ CoffeeScript supported client-side by default in gruntfile thanks to @reecelewellen
+ Improves/fixes internationalization (thanks to [@xdissent](https://github.com/xdissent) and [@silvinci](https://github.com/silvinci))
+ Removed vanilla HAML support and tests since it was incomplete (jade is still supported)
+ Config: Sails core is no longer automatically copied as a dependency during sails new. This speeds up the process significantly and avoids occassional recursive copy death spirals.
+ Config: Added explicit –port option to sails lift.
+ Sockets: Added query string parsing to requests.
+ Sockets: Headers can now be specified in requests (_This has implications on full compatibility w/ most Express middleware!_)
+ Routing: Fixed issues with default 404 and 500 responses.
+ Other minor bug fixes/inconsistencies and documentation enhancements

> And thanks a ton to anybody I left out! Send me a message on twitter and I’ll add you.

<docmeta name=”displayName” value=”0.9.4 Changelog”>
<docmeta name=”version” value=”0.9.4”>



            

          

      

      

    

  

    
      
          
            
  # Changelog 0.9.7
_October 10, 2013_
+ Complete improvement/refactoring of configuration loader (fixes bugs)
+ Complete improvement/refactoring of ORM loader (fixes bugs)
+ Continued improvements of tests
+ Include a modified version of consolidate to better support view engines
+ Blueprints are now configurable per-controller (thanks [@xdissent](https://github.com/xdissent), and everyone else who helped!)
+ (waiting to expose this and deprecate the old behavior in the docs until the next minor release to avoid causing any breaking changes)
+ New prefix option in global blueprint config, as well as per-controller.
+ New jsonp option in global controller config, as well as per-controller.
+ New pluralize option in global controller config, as well as per-controller.


	Models can now easily use one or more custom named connections which use different adapters


	(waiting to expose this and deprecate the old behavior in the docs until the next minor release to avoid causing any breaking changes)


	Adds configurable default behavior for 403/404/500/400 HTTP status code error cases.


	(waiting to expose this and deprecate the old behavior in the docs until the next minor release to avoid causing any breaking changes)


	Properly namespace the io in bundled sails.io.js client in new projects (thanks [@drosen0](https://github.com/drosen0))


	Better handle crash scenario, particularly in nodemon (thanks [@edy](https://github.com/edy))




> Thanks to everyone else I missed, and to everyone else who helped out with this release!

<docmeta name=”displayName” value=”0.9.7 Changelog”>
<docmeta name=”version” value=”0.9.7”>



            

          

      

      

    

  

    
      
          
            
  > The 1.0 migration guide now lives in the ‘Upgrading’ section, [here](https://github.com/balderdashy/sails/blob/master/docs/upgrading/To1.0.md).



            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_static/minus.png





_static/plus.png





_static/file.png





